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Abstract

Radial Basis Function Neural Networks are well suited for learning the system
dynamics of a robot manipulator and implementation of these networks in the
control scheme for a manipulator is a good way to deal with the system uncer-
tainties and modeling errors which often occur. The problem with RBF networks
however is to find a network with suitable size, not too computational demanding
and able to give accurate approximations. In general two methods for creating an
appropriate RBF network has been developed, 1) Growing and 2) Pruning.

In this report two different pruning methods which are suitable for use in a
learning controller for robot manipulators are proposed, Weight Magnitude Prun-
ing and Neuron Output Pruning. Weight Magnitude Pruning is based on a pruning
scheme in [8] while Neuron Output Pruning is based on [2]. Both pruning meth-
ods are simple, have low computational cost and are able to remove several units
in one pruning period. The thresholds used to find which neurons to remove are
specified as a percent and hence less problem dependent to find.

Simulations with the two proposed pruning methods in a learning inverse kine-
matic controller for tracking a trajectory by using the three first joints of the ABB
IRB140 manipulator are conducted. The result was that implementing pruned
RBF networks in the controller made it more robust towards system uncertain-
ties due to increased generalization ability. These pruned networks were found to
give better tracking in the case of unmodeled dynamics compared to the incorrect
system model, not pruning the RBFNNs and a type of growing network called
RANEKFs. Computational costs were also reduced when the pruning schemes
were implemented.

NTNU has a manipulator of the type ABB IRB140 and the learning inverse
kinematic controller with pruning of RBF networks should be implemented and
tested on this in real-life simulations.





Sammendrag

Implementering av Radial Basis Funksjon Nevrale Nettverk i en kontroller for å
lære systemdynamikken til en robot manipulatorer er en god måte å h̊andtere
systemets usikkerhet og modelleringsfeil som ofte forekommer p̊a. Problemet med
RBF nettverk er imidlertid å finne et nettverk med passende størrelse som ikke er
altfor beregningskrevende men fremdeles i stand til å gi nøyaktige estimeringer.
Det har blitt utviklet to metoder for å lage et passende RBF nettverk, 1) Voksende
og 2) Beskjærende.

I denne rapporten er det utviklet to ulike beskjæringsmetoder som er egnet
til bruk i en lærende kontroller for robot manipulatorer. De er kalt Vekt Styrke
Beskjæring og Nevron Utgang Beskjæring. Vekt Styrke Beskjæring er basert p̊a
en annen beskjæringsmetode i [8] mens Neuron Utgang Beskjæring er basert p̊a
[2]. Begge beskjæringsmetodene er enkle og har lave beregningskostnader. De
fjerner de fleste av enhetene i løpet av en beskjæringsperiode og gir dermed raskt
det endelige nettverket. Grensene som brukes for å finne hvilke nevroner som kan
fjernes er spesifisert i prosent og dermed mindre problemavhengig å finne.

Det er gjennomført simuleringer med de to foresl̊atte beskjæringsmetodene i en
lærende invers kinematisk kontroller for styring av de tre første leddene til en ABB
IRB140 manipulator. Resultatet var at å implementere beskjærte RBF nettverk
i kontrolleren gjorde den mer robust mot systemets usikkerhet p̊a grunn av økt
generaliseringsevne. For de tilfellene med umodellert dynamikk ga de beskjærte
nettverkene bedre banefølging i forhold til bruk av feil system modell, ubeskjærte
RBFNN’er og en type voksende nettverk kalt RANEKF. Beregningskostnadene
ble ogs̊a redusert da beskjæringsmetodene ble inkludert.

NTNU har et eksemplar av manipulatoren ABB IRB140 og den lærende inverse
kinematiske kontrolleren med beskjæring av RBF nettverk bør implementeres og
testes p̊a den.
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Chapter 1

Introduction

1.1 Background Motivation

Over the last years robot manipulators have become a very important part of the
industry and are used all over the world in factories and places with high risk
involved for humans. Thus also the subject of how to control the manipulators in
a best possible way has become an active research field. The desired objective is
to obtain fast and accurate manipulators that are safe and stable.

Implementing a model of the manipulator in the control scheme has shown to
give better performance than non-model based controllers. [1] The precision of the
model-based regulators is closely linked to the accuracy of the dynamic model and
the parameters in it. Finding a completely correct model is however not an easy
task due to the robot manipulator itself and also the surrounding environment are
containing a great deal of uncertainties and disturbances.

Controllers utilizing learning include methods coping well with the uncertain-
ties and modeling errors. These control systems have the ability to improve their
future performance based on obtained knowledge from the past control tasks done
by the manipulator. Out of the different learning schemes currently existing Ar-
tificial Neural Networks have proven to be well suited for storing the experienced
knowledge of the system. They also have the ability to generalize from the knowl-
edge on situations to new and unknown tasks similar to the already experienced
ones.

Radial Basis Function Neural Network is a type of artificial neural networks
that due certain properties like the known ability of universal approximation [24]
is appropriate for use in robot manipulator control. They are also reported to be
computationally more efficient than multilayer perceptron networks in a number
of control applications [25].

The performance of the radial basis function neural network however is very
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dependent on the size of the network and the main problem is the Curse of Dimen-
sionality [10]. To give an accurate approximation the networks have to be large
enough. On the other hand if they should become too large the problem of over-
fitting is likely to occur. Over-fitting is when there are too many hidden neurons
and the network starts to fit the errors within the training data in addition to the
underlying function. This gives poor generalization ability for the network and in
the worst cases the outputs become completely incorrect.

Another major problem following the curse of dimensionality is the computa-
tional cost of implementing radial basis function networks. When used in robot ma-
nipulator control it is absolutely necessary that the computations are fast enough
so the outputs can be used in the regulator.

In general there are two ways to create a network with appropriate size, 1)
growing and 2) pruning. The first starts with a small or empty neural network
and adds neurons until some threshold for the approximation error is met. The
second starts with an over dimensioned network and removes the weights and/or
neurons that not are necessary for the network in order to be able to approxi-
mate. Pruning for artificial neural networks is based on the same concept as what
naturally happens in the human brain when synaptic weights are pruned.

Artificial neural networks are created based on the neural network in human
brains and the knowledge is stored in the synaptic weights for both the neural
networks. For humans some synapses are cut to increase the brains ability to gen-
eralize from situation to situation when the humans are around the age of 20. The
remaining weights in the brain then have their strength increased. If however the
brains are pruned too much the sickness schizophrenia is developed which causes
the brain to over-generalize and give outputs with no real meaning and little sense.
[11]

1.2 Purpose of This Report

The purpose of this report is to create pruning methods for radial basis function
neural networks that are suited for use in online learning control of robot manip-
ulators. The system dynamic model of a manipulator is learned and then utilized
in a model-based control scheme.

Focus in much of the pruning algorithms developed so far is on finding the
optimal network with best possible generalization ability and smallest possible
approximation error. They are however not concerned with the computational cost
the pruning algorithm needs or how computational demanding the final network
is.

2



For use in real-time control of a robot manipulator it is crucial that pruning
happens fast since this will be done online while controlling the manipulator. In
this setting it is probably better with a small network that perhaps not gives the
best possible estimations but can give a satisfyingly approximation fast enough to
be used in the controller.

1.3 Outline

First some theory on the radial basis function neural networks used in this report
is given in Chapter 2 along with some other essential background information.

Then in Chapter 3 a literature review on pruning follows.
In Chapter 4 two pruning methods suited for use in online learning of the

system dynamics of a manipulator are proposed. The first pruning method is
Weight Magnitude Pruning which uses the magnitude of the weights to find the
weights that not are necessary in the network and remove these. The second
pruning method is Neuron Output Pruning. This method is based on the output
of the activation function in the hidden neurons and finds which nodes that may
be removed by looking at these outputs.

The two proposed pruning methods are tested in offline simulations for learning
a cross function with a radial basis function network in Chapter 5.

Simulations with the two pruning methods for a 2 dof manipulator are done in
Chapter 6. Here the manipulator is controlled with a learning inverse kinematic
controller for a trajectory tracking task. The learning of the system dynamics
consists of training and pruning the radial basis function networks online while
tracking a desired trajectory.

In Chapter 7 the same learning inverse kinematic controller is simulated for
control of the first 3 joints of the ABB IRB140 manipulator. Again the radial
basis function neural networks are trained and pruned with the proposed pruning
schemes online for learning the dynamics of the manipulator. Simulations with
a growing neural network called Resource Allocation Network Extended Kalman
Filter are also done. The obtained results from pruning and growing the networks
then are compared.

Finally in Chapter 8 some conclusions are drawn and future work mentioned.

1.4 Contributions

• Two simple pruning methods for radial basis function neural networks in on-
line learning control for a robot manipulator. Most of the removable neurons
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are puned during the first period. Thresholds are specified as a percent and
thus less problem dependent to find. The proposed pruning methods are

1. Weight Magnitude Pruning which is based on a method in [8]. It has
however been enhanced with a) finding the threshold as a percent of the
L2 norm of the weights, and b) using a growing threshold so additional
neurons are removed after the first pruning.

2. Neuron Output Pruning which in a new setting uses neuron output ratio
from [2]. Here the neuron output ratios are summed together for each
unit and a pruning threshold is found as a percent of the maximum
output ratio sum.

• Simulations in Matlab/Simulink that demonstrate the efficiency of using the
proposed pruning methods in a learning inverse kinematic controller.
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Chapter 2

Background Theory and Notation

2.1 Introduction

The neural networks in this report are Radial Basis Function Neural Networks
and they are often referred to as either RBF networks or RBFNNs. A very brief
description of the RBF networks used in this report will in this chapter be given.
Some general properties of the radial basis function networks are also mentioned
as they are important later in the report. More on Radial Basis Function Neural
Networks and other neural networks can be found in [10].

How the dynamics of a manipulator are learned by RBF networks is described
in section 2.6. Then a short definition of an ill-posed problem follows in the next
section.

In order to compare the pruned RBF networks a growing network called Re-
source Allocation Network Extended Kalman Filter(RANEKF) is used later in this
report. Thus some short background theory on RANEKF will be given in this
chapter.

At the end a small list of different notations used trough the report can be
found.

2.2 Radial Basis Function Neural Networks (RBFNN)

RBF networks are feed-forward neural networks with one input layer, one output
layer and only one hidden layer. [10] The output of the an output neuron is given
as

Fj(x) =
N∑

i=1

wjiai(||x− µi||) (2.2.1)
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where there are N units in the hidden layer, wji is the weight between output
neuron j and hidden unit i, ai(||x− µi||) is the activation function in hidden unit
i to the input x and µi is the center of node i. If there only is one output neuron
in the network the subscript j can be removed and the final network output may
be written as

F (x) =
N∑

i=1

wiai(||x− µi||) (2.2.2)

All the networks only have one output node in this report and this gives one
single weight connecting a hidden node with the output layer. This again implies
that there are the same number of hidden neurons and weights between hidden and
output layer. These weights are the only ones that are changed while the weights
between the input layer and the hidden layer are fixed at one and not given any
attention here.

The changeable weights (from now on only referred to as the weights) can be
written in a vector as

w =




w1

w2
...
wN


 (2.2.3)

where w1 is the weight between hidden unit 1 and the output unit, w2 is the weight
between hidden unit 2 and the output unit and N is the number of units in the
hidden layer. All the weights are initialized to zero in the beginning.

The activation function used is the gaussian function and the activation func-
tion for node i is given as

ai(||x− µi||) = kge
||x−µi||
σ2 (2.2.4)

where kg is a constant, x is the input to the network, µi is the centre of node i, || · ||
is the 2-norm or euclidean distance and σ is the width (also referred to as spread)
of the activation function. Here the width the whole time is fixed and taken as
the distance to the next unit. These activation functions can also be written in a
vector

a(||x− µ||) =




a1(||x− µ1||)
a2(||x− µ2||)

...
aN(||x− µN ||)


 (2.2.5)
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and the centres of the hidden neurons can be written as

µ =




µ1

µ2
...
µN


 (2.2.6)

To simplify the writing a(||x − µ||) will now be written as a(x) since the centres
are fixed.

The centres are placed on a regular lattice with fixed place as shown in figure
2.1 below. Two inputs give a 2-dimensional lattice for the hidden neurons as the
figure has.

Figure 2.1: Hidden Layer

2.3 Training

The networks are trained with supervised learning using a gradient descent algo-
rithm in this report. As already mentioned the only weights that are changed are
those between the hidden layer and the output layer.

The new weights are found as this

w = w + α∆w (2.3.1)
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where w are the current weights, α is a training rate and ∆w is the update of the
weights. This update is found minimizing the cost function

K =
1

2
(z − ẑ)2 =

1

2
e2 (2.3.2)

where z is the desired output of the network while ẑ is the actual output and
e = z − ẑ is the approximation error. The minimization gives

∆w = −ea(x) (2.3.3)

where a(x) is the activation function output for the input x.

2.4 Optimal Approximation

A radial basis function neural network is known to able to approximate any func-
tion with any given accuracy as long as the network is large enough and has the
correct chosen properties, like for instance the width of the activation function.
See [24] for a proof of that RBF networks with one hidden layer are capable of
universal approximation.

The optimal network output can be written as

F (x) = w∗Ta(x) + ε∗ (2.4.1)

where w∗ are the optimal weights and ε∗ is the optimal estimation error which can
be made arbitrary small.

2.5 Localization Principle

One of the main differences between Multilayer Perceptron (MLP) networks and
RBF networks is that the activation functions in RBF networks are radial basis
functions (RBF). These functions are a special set of real-valued functions which
value depends only on the distance from an input to another point called a center.
This distance is usually taken as the Euclidean distance. More on radial basis
functions can be found in [23].

In equation 2.2.4 which is the gaussian activation function used for the net-
works in this report the width, σ, specifies the area for where a neuron fires. The
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area for where a neuron fires or is activated is called an activation area. See figure
2.1. So for an input will only those neurons closer than σ contribute to the total
output of the network while nodes further away have little or none influence for
that specific input. This is called the Localization Principle since which units that
fire are based on their localization.

2.6 Networks for Manipulator Dynamics

The dynamic equation for a robot manipulator can be written as this

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (2.6.1)

where q, q̇, q̈ are the joint position, velocity and acceleration respectively. M(q) is
the inertia matrix, C(q, q̇) is a matrix containing the centrifugal and coriolis forces,
G(q) is the gravitation matrix and τ is the control torque. This equation can also
be written as

m11 · · · m1n

...
. . .

...
mn1 · · · mnn






q̈1
...
q̈n


+



c11 · · · c1n
...

. . .
...

cn1 · · · cnn






q̇1
...
q̇n


+



g1
...
gn


 =



τ1
...
τn




(2.6.2)
where n is the number of joints for the manipulator. Due to all the joints being
activated in this report the number of degrees of freedom is the same as the num-
ber of joints.

The elements in the dynamic matrices are separately learned by a RBF net-
work in this report, that is one network is dedicated to one element in one of the
matrices. Then there initially will be n × n + n × n + n RBF networks. When
the manipulator has many degrees of freedom (dof) it follows that there are very
many networks. However due to the symmetric property of the inertia matrix,
M = MT , not all the elements need to be approximated by a RBFNN.

In order to simplify the writing for the RBFNN estimated matrices some no-
tations based on definitions in [7] is used, and following are some explanations.

M̂ = W T
M • AM(x) (2.6.3)

where WM is the weight matrix defined as

W T
M ,




wT
m11 · · · wT

m1n
...

. . .
...

wT
mn1 · · · wT

mnn


 (2.6.4)
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when the elements in the matrix, such as wm11, are a column vectors as defined in
equation (2.2.3). AM(x) is the activation function matrix for an input x, defined
as

AM(x) ,




am11(x) · · · am1n(x)
...

. . .
...

amn1(x) · · · amnn(x)


 (2.6.5)

where the elements, like am11, are as in equation (2.2.5).
When calculating M̂ as in equation (6.4.1) the • between WM and AM(x)

operator shows that this is not a normal matrix multiplication but used as this

W T
M • AM(x) =




wT
m11am11(x) · · · wT

m1nam1n(x)
...

. . .
...

wT
mn1amn1(x) · · · wT

mnnamnn(x)


 (2.6.6)

So for the network that approximates the element m11 the output is given as
m̂11 = wT

m11am11(x).

Finding the approximated C matrix follows the same pattern

Ĉ = W T
C • AC(x) (2.6.7)

⇒



ĉ11 · · · ĉ1n
...

. . .
...

ĉn1 · · · ĉnn


 =




wT
c11 · · · wT

c1n
...

. . .
...

wT
cn1 · · · wT

cnn


 •




ac11(x) · · · ac1n(x)
...

. . .
...

acn1(x) · · · acnn(x)




(2.6.8)

=




wT
c11ac11(x) · · · wT

c1nac1n(x)
...

. . .
...

wT
cn1acn1(x) · · · wT

cnnacnn(x)


 (2.6.9)

and so does also the estimation of G

Ĝ = W T
G • AG(x) (2.6.10)

⇒



ĝ1
...
ĝn


 =




wT
g1
...

wT
gn


 •




ag1(x)
...

agn(x)


 =




wT
g1ag1(x)

...
wT
gnagn(x)


 (2.6.11)
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2.7 Ill-Posed Problems

An ill-posed problem is basically when the training data contains too little infor-
mation about the desired solution to give enough variation in the training of the
networks. In [10] Haykin identifies three conditions which have to be satisfied in
order for a problem to be well-posed and thus not ill-posed. First it is assumed
that there are two metric spaces, a domain X and a range Y , and a fixed but
unknown function f mapping between them. The three conditions then are:

1. Existence. For every input vector x ∈ X there exist an output y = f(x),
where y ∈ Y .

2. Uniqueness. For any pair of input vectors x, t ∈ X then f(x) = f(t) iff
x = t.

3. Continuity. For any ε > 0 there exists a δ = δ(ε) such that ρx(x,t) < δ
implies that ρy(f(x), f(t)) < ε, where ρ(·, ·) is the distance between the
symbols and their respective spaces. This property is also referred to as
stability.

2.8 Resource Allocation Network Extended Kalman

Filter (RANEKF)

The other way to handle the uncertainties of finding a network with appropriate
size and placement for the neurons is a self-growing network. One of the grow-
ing RBF networks that exist is Resource Allocation Network (RAN) which in an
article by Platt [26] was proposed. This network later was enhanced to use an Ex-
tended Kalman Filter (EKF) algorithm for the adaptation stage in [15] and here
a brief description of the Resource Allocation Network Extended Kalman Filter
(RANEKF) will be given. RANEKF is in simulations later in this report imple-
mented in a learning controller and the result from this is compared to the result
obtained with the pruned networks. The information on RANEKF here is found
in [6] and [15].

A RANEKF starts with no neurons in the network and adds one neuron at
the time during a training period. The adding of a new neuron is based the lo-
calization to the inputs and approximation error for the network. This gives that
the learning process requires allocation of a new hidden node as well as adap-
tation of the other network parameters as weights and width of the activation
function. Thus the learning scheme can be viewed as a hybrid learning scheme
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consisting of an unsupervised learning part for choosing the placement of the new
neurons and a supervised learning scheme for determining the network parameters.

The output of a RANEKF is given as

f(x) = α0 +
K∑

k=1

αkφk(x) (2.8.1)

where x ∈ Rm is the input and K is the number of hidden units. αk is the
connecting weight from kth hidden unit to the output layer, and α0 is a bias term.
The activation function is taken as the gaussian function given as

φk(x) = e−
1
σ2
||x−µk||2 (2.8.2)

where µk is the center vector for the kth hidden unit and σ is the width of the
gaussian function.

The criteria used for deciding whether a new unit should be added to the hidden
layer are the following three:

||xn − µnr|| > εn (2.8.3)

en = y(n)− ŷ(n) > emin (2.8.4)

ermsn =

√√√√√
n∑

i=n−(M−1)
[y(i)− ŷ(i)]2

M
> e′min (2.8.5)

where µnr is the center of the hidden neuron with the smallest distance to the input
xn. M is a sliding window used for calculating the RMS output approximation er-
ror, ermsn. εn, emin and e′min are threshold values that are set to appropriate values
in order to find out if a new neuron is added or not. All the three criteria have to
be met at for the same input if the number of hidden units is to be increased. Said
in another way represents the first criterion that the shortest distance from a new
input to a node has to larger than εn if a new hidden unit should be added. The
second says that the approximation error for the network to that given input has
to be larger than emin, and the third criterion gives that the rms approximation
error over the M last inputs has to be larger than e′min.

A new input is assigned the following parameter value when added
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αK+1 = en (2.8.6)

µK+1 = xn (2.8.7)

σK+1 = κ||xn − µnr|| (2.8.8)

where κ is an is an overlap factor that decides the overlap of the response of a
hidden unit in the input space.

If the criteria for adding a new neuron not are met the algorithm uses an
extended Kalman filter (EKF) to adjust the parameters in the network, w =
[α0, α1, µ

T
1 , σ1, ..., αK , µ

T
K , σK ]T . The update law is given as

wn = wn−1 + knen (2.8.9)

where kn is a kalman filter gain vector decided by

kn = Pn−1an[Rn + aTnPn−1an]−1 (2.8.10)

where an is a gradient vector on the form

an = 5wf(xn) (2.8.11)

= [1, φ1(xn), φ1(xn)
2α1

σ2
1

(xn − µ1)
T , (2.8.12)

φ1(xn)
2α1

σ3
1

||xn − µ1||2, (2.8.13)

φK(xn), φK(xn)
2αK
σ2
K

(xn − µK)T , (2.8.14)

φK(xn)
2αK
σ3
K

||xn − µK ||2]T , (2.8.15)

Rn is the variance of the measurement noise and Pn is the error covariance matrix
updated as

Pn = [I −Kna
T
n ]Pn−1 +QI (2.8.16)

where Q is a scalar that determines the step size in the gradient direction.

2.9 Notation

• RBF - Radial Basis Function
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• NN - (Artificial) Neural Network

• MLP - Multilayer Perceptron, neural network capable of universal approxi-
mation with an input layer, an output layer and one or more hidden layers

• Neuron, Node, Center and Unit refers to the same

• Size of a RBF network is the number of neurons in the hidden layer

• Norm - the norm of the weights is taken as the L2 norm

• One training iteration is taking one training sample, feeding the input to the
network, comparing the output with the desired output and then change the
weights according to the estimation error

• One period is first to prune the network once and then train the network
with one training set

• RMSE - Root Mean Square Error, used to measure the approximation errors

• SSE - Sum Square Error, used to calculate the tracking error

• DOF - Degree Of Freedom, for a manipulator

• RANEKF - Resource Allocation Network Extended Kalman Filter
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Chapter 3

Literature Review - Pruning and
Regularization

3.1 Introduction

A review of some currently existing pruning schemes will in this chapter be given.
The goal with pruning often is to find the point of where the network approxi-
mation error is smallest possible and the generalization ability highest possible.
Hence the focus in pruning have been on finding the most optimal network. These
pruning methods often are very time consuming and the final network can be quite
large.

Pruning methods start with an initially large network and train this to a min-
ima or close to a minima. Then based on different criteria they find the network
parameter which can be removed. By network parameter either a weight or a
neuron is here meant. Some of the pruning methods remove weights only while
other remove a neuron and thus also its belonging weights.

Many of the neural networks are not radial basis function networks in this
chapter and the networks may then have changeable weights between several lay-
ers. In general the networks are feed-forward neural networks.

3.2 Weight and Output Based Pruning

The output of an entire network depends on the output of the neurons and the size
of the weights. Thus to look at those two factors when deciding which network
parameters that not are necessary for the network will make sense.
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Some of the earliest pruning versions are based on the magnitude of the weights,
like in an article by Hagiwara [8]. This article describes three different pruning
methods that are simple in their logic and also not very computational demanding.

The first is the Goodness Factor Method which is based on that an important
neuron excites frequently and has strong weights connecting to the next layer.
Pruning is done with a Goodness Factor defined as Gk

i =
∑
p

∑
j

(wkjio
k
i )

2 for neu-

ron i in layer k. wkji is the weight between the ith neuron in the kth layer and
the j neuron in the (k + 1)th layer, while oki is the output of the ith neuron in
the kth layer. The neuron with the lowest goodness factor is after training re-
moved, the network then retrained and another neuron with the currently lowest
goodness factor can be found. This is repeated for some undefined amount of time.

Based on the first a second method called Consuming Energy Method is pro-
posed. The difference here is that the consuming energy method includes the
thought that an important neuron not only excites frequently itself. Neurons in
the following layer will also be excited. The consumed energy for the ith neuron in
the kth layer is defined as Ek

i =
∑
p

∑
j

wkjio
k+1
j oki , where wkji is the weight between

the ith neuron in the kth layer and the j neuron in the (k + 1)th layer, oki is the
output of the ith neuron in the kth layer and ok+1

j is the output of the jth neuron
in layer k + 1.

The third pruning method described in the article by Hagiwara is called Weights
Power Method and is a simplified version of the two pruning methods already men-
tioned. Here only the weights are considered and the weight power for neuron i in
layer k is defined as W k

i =
∑
j

(wkji)
2.

All three versions are simulated for the same problem and then compared. The
result was that the weights power method gave the smallest network and also the
best generalization result for both neuron pruning and weight pruning.

Later it has been argued that these methods are too simple. There is no guar-
antee for the right weight or neuron being removed due to a neuron with small
weights may be important for the overall performance and accuracy of the net-
work. That is why the trend in the later years has moved towards pruning based
on some kind of complexity measurement of the network or sensitivity analysis of
the different network parameters.
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3.3 Complexity Based Pruning

Complexity of a brain or a neural network is a measurement of how well neurons
have been able to group together to form clusters for interpreting different inputs
and how well these groups are able to function. One example of an algorithm that
prunes based on the complexity can in an article by Zhang and Qiao [30] be found.
This algorithm finds the the least important neuron by first removing one node,
calculating the change in neural complexity, placing this neuron back into the net-
work for so to do the same with another unit. When all of the neurons have been
removed and restored the neuron with the highest complexity and hence the least
important one is found and removed. This is done until the minimum squared
error is less than some objective error.

The entropy of the network is used to calculate the network complexity. This
entropy is found from the covariance matrix of the neural network connection ma-
trix and gives a measurement of how correlated the different neurons in the network
are. If all neurons are either totally independent or dependent the complexity is
zero and thus no neurons are pruned.

The algorithm described here is for a three layer feed-forward neural network
which is a network with input layer, output layer and one hidden layer as RBF
networks. Weights that not are unity from the input layer to the hidden layer
are however here included. Focus have been more on MLPs than RBFs and the
complexity pruning scheme is supposed to be easy to extend to larger networks.

3.4 Sensitivity and Saliency Based Pruning

Sensitivity analysis techniques are probably the most common group of pruning
methods and cover a wide range of different sensitivity measurements. The con-
cept for the sensitivity analysis methods is however the same. Find and remove the
network parameters with the lowest sensitivity and thus have the least relevance
for the final network output. To the sensitivity analysis the network parameter to
be pruned is taken as the input and the output is usually the output of the entire
network. Whether the network parameter used is an input neuron, hidden neuron
or a single weight varies from method to method.

Saliency can be seen as kind of sensitivity measurement and is widely used in
the field of pruning over the last years. Something that stands out compared to
its surroundings is the meaning of the word saliency. How this measurement is
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defined depends on the method it is implemented in.

Originally the idea to sensitivity based pruning was to define some sensitivity
measurement for the whole network and calculate this when removing and rein-
serting one neuron at the time. How the sensitivity varied when removing the
different neurons gave an idea of how sensitive the network was to loosing that
specific neuron.

A trimming method for networks called skeletonization was probably the first
version and proposed in an article by Mozer and Smolensky [21]. Here the contri-
bution of each weight is found as a sensitivity measurement and the weight with
the least contribution is removed. The sensitivity for a weight, wji, from node i in
one layer to node j in the following layer is found as

sji = J(without wji)− J(with wji) (3.4.1)

where J(·) is a performance measurement.

Sensitivity and complexity based pruning are closely related to each other. The
difference mainly is that the sensitivity analysis finds an estimate (or sometimes
called saliency) for the sensitivity of each neuron to the network while complexity
pruning sees how the complexity of the entire network changes when a neuron is
removed. By using an estimate for the sensitivity there is not necessary to remove
one neuron at the time and calculate the sensitivity for each, which has reduced
the computational cost greatly.

3.4.1 Optimal Brain Surgeon (OBS)

The perhaps most used sensitivity pruning method and also has shown good results
over time is called Optimal Brain Surgeon (OBS) and was proposed by Hassibi,
Stork and Wolff [9]. OBS is based on a pruning algorithm called Optimal Brain
Damage (OBD) by Le Cun, Denker and Solla [4] which proposed that the weight
with the smallest saliency will generate the smallest error variation to remove.

Both Optimal Brain Damage and Optimal Brain Surgeon start with a network
already trained to converge to a local minima and tries to minimize the cost
function

E =
1

2

p∑

j=1

M∑

i=1

(
di(j)− yi(j)

)2
(3.4.2)

where di(j) is the desired output, yi(j) is the actual output of output neuron i to
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training sample j, p is the number of training samples and M is the number of
output neurons.

Then the functional Taylor series of the error with respect to weights is found.
This can be written as

∆E =
(∂E
∂w

)T
∆w +

1

2
∆wTH∆w +O

(
‖ ∆w ‖3

)
(3.4.3)

where H is the Hessian defined as

H , ∂2E

∂w2
(3.4.4)

Since the training has converged the first term in the Taylor series vanish. The
third and all higher order term are also neglected. So the goal is to minimize the
increase in error, ∆E as above, by setting one of the weights to zero. So far is both
OBD and OBS doing the same. In OBD however an assumption that the hessian
is diagonally dominant was made and thus only the diagonal elements could be
chosen. The saliency coefficient was then found as the increase in error E when
changing the weights by ∆w

Si = ∆E =
1

2

∑

i

hii[∆wii]
2 (3.4.5)

Hassibi et al found that the hessian in fact was far from diagonally dominant,
something that resulted in OBD for some cases removed the wrong weights. Hence
the assumption is not made in OBS and this is the main difference between those
two methods. The saliency in OBS is found by solving the minimization problem
with a Lagrangian multiplier and the saliency of weight q then becomes

Lq =
1

2

w2
q

[H−1]qq
(3.4.6)

From the same minimizing problem the optimal weight change is also found which
is used to update all the other weights that are not removed. This optimal weight
change is given as

∆w = − wq
[H−1]qq

H−1eq (3.4.7)

The weight with the lowest saliency is then pruned and the remaining weights
are updated according to (3.4.7). Again the inverse hessian is calculated to find
the weight with the smallest saliency and the optimal weight change. This is re-
peated to remove one weight at the time until there are no more weights that can
be removed without causing a large increase in E.
From simulations done in [9] it was shown that OBS gave significantly better re-
sults than OBD and also weight based pruning.
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Other Versions of Optimal Brain Surgeon

The problem with Optimal Brain Surgeon is the fact that the method is very time
consuming due to the repeatedly calculation of the inverse hessian matrix. That
is why it more recently has been created new variants of OBS and some is shortly
mentioned here.

Stahlberger and Riedmilller have proposed a variant called Generalized Optimal
Brain Surgeon (G-OBS) [29] that prunes a subset of m weights in one step instead
of only one as earlier done. However they also found that if m > 3 the original
OBS actually would be faster. So G-OBS could remove up to three weights in a
single step and would then be a bit faster than OBS.
In the same article a special case of the G-OBS method called Unit Optimal Brain
Surgeon (U-OBS) was also proposed. If possible this method chose the subset of
weights to be removed as the weights belonging to the same neuron and could thus
remove an entire unit in a single step. This could be done in a much faster time
than the original OBS could remove a neuron.

In a paper by Attik [3] another version of OBS called Flexible Optimal Brain
Surgeon (F-OBS) specialized in removing connections between input and hidden
layer is proposed. The benefits with F-OBS are that the algorithm can reduce the
number of weights between the variables and the hidden layer and also reduce the
number of variables. Attik also combines this version with generalized OBS into
a method called General Flexible Optimal Brain Surgeon (GF-OBS) which in one
stage removes a subset of weights between the input and hidden layer. The results
from F-OBS and GF-OBS compared to G-OBS and U-OBS were approximately
equally well. Which pruning scheme to use would be depending on the problem
and network to prune.

To speed up the OBS pruning Meng proposes an algorithm where the OBS
pruning case is a penalty item of the network cost function [19]. The proposed
scheme is called penalty OBS and has a lot in common with regularization.

In [31] by Zhao, Liu and Zang a version that uses pseudo-entropy of the weights
as a penalty term during training to control the weights distribution to be uni-
formly distributed is described. The authors propose that with weights being
uniformly distributed there are no need for adjusting remaining weights or re-
training during and after pruning. Hence this combination of regularization and
pruning gives a pruned network quicker then the original OBS. By simulation they
also show an improvement of the generalization ability.
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3.4.2 Weight Based Saliency

In an article by Messer and Kittler [20] they develop an algorithm called Fast Unit
Selection Algorithm (USA) where a saliency is defined more as the importance of
some network parameter than sensitivity of the parameter. The saliency of unit i
is taken as the average square of the weight connecting that unit in the layer l to
the units in the next layer, (l + 1). This is given as

Si =

nl+1∑
j=1

(wij)
2

nl+1
(3.4.8)

where nl+1 is the number of units in layer l + 1. A higher saliency means the
parameter is more important to the network. Both neurons and weights can be
used for pruning and only one parameter is removed at each step.

The algorithm starts with two large enough identical networks, one pruning set
and one for validation. Both sets are trained to an acceptable level of performance
before the saliency of all neurons/weights for the validation set is calculated. The
parameter with the lowest saliency is removed in the validation network and this
network is then retrained with a small number of epochs. After this the errors
for the original and for the validation set are found. If the error is smaller for
the validation set the same neuron is removed for the pruning network and this
network also retrained. Then the same procedure with finding a new parameter to
prune is repeated. The stopping criterion is reached when removing a parameter
for the validation network gives a higher error than for the pruning network.

3.4.3 Sensitivity Measurement by Fourier Series

Another sensitivity based pruning algorithm is proposed in a paper by Honggui
and Junfei [12]. This method finds the relevance for each hidden node based on
the Extended Fourier Amplitude Sensitivity Test (EFAST). It is pruned for weights
between the hidden layer and output layer. The algorithm is developed for feed-
forward neural networks and aims at making them self-organizing. Pruning begins
when the training has done some iterations instead of waiting until the training is
complete.

The output of the network can be expressed as a polynomial expansion, which
can be expanded into a Fourier series. In this series the input factor to the sensi-
tivity test will correspond to the Fourier amplitude at the fundamental frequency.
By using this Fourier decomposition the variance of the output can be found based
on the input factor and Fourier coefficients. Further this variance is used to find
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the percentage of sensitivity a neuron has of the total sensitivity in the network,
and this percentage is called the contribution ratio for a neuron. All neurons with
contribution ratio less than some threshold are pruned and thus may several neu-
rons be pruned at once.

3.4.4 Local Sensitivity Analysis

Sensitivity pruning can be separated between Local Sensitivity and Global Sensitiv-
ity. The global methods look at the whole network to find the network parameter
with the lowest sensitivity compared to all the network parameters of the same
type in the network. Local sensitivity on the other hand compares only the neu-
rons in the same layer or weights connecting the same layers. This is most useful
for networks with many hidden layers.

The sensitivity pruning schemes mentioned so far have been global methods
and a local version can be found in an article by Ponnapelli, Ho and Thomson
[27]. Here the concept of Local Relative Sensitivity Index (LRSI) for weights was
introduced, given as

LRSIji =
|sji|

M∑
m=1

|sjm|
(3.4.9)

where i is a node in layer k, j is a node in layer k + 1, M is the total number
of connections to node j from layer k and sji is the sensitivity estimate for the
weight connecting node i in the kth layer and node j in the (k + 1)th layer. The
sensitivity estimate was taken as

sji =
T−1∑

t=0

[∆wji(t)]
2

wfji

η(wfji − wiji)
(3.4.10)

where wfji is the final value of weight wji when completely trained, T is the total
number of training iterations, η is the training rate and ∆wji is the change in
weight wji for one training iteration. The computational cost for this estimate
compared to OBS is relatively small since it only uses information that is available
during backpropagation and not calculate the hessian.

LRSI is the ratio between the sensitivity of a particular weight and the sum of
all the weights from the previously layer to the same node. It is looked at each
node, and any weight with a LRSI smaller than some threshold value is pruned.
After a pruning phase is a new training phas, and then the performance of the
new network is compared against the performance of the network before prun-
ing. If there is an improvement the pruning and retraining phases are repeated
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until the sum squared error is small enough or the performance no longer improves.

In [28] Local Parameter Variance Nullity (LPVN) is proposed based on average
local sensitivity over all possible patterns for either weights or nodes. If this vari-
ance of sensitivity for a given parameter is small the parameter will have little or
no influence on the output of the network and can thus be pruned. The sensitivity
is found as in (3.4.10).

Pruning starts after some training and removes all the parameters with LPVN
smaller than some threshold value. The network is then trained more and the
LVPN is again calculated. Before any other parameters are removed the pruning
is evaluated by checking if the newly pruned network has better performance than
the old network. If not the old network is restored and the same layer is pruned
based on a reduced pruning list. If the pruned network shows a better performance
the algorithm moves to the next hidden layer and the same procedure is done again.
The pruning is over when there are no more hidden layers to prune.

The performance check is done by Cross Validation, a method proposed by
Huynh and Setiono [14] and originally based on the magnitude of the weights.
The whole data set is split into two parts, one training set, TR, and one validation
set, CV . Both sets are pruned and the performance is found with for instance
the root-mean square function for each set separately. This is denoted J ′TR for the
pruned training set and J ′CV for the pruned validation set. The performance for
both sets were also found before pruning, denoted as JTR for the training set and
JCV for the validation set. A comparison is done as

ρ(ζJ ′TR + J ′CV ) < (ζJTR + JCV ) (3.4.11)

where ρ is a constant that gives priority to the pruned network and ζ < 1 is
another constant that encourages generalization ability. Utilizing an extra cross
validation set is to ensure that pruning not only reduce the size of the network but
also improve the generalization ability.

3.4.5 Online Pruning for Robot Manipulator Tracking

One pruning scheme for online training and pruning for a learning robot manip-
ulator tracking controller can be found in an article by Ni, Song and Grimble
[22].

They propose a robust backpropagation training algorithm for online pruning
based on the Optimal Brain Surgeon method (OBS). Saliency of a weight is found
by considering a perturbation to that weight and then see what influence on the
estimation error it gives if this weight is set to zero. Due to the saliency being
defined as in OBS the inverse of the Hessian matrix is estimated each iteration.
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OBS is in this article enhanced into being a unit pruning method instead of
only pruning weights. This is done by checking all the outgoing weights from a
node and if all of these can be pruned then the whole unit may be removed.

The manipulator is described in a discrete-time system given as

x1(k + 1) = x2(k) (3.4.12)

... (3.4.13)

xn−1(k + 1) = xn (3.4.14)

xn(k + 1) = f(x(k)) + u(k) + d(k) (3.4.15)

where f(x(k)) ∈ Rm is a nonlinear function, u(k) ∈ Rm is the control signal vector
and d(k) ∈ Rm is a bounded disturbance vector.

To train the network an estimation error is used and this is found by feeding
the tracking error into a filter. The tracking error is defined as

en(k) = xn(k)− xnd(k) (3.4.16)

where xnd(k) is the desired trajectory and xn(k) is the actual trajectory. The an
estimation error is given as

r(k) = en(k) + λ1en−1 + ...+ λn−1e1(k) (3.4.17)

where en−1, ...e1 are the delayed tracking errors and λ are constant selected matri-
ces.

With use of the output from the RBF network, f̂(x), and the estimation error
r(k) the control signal is found as

u(k) = xnd(k + 1)− f̂(x(k)) + kvr(k)− λ1en(k)− ...λn−1e2(k) (3.4.18)

where kv ∈ Rm×m is a diagonal gain matrix.

Simulations with a 2 link manipulator were in this paper conducted. The
results showed that the pruned network gave better results than the unpruned
network when a disturbance was present.

3.5 Regularization

Regularization is originally developed by Tikhonov in 63 for dealing with ill-posed
problems. However it is often mentioned in the same setting as pruning since reg-
ularization reduces the number of free parameters for the network to choose and
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is thus suited for avoiding overfitting. The network size is not directly reduced
though, so regularization does not exactly fall under the group pruning.

Regularization happens during the training of a network. The training usually
include minimizing a cost function, E, and to include regularization a penalty pa-
rameter or regularization term, Ω, is added. A new error function for the network
is then found as, Ẽ = E + λΩ. Here λ is a small constant that determines the
fraction of the penalty term to add. This is often referred to as the regularization
factor. The regularization term Ω may be defined in different ways depending on
the type of regularization used.

One of the most common regularization methods is called Bayesian Regular-
ization and can for instance be found in [16].

Here the training phase is an optimization task that minimizes a cost function
given as

F = αEW + βED (3.5.1)

where ED is a sum square error between the network output and the desired output
and EW is a regularization term. Both are given as

ED =
M∑

j=1

(dj − yj)2 (3.5.2)

EW =
W∑

i=1

w2
i (3.5.3)

where dj is the desired output, yj is the actual output, M is the dimension of the
vector d, wi are the weights and W is the total number of weights and biases in
the network.

The parameter α determines the importance of the exactness in estimating the
training data while β is to ensure that the approximation is smooth. A classical
training version only has the first term and setting a large α compared to β would
result in a smaller training error and a network closer to a network obtained with-
out regularization. Choosing a large β instead would result in smaller weights and
smoother network output.

Finding the best values for the α and β are thus the significant problem for
regularization and with Bayesian Regularization these two factors are found with
Bayesian probability. The interpretation of neural networks here is that optimizing
the weights corresponds to increasing the probability

P (w|D,α, β,A) =
P (D|w, β,A)P (w|α,A)

P (D|α, β,A)
(3.5.4)
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where w is the weight coefficient vector, D is the training data, A is the structure of
the neural network, P (D|α, β,A) is a normalization element, P (w|α,A) describes
the information on the values of the weight prior to introducing the training data
and P (D|w, β,A) is the probability of obtaining the established response of the
network for suitable inputs depending on parameters of the network.

Next the noise in the input data and the probability of weight distribution are
assumed to be gaussian and the distribution of α and β to be uniform. Then the
equations describing the parameters which minimizes the cost function are found
as

α =
γ

2EW (wMP )
(3.5.5)

β =
M − γ

2ED(wMP )
(3.5.6)

where wMP is the minimum point of the objective function and

γ = W − 2αtrace(H)−1 (3.5.7)

where H is the Hessian matrix of the cost function.
The parameter γ means an effective number of parameters of the neural network
while W is the total parameters in the network. Thus this regularization will give
a reduction of 2αtrace(H)−1 in effective network parameters.
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Chapter 4

Weight Magnitude and Neuron
Output Pruning

4.1 Introduction

In this chapter two simple pruning schemes with low computational cost will be
proposed. First a method called Weight Magnitude Pruning which prunes based
on the magnitude of the weights in a network is described. The second method has
been called Neuron Output Pruning and is based on the output from the activation
functions in the hidden neurons.

As mentioned the focused has been on finding a small network with good
enough approximation and generalization ability. A small network is a faster net-
work and would be preferred over the very accurate network which perhaps not is
able to give an output fast enough to be used in a regulator.

The output of a RBFNN with only one output node is given as in equation
(2.2.2) and repeated here

F (x) =
N∑

i=1

wiai(x) (4.1.1)

where there are N units in the hidden layer, wi is the weight between the output
neuron and hidden unit i and ai(x) is the output of the activation function in unit
i to input x.

From (4.1.1) it is possible to see that the output of the neural network is a
sum of the contribution from each hidden neuron. This contribution depends in
general on two factors, 1) the magnitude of the weights, and 2) the output of
the activation functions. If one or both of them are zero for a hidden unit i the
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total contribution of that neuron is zero and thus unit i can be removed from the
network without affecting the output of the network.

The problem is to find those neurons with a small contribution that not are nec-
essary for the performance and generalization ability of the network. One way of
finding these may be to look at the same two factors, the magnitude of the weights
and the activation function output. For a unit with small value for one or both of
these factors the contribution will be small and hence that neuron can be removed.

The networks taken into consideration here are radial basis function (RBF)
neural networks with unity in the weights connecting input and hidden layer and
changeable weights between hidden layer and output layer. As mentioned here is
only considered networks with a single output node. It should however not be a
large problem to extend the methods to having several output nodes.

4.2 Weight Magnitude Pruning

This pruning method is based on the Weights Power Method proposed by Hagiwara
in [8].

The idea here is to remove the weights with a small magnitude which would
make a neuron give little contribution to the final network output. During training
the size of the weight connecting a hidden unit to the output neuron is found and
this magnitude can be viewed as a measurement of the importance of that unit.
If the training algorithm finds that a certain neuron not is important this neuron
will be given a small weight. If the neuron on the other hand is found to be very
important the weights will be given a large value to increase the contribution of
that exact neuron. By removing some weights the remaining ones will be strength-
ened when the network undergoes more training and increase the contribution of
the remaining neurons.

It should be noticed that since the networks taken into consideration in this
report only have one output neuron it will be equivalent to remove a single weight
and a neuron.

4.2.1 When to start pruning

When the network starts to learn the mapping between inputs and outputs the
weights change less and less until they converge into a fixed value.

Pruning is done based on these weights so it is absolutely crucial that there
have been enough training first. If the pruning should start while the weights are
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far from set it is very likely that some incorrect ones are removed. The weights ex-
perience greatest change in the beginning of the training and only smaller changes
at the end. Hence it is reasonable to believe that pruning can be started before
the weights have converged into their final value as long as they only are doing
smaller changes. This may reduce the total time of training and pruning.

4.2.2 Pruning

Now the problem is to decide what value is small enough for the magnitude of the
weights to prune them. This value will vary from task to task and thus it can not
be found an optimal threshold valid for every problem.

Being able to remove several weights in the same pruning instead of the slower
version of deleting them one by one is desirable. This can be done by using a
certain percent of the L2 norm of the weight vector for finding the threshold of
what weights that can be pruned. Since the pruning begins when the weights
only are experiencing minor changes the L2 norm of the weights will almost have
converged. The L2 norm of the weights is a measurement for the total strength of
the weights in the network.

Simulations supported that the norm actually converged quite fast and stayed
at approximately constant for the rest of the training when the weights did the
final small changes. From tests with removing neurons from a network it was also
found that this norm stayed constant after pruning and retraining at the same
value. When removing some weights the remaining weights were increased as to
match the removed ones. From now on the L2 norm of the weight vector will be
referred to as the norm.

Now it is proposed to use a certain percent of this norm as a threshold for the
weights that are small enough to be removed. This threshold is given as

pWth =
‖ W ‖ pW%

100
(4.2.1)

where ‖ W ‖ is the L2 norm of the weight vector and pW% is the percent that
the pruning threshold is of the weight norm. The only value to be chosen now is
the percent, pW%. Finding this should be less problem dependent than setting the
threshold, pWth, directly.

4.2.3 After Pruning

When some weights have been removed the network has to experience more train-
ing in order to strengthen the remaining weights. Exactly how the network will
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behave after some of the weights have been removed is not possible to predict, and
the pruning should be done over several periods. Due to the surrounding weights
all being removed a neuron may become much more important than before the
pruning. So after pruning and retraining the network should be pruned again.
This time with a higher threshold due to the fact that the remaining weights have
a higher magnitude than before pruning.

Pruning and training is then repeated for some periods, one period is pruning
and training once each, with the percent increasing a bit each time.

4.2.4 When to End Pruning

With a growing threshold some kind of stopping criteria must be given in order
to avoid pruning the networks too much. A simple way is to specify a number of
times the threshold in percent can be made larger. When this threshold becomes
a constant there will not be pruned any more weights as the remaining ones have
their magnitude increased.

4.3 Neuron Output Pruning

This pruning method is based a definition from [2] that was used together with
weight variance to prune a self-growing radial basis function network.

The importance of a neuron is also found by looking at where that neuron is
placed compared to where the inputs occur. Due to the localization principle units
in remote areas from the inputs will have a small activation function output.

Thus here a sum of an activation function output ratio for the previous outputs
of a neuron to different inputs is proposed to use. If this ratio sum is small for a
neuron compared to other neurons after training this node is not close enough to
the inputs and hence may it be pruned. The activation function output ratio sum
is defined as

osi =
T∑

j=1

oji (4.3.1)

where T is the number of inputs and oji is the activation function output ratio for
neuron i to input j defined as in [2]

oji =
∣∣∣ai(x)

amax

∣∣∣ (4.3.2)
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where x is the input, ai(x) is the activation function for neuron i and amax is the
maximum activation function output for that given input.

4.3.1 When to start pruning

It is very important not to start pruning before enough different inputs have been
fed to the network. This is because neurons are removed if they compared to other
neurons are far away from the previous inputs. So in order to be sure that the
correct units are removed the whole input space has to be visited. It is however
not necessary that the training is complete before pruning as long there have been
enough different training inputs to explore the input space first.

4.3.2 Pruning

When the training has done enough iterations the network can be pruned based
on the hidden node output ratio sum. Again to remove many units at the same
time is desirable. This is done by specifying a percent of the maximum output
ratio sum as a threshold. All the nodes with an output ratio sum smaller than
this threshold will be pruned.

The actual threshold, pOth, is then given as

pOth =
osmax ∗ pO%

100
(4.3.3)

where osmax is the highest output ratio sum and pO% is the pruning threshold
percent.

Since it not is likely to be any changes in the activation function output when
removing some neurons the percent threshold is not growing as with the weight
pruning. This will probably result in all the removable neurons will be deleted in
an early stage of the pruning. Thus the whole pruning process will quickly give a
smaller network and with fewer periods than the weight based pruning needed.

4.3.3 After Pruning

After pruning more training is very important as for weight magnitude based
pruning. This is because pruning is started before the first training is complete
and the weights have not converged to their optimal values. Also more training is
necessary due to removing some neurons will probably cause the remaining weights
to have another optimal value than for the initial network.
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4.3.4 When to End Pruning

Any specific stopping criteria is not necessary here since the threshold is close to
constant all the time and the output ratio will not experience any large changes
when other neurons are pruned.

4.4 Combined Weight Magnitude and Neuron

Output Pruning

The two proposed pruning methods, weight magnitude pruning and node output
pruning, removes units based on different criteria and it can thus be assumed that
they not always choose the same neurons to prune. In this section two differ-
ent pruning methods that combines the weight based and the node output based
pruning criteria are described.

4.4.1 Both Pruning Criteria Met

Choosing the units with both small weight magnitude and a low output ratio sum
should be the safest way to find which neurons to removed. If both criteria are
satisfied for a unit then this neuron is completely unnecessary for the network and
can be removed.

Pruning is done as for the two methods described earlier. Before the first
pruning the network experience enough training and is trained again after being
pruned. The weight percent threshold grows a bit for each pruning so there would
be the same numbers of periods here as for only weight magnitude pruning. After
the pruning there should be a last training for the weights to converge before the
final network is obtained.

4.4.2 Only One Pruning Criteria Met

A little less strict pruning method is to prune those units that satisfy either the
small weight magnitude criterion or the low output ratio sum criterion.

Using both the pruning methods separately at the same time will with the right
thresholds probably give the smallest network still able to give good performance.
This is because the output ratio sum pruning removes the units far away from the
inputs while the weight pruning remove some of the neurons close to the inputs
but unnecessary due to the area being to densely populated with units.

Pruning with both methods separately in each period would probably be the
slowest pruning scheme. Both pruning methods however are not computationally
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complex. If the final network can be created smaller and still maintain accurate
approximations then it could be an advantage to do this.

4.4.3 Mixed Method

The learning controller implemented later in this paper has one RBF network to
learn each of the elements in the dynamic matrices as done in [7]. This gives
many smaller networks with different properties and thus would pruning them
with different threshold or method perhaps give better result than using the same
for all of them.

4.5 General Algorithm

Here is a very simple general pruning algorithm that goes for all the proposed
pruning methods in this chapter.

1. Initialize a bigger RBF network than assumed necessary

2. Train the network until the approximation error is satisfyingly small

3. for i = 1 : nPeriods

• Calculate threshold

• Prune with the calculated threshold

• Retrain the network

end

4. Use pruned network
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Chapter 5

Simulations with Pruning for
Cross Function Learning

5.1 Introduction - Cross Function

In this chapter all the described pruning schemes from the previous chapter are
tested on approximating a cross function. These simulations are the first tests
done with the proposed Weight Magnitude and Node Output Based Pruning.

The cross function learned here is a complex function and the network needed
for this task is very huge. The network sizes here are not possible in online robot
manipulator control and these simulations are done in order to show the concepts
of the different pruning methods and to test how they work. By including figures
of the estimated cross function given from a pruned network it will be more visible
where the different units are removed from.

The cross function is given as

z = max

[
e−10x

2

,max
[
e−50y

2

, 1.25e−5(x
2+y2)

]]
(5.1.1)

and in figure 5.1 below is a figure of the function.

In this chapter the approximation error for the network is found by using the
Root Mean Square (RMS) function to calculate the error between the actual and
desired output for the network.

The simulations are in done Matlab. The RBF networks used in these simula-
tions and the initial code for the cross function are made by Sigurd Fjerdingen.
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Figure 5.1: Cross Function

5.2 RBF Network

For this task a radial basis function neural network with two inputs and one output
is used. The inputs are values for a given point in x-y space and the belonging z
value for this point on the cross function is the output of the network.

In chapter 2 it was described the RBF networks used here and their training
method.

Choosing the number of neurons in the hidden layer and the size of the train-
ing set needed are two of the major problems with neural networks. When using
pruning the network has to be large enough and probably also a bit larger then
necessary. In this section some results for the cross function when using different
sizes for the hidden layer and training set are shown.
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5.2.1 Size

The hidden neurons for all the networks mentioned below are placed in the interval
[−1, 1] in both x and y direction and the networks are trained with 40 000 itera-
tions. This is the same as saying the training data set consists of 40 000 samples.

Too Small Network

In figure 5.2a there was a distance of 1 between the centres which gave only nine
hidden neurons in the network. As the figure shows this network is not even close
to approximate the cross function correct and the RMS approximation error was
0.26936.

With a distance of 0.5 between the units in the hidden layer the resulting
network has 25 hidden nodes and the resulting approximation of the cross function
can be seen in figure 5.2b below. Now it is possible too see some contours of the
cross function. Still it is a very poor estimation and the approximation error here
was 0.14353.

Placing the hidden nodes with only 0.1 between them gave 441 hidden neurons
and this network gave an approximation error of 0.010417. From figure 5.3 it can
be seen that the approximated function now looks like the original cross function.
However it is far from perfect.

(a) 9 Hidden Units (b) 25 Hidden Units

Figure 5.2: Too Small Networks
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Figure 5.3: Too Small Network 2

In general a too sparsely populated hidden layer for a RBF neural network will
give a flat graph and the network will not be able to approximate anything accu-
rately. For the radial basis function network used here the spread of the gaussian
function is the same as the distance to the next neuron which with too few neurons
will give a very flat activation function. This also contributes to the estimation
being even flatter.

Appropriate Size

When using 0.01 as a distance between the hidden nodes the network had a total
of 40 401 neurons. This gave an approximation error of 7.0252 × 10−6 and the
cross function is estimated perfectly as shown in figure 5.4.

Too Large Network

As mentioned in the introduction one of the problem with choosing the correct
size is overfitting. This happens when the network is created too big and the
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Figure 5.4: Appropriate Size

generalization ability for the network is reduced leading to poorer approximation
result. This was however not easy to achieve for the cross function. Using 0.005
as distance between units gave a perfect figure with an error of 1.2983× 10−5 and
the number of hidden neurons was then 160 801. This error is a bit larger than
the one for 40 401 hidden units that had 7.0252× 10−6 as an approximation error.
However not a large different and there are no visible errors on the resulting figure.

A network with 4 004 001 neurons in the hidden layer and a distance of 0.001
between the units gave an approximation error of 1.5122 × 10−5. This is a bit
higher than for the last network. Not much and the error is still very good. This
network is extremely large and these calculations took many hours. Thus it is not
tried with an even bigger network and it can only be assumed that overfitting will
happen as more neurons are added to the hidden layer. This is supported by the
fact that the approximation error got slightly worse.
An example of a network that became overfitted can for instance be found in [13].
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5.2.2 Training

It is crucial that the network experience a training set with enough varied training
samples. If there are no training samples from one area of the cross function this
area will not be learned due to the localization principle and the network will not
be able to give any good approximation of this area.

Here coordinates in x,y space is randomly chosen and used to train the network.
One training sample is a coordinate, (x,y), and it takes one training iteration to
train with one training sample.
All the networks in this section are in the interval [−1, 1] and there are 40 401
hidden neurons.

Too Little Training

(a) 5000 training iterations (b) 10 000 training iterations

Figure 5.5: Networks Trained too Little

In figure 5.5a there has only been 5000 training iterations. This obviously not
is enough training for this network to learn the cross function. It can be seen that
the weights not have been sufficient incremented to give high enough z-values as
correct outputs. The approximation error is 0.16574.
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Figure 5.6: Networks Trained too Little 2

When the training set consists of 10 000 training samples the resulting network
will approximate the cross function as shown in figure 5.5b. Here it can be seen
that the function is almost correct in some areas while other areas have ”holes”.
The approximation error was 0.052378.

The approximated cross function in figure 5.6 is from a RBF network trained
with 15 000 iterations and the approximation error here is 0.01758. The function
now looks almost correct but still some areas are not enough trained and have too
low output values.

With 30 000 samples in the training set the function is correct when looking
at the figure and the error for the approximation is 0.00023843.

In the previous section regarding the size of the network it was used 40 000
training iterations since this gives a smaller approximation error, 1.5121× 10−5.

This section found that the differences between the approximated cross func-
tion when the network has too little training or too few hidden units are huge.
When there are not enough training samples the approximation is not smooth and
there are ”holes” in some places where there have been little training samples from.
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Other areas are close to perfect since these areas have experienced enough training.

Too much training

Too much training for a network can result in the network overfitting to the training
data set almost in the same way as a too large network would do. This seems
however not to be possible with this network as the error only decreases.

After 80 000 training iterations is the approximation error 7.9875×10−12, while
the network trained with 150 000 training samples had an error of 4.2675× 10−17.
Even after training with a training set of 300 000 samples the error was still
decreasing. It was then 4.003× 10−17.

Since using this large training data set for a network with as many as 40 401
hidden neurons take a very large amount of time to finish it is here not tried to
with an even larger training set. For more on overfitting can [13] be seen.

5.2.3 Network Used Further

The network used further in the simulations with the cross function is the network
with 40 401 hidden nodes placed in the interval [−1, 1] with a distance of 0.01
between them. Estimations from this network are perfect but the number of
hidden units is very large. Thus it is desirable to see if this network that can give
a very good result can be made smaller and still give an accurate approximation.

Since it not is necessary for the weights to have converged before pruning the
number of training iterations is smaller than 30 or 40 000 as the good networks
in this section were trained with. The number of training samples used will be
mentioned in the next section.

5.3 Results

It is absolutely necessary that the network has experienced enough training before
being pruned and here it has been used a first training phase for the network which
ends when the approximation error is smaller than 0.01. This happens between
iteration 16 000 - 19 000 usually and is only checked every 1000 iteration in order
to avoid too much computation.

A period for the network is a pruning phase followed by a retraining phase. So
first the network is trained to a RMS error smaller than 0.01 and then starts the
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first period with pruning and retraining.

5.3.1 Only Weight Magnitude Pruning

Here done the first simulations with the proposed weight magnitude pruning from
the previous chapter is conducted. The threshold for weight pruning is given as a
percent of the L2 norm of the weight vector as pW% in equation 4.2.1. So when it
here is specified a chosen threshold it is always given as this percent. The actual
value for the pruning threshold is then found from this threshold as in equation
4.2.1.

When describing the weight magnitude pruning it was mentioned that the
pruning should be done over several periods in order to avoid removing some
necessary weights. For this it was needed a growing threshold.

First time the threshold in percent, pW%, is the same as the starting threshold.
Second time the threshold is pW% ∗ 2, third time the threshold becomes pW% ∗ 3,
and so on until the threshold for pruning time N is found as pW% ∗N .

Pruning Results for Weight Based Pruning
Final Size Approximation Error Threshold Periods Retraining

[RMSE] [%]
1 10 880 0.0018618 0.015 5 15 000
2 12 392 0.0098295 0.02 3 15 000
3 17 225 0.00048589 0.005 5 15 000
4 24 600 6.66692× 10−5 0.001 5 15 000
5 34 901 3.1553× 10−7 0.00005 5 15 000

Table 5.1: Pruning Results for Weight Based Pruning

In table 5.1 some of the different pruning results obtained by using different
thresholds and number of periods can be seen. The threshold specified in this
table is the starting threshold. Final size is given as the number of hidden units in
the final network and the approximation error is found as the root mean squared
error. It is also specified the number of training samples used in the retraining
phases.

Obtained with weight magnitude based pruning the smallest possible network
still able to approximate the cross function such that the figure looks perfect is a
network with 10 880 hidden nodes. This is test 1 in table 5.1 and the approximation
error for this network was 0.0018618. The starting threshold was 0.015% of the
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norm of the weight vector and was increased for each of the 5 pruning times as
described above.

The first training ended after 18 000 iterations with an approximation error of
0.0099721. How many weights and neurons that are removed (it is equivalent to
remove a weight and a neuron) varies a lot from pruning to pruning. Most of the
nodes are removed during the first period. For this network were 21 532 nodes
removed in the first pruning, 12 in the second, 5508 in the third, 1388 in the fourth
and 1072 in the fifth.

It has been tried to increase to 20 000 training samples for the retraining phases,
this gave however no large improvement for the approximation error compared to
only using 15 000 samples. Thus it is concluded that 15 000 training iterations
is enough for retraining the network when using weight magnitude pruning. Any-
thing less however is found to be insufficient.

From the simulations done with the weight magnitude pruning it was found
that using a lower starting threshold and prune over several periods gave better
approximations than using a higher starting threshold and prune over fewer pe-
riods. This can be seen when looking at test 1 and test 2 in table 5.1. Here the
network in test 1 has both fewer hidden neurons and smaller approximation error
than the network in test 2. The main difference between them is that the network
in test 2 is pruned with a higher threshold over 3 periods while network 1 is pruned
with a lower threshold over 5 periods.

Another network was created by using 0.001% as a pruning starting threshold
instead of the above mentioned 0.015%. The obtained network gave 24 600 hidden
units and an approximation error of 6.66692 × 10−5 as can be seen in test 4 in
table 5.1. This approximation error is a lot smaller than the error for the small-
est network. However there are also a lot more hidden nodes. Perhaps the most
suited network would be somewhere between these two sizes like the network in
test 3 in the table. That network has 17 225 hidden neurons and an approximation
error of 0.00048589. The smallest possible network from test 1 was very close to
the networks not able to give an accurate approximation and hence it could be
preferred to use a network with better approximation ability. However, 24 600
hidden nodes as in test 4 or even 34 901 hidden units as in test 5 would result
in the computational cost being much larger and therefore not be the best suited
network here.
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Too Much Weight Pruning

When the network is pruned too much with weight based pruning some of the
units that are necessary for the network to give an accurate approximation will be
removed. One such an example can be seen in figure 5.7 below. Here the pruning
had a starting threshold set to 1% and lasted for 3 periods. The final network
had 705 hidden units and an approximation error of 0.10642. From this figure it
is possible to see that there have been removed some necessary neurons from the
bottom part of the cross function. The function here is completely flat until it
suddenly goes very steep up. The upper part of the function is approximated fine.

This shows that having a too high threshold with weight pruning will remove
too many units from the parts with a lower estimation value. The center part of
the cross functions still approximated correct is the part of the cross function with
the highest z-value. All the sides have lower z-values and thus also lower weight
magnitudes in order to give a smaller output of the network for those points. Since
the function here is estimated to be zero it shows that all units in these areas have
been removed.

Figure 5.7: Over Pruned by Weight Magnitude Pruning
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5.3.2 Only Neuron Output Pruning

In this section the first simulations with the proposed neuron output pruning are
done. It is pruned based on the output ratio sum of the activation functions as
described in an earlier chapter. Since it is not necessary with increasing threshold
for this pruning method there are no need for the same number of periods as with
weight magnitude based pruning. Hence this will be a faster pruning method.

It was however found to be necessary with some more training samples in the
retraining phases and here training set with 20 000 samples for the retraining is
used. There were only removed neurons in the first two periods and thus only 2
periods are needed.

In table 5.2 some results for different pruned networks with neuron output
pruning are shown. It can be seen the final number of hidden neurons in the
network and the root mean squared approximation error. The threshold is specified
in percent of the node output ratio sum. For retraining it is specified the number
of training iterations in the retraining after the first pruning and also the number
of samples used in the last training of the network.

As can be seen from this table there is a huge difference in the approximation
error between test 6 and test 7 where both networks are pruned the same way and
have almost the same size. The difference between them is that the network in
test 6 has been trained with 30 000 iterations in the final retraining while the net-
work in test 7 was trained with 20 000 samples in the last retraining. Thus there
are used different numbers of training samples when pruning with node output
based pruning. The initial training still lasts until the approximation error found
by RMSE is smaller than 0.01 and not changed anything from weight magnitude
training.

Pruning Results for Neuron Output Pruning
Final Size Approximation Error Threshold Periods Retr.(Last Retr.)

[RMSE] [%]
1 8 221 0.0001182 7.5 2 20 000(30 000)
2 8 613 2.9779× 10−5 6.5 2 20 000(30 000)
3 11 194 1.1263× 10−5 5 2 20 000(30 000)
4 14 357 4.6827× 10−7 3 2 20 000(30 000)
5 14 581 1.5198× 10−5 2 2 20 000(30 000)
6 14 607 5.9554× 10−9 1.5 2 20 000(30 000)
7 14 627 0.00023403 1.5 2 20 000(-)

Table 5.2: Pruning Results for Neuron Output Based Pruning
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As can be seen in the table 5.2 there are two results with the threshold 1.5%,
test 6 and 7, and the final network sizes are a bit different. This is probably due
to the fact that the training set consists of randomly chosen coordinates and thus
the different areas are not visited the same amount of times for each training. This
gives that the output ratio sum is a bit different from test to test and some of the
units removed are not the same each time. However most of the pruned neurons
are the same each simulation and the final networks are almost equal.

The smallest network obtained with node output based pruning still able to
approximate the cross function with no visible errors had 8 221 hidden units and a
final approximation error of 0.0001182. This is test 1 in table 5.2 and the pruning
threshold was then 7.5%. The initial training ended after 17 000 iterations with
an error of 0.0094069. There were pruned 30 943 nodes in the first period and
1237 nodes in the second.

From the same table it is visible that using 6.5% as a threshold gives a bit bigger
network and a much smaller error. It can also be seen that the approximation
errors when the networks had close to 14 000 hidden units are almost the same as
the networks with 20 000 - 30 000 hidden units after weight pruning.

When using node output pruning the preferred network is probably the net-
work in test 2 with 8613 hidden units and an approximation error of 2.9779×10−5.
This network was obtained with a pruning threshold of 6.5% and the pruning was
done over two periods.

Too Much Node Output Pruning

When the network is pruned with a too high node output threshold the resulting
networks do not give the same result as when they are pruned with a too high
weight magnitude threshold. This is visible when looking at figure 5.8. The final
network here has 1415 hidden neurons and the approximation ends up having some
”holes” in the function where the given approximation is zero. For this approxi-
mation the RMS approximation error was for 0.23241 and the pruning threshold
was 20%.

As can be seen from the figure 5.8 it has here been pruned too many neurons
from the whole network. No larger area gives a correct estimation and there are
no large areas where the estimations given are zero. Even in the areas where the
z-value is small there are still some output from the network. This is because there
have been inputs in these areas and hence the activation function output is high
for the nodes in this area even if the z-value is small. A smaller output is obtained
with having a smaller weight magnitude as was visible when the networks were
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pruned too much with weight based pruning.

Figure 5.8: Over Pruned by Node Output Pruning

5.3.3 Both Pruning Methods - Separately

In this section pruning with both weight magnitude and node output pruning at
the same time is tested. First the network is pruned by node output ratio pruning
and then by weight magnitude pruning in the same pruning phase.

Node output pruning quickly removes many neurons in the areas with little or
no inputs. However it is not so good at the areas where more inputs appear. If
these areas have more nodes than required the pruning these of unnecessary units
with only node output based pruning will be poor. Weight magnitude pruning is
not only based on the distance to the inputs so here it is tried to prune these areas
with weight pruning when output pruning is done.

Some results obtained when using both node output and weight magnitude
pruning are shown in table 5.3. Again the final number of hidden units and the
approximation error found by the root mean square function are specified. The
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Pruning Results for Both Methods in Same Pruning
Final Approx. Error Thresh.[%] Periods Retraining Units Removed
Size [RMSE] Weight(Output) (Last Retr.) Weight(Output)

1 7269 0.00088648 0.015 (7.5) 3 20 000) 2105 (31 027)
(30 000)

2 8622 0.0011358 0.02 (6) 3 15 000 3246 (28 533)
(-)

3 10 884 0.0019155 0.015 (0.01) 5 15 000 23 037 (6480)
(-)

4 10 889 0.0018595 0.015 (0.01) 5 20 000 23 056 (6456)
(30 000)

5 14 104 0.00048173 0.01 (0.1) 3 20 000 14 257 (12 040)
(30 000)

Table 5.3: Pruning Results for Both Methods in Same Pruning

threshold shown as the starting threshold for the weight based pruning and the
constant threshold for node output pruning are in percent. It can bee seen if it
has been used different numbers of training iterations in retraining and for the last
retraining. Also in this table how many of the neurons that are pruned by weight
magnitude pruning and how many removed by node output pruning are shown.

From table 5.3 it can be seen that the smallest network has 7269 hidden units
and is pruned for 3 periods with 0.015% threshold for weights and 7.5% threshold
for neuron output ratio. The approximation error for this network was 0.00088648.
Most of the removed units were pruned by node output pruning.

It can from this table also be seen that deleting most of the units with neuron
output pruning gives a better approximation error than removing most of the units
with weight magnitude based pruning. This is visible when comparing for instance
test 1 and test 3. For test 3 most of the units are removed by weight pruning while
for test 1 most of the nodes are removed by output threshold. The result is that
the network in test 1 is smaller in size and also has a smaller error.

The network in test 3 in table 5.3 with 10 889 hidden units obtained with
0.015% weight threshold and 0.01% output threshold is approximately the same
network that was obtained with only 0.015% weight pruning over 5 periods. That
network had 10 880 hidden units and an approximation error of 0.0018618. Thus
the networks were almost equal in both size and final approximation error. This
is because most of the weights are removed by the weight pruning and hence the
resulting network is close to the one where all the weights are removed by weight
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pruning.

For the situations were many of the units are pruned with neuron output prun-
ing it was found to be better with 20 000 samples in the retraining sets and 30
000 training samples in the final training as with only node output pruning. The
training amount was probably what gave the network in test 1 better approxima-
tion result than the larger network in test 2. On the other hand it was found to be
unnecessary to have more than 15 000 training iterations when most of the neurons
were removed by weight magnitude pruning. This can be seen if comparing test 3
and test 4 in table 5.3.

It has been shown that it is in fact possible to create a smaller network when
combining the two different pruning methods in this section. Again it is found
that weight magnitude and node output not remove the same neurons. Hence
pruning the network with both of the methods gave a smaller network that still
approximated the cross function with no visible errors.

The best network for this situation was probably the smallest network in test
1 which also had a small approximation error.

Too much pruned

In figure 5.9 it can be seen the resulting approximation of the cross function when
the network has been pruned to much with the combination of weight magnitude
and node output pruning mentioned in this section. Here the bottom of the func-
tion is completely flat as when the network is pruned too much with only weight
magnitude based pruning. There are also some large holes in the figure as when
the network is over pruned by only node output ratio based pruning.

The network that gave this estimation had 1645 hidden neurons and an ap-
proximation error of 0.10251. It was pruned for 3 periods with a starting weight
threshold as 0.2% and a node output threshold as 20%. There was used 15 000
iterations in the retraining and 30 000 iterations in the final training.

5.3.4 Both Weight Magnitude Threshold and Neuron Out-
put Pruning Threshold met

In Chapter 4 it was mentioned the safest way should be to remove only those units
that had both a small weight connecting to the output layer and little output of
the activation function. If an unit met both the criteria for weight pruning and
for node output ratio pruning this unit would be completely unnecessary for the
network and thus it could be removed.
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Figure 5.9: Over Pruned by Both Weight and Node Output Pruning

However trying this in simulation gave poor results. The units the two different
pruning methods wants to remove are often not the same and often they do not
find them at the same time. Thus fewer neurons are pruned when both criteria
have to be met and the final network becomes larger. In addition the approxima-
tion error was much worse than just using one of the methods.

This was tried in several ways and all the results showed it was much better to
use only one of the methods or both but still separately as described in the last
section. This version is also slower than just using one of the pruning methods.
Hence this pruning scheme is not used any further.

5.4 Discussion

In this section the different results obtained in this chapter are discussed. First
the findings regarding the influence of size and training amount for the networks
are commented followed by a discussion on the results from the proposed pruning
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methods.

5.4.1 Training, Size and Approximation Error

Finding the size of the starting network is an important part of creating a radial
basis function neural network. As it was shown in this chapter a too small net-
work will not give any good result. The approximation became flat and had poor
accuracy. With pruning a number of hidden units to begin with is easier to find
due to it not being necessary also to think about making the network smallest
possible. As long as the networks are created with more hidden units then needed,
the final networks end up with approximately same size independently of their
starting size if they are pruned with the same threshold. Given that the networks
also have experienced the same amount of training they will have almost same
approximation errors.

The number of training iterations is also an important factor and the network
needs a certain amount of training before it can be pruned. Since the focus in
this report is to minimize the computational speed for the network while still
maintaining a good approximation it was in this chapter tried to find when the
network earliest possible could be pruned. The shorter amount of time with a
larger network would give less computations and hence be faster in use. It was
here found that the approximation error gave a good measurement of when the
network had been trained enough and 0.01 was an appropriate number for the
root mean squared estimation error to stop the initial training at. Using the ap-
proximation error for when to end the first training stage should also be less task
dependent then specifying the number of training iterations needed.

Use of one of the three pruning methods tested in this chapter will make it
easier to find a starting network. The problem here is to find the correct and
best possible thresholds used to prune with. Since the thresholds are specified as
percent it should be a little less task dependent and easier to find. However in the
end the optimal threshold for a given problem can only be found by testing on the
network in simulations.

It can be argued to only do several tests to find the smallest possible network
without pruning. However then would also the problem of where to place the
centres become important. This probably is an even larger problem than just
choosing the number of hidden units. Those two problems are also closely linked.
When pruning is implemented the network can be created on a regular lattice and
the final network will have the number of nodes required placed in the correct areas.
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The estimation errors in this chapter are often not very good and much smaller
errors are possible to obtain. However the focus here has been on creating the
smallest possible network able to perform good enough. The smaller the network
the faster the computations are. Computational speed is very important if radial
basis function networks are to be used for online learning in robot manipulator
control. Thus it has also been focus on not using more training epochs than re-
quired since this also affect the computations in total.

In this chapter the simulations have been for offline training and pruning. Here
the estimations given from the network are not used before the network is com-
pletely done with pruning and training. When the networks are to be implemented
in a robot manipulator controller this however will not be the case as the networks
are used online and the estimations will be important from the beginning of.

5.4.2 Pruning Methods

The weight magnitude based pruning method has in this chapter been tested. It
was found that implementing this method with an appropriate starting threshold
gave a final RBFNN smaller in size and with a satisfyingly good approximation.

Weight magnitude based pruning removes those units that have a connecting
weight with a small magnitude. Nodes far away from the inputs will not experience
the same amount of weight updating which can be seen from the weight updating
law in equation 2.3.3. This contains the activation function output and to an input
far away will this be approximately zero due to the localization principle. Also
the weights in this report (and very often in other settings) are initialized to zero.
Weights starting at zero and experiencing little or no updating will off course stay
at approximately zero. Thus weight magnitude pruning will remove those units in
remote areas comparing to the where the inputs appear.

However the weights are also an indication of how high the network output to
a given input is. From the simulations in this chapter it can be seen that a high
z-value gave a very high weight for the neurons that were active in estimation of
this z. If the z-value on the other hand was small the active units got weights
with a smaller magnitude. This became obvious when looking at the estimated
function from networks pruned with a too high threshold. The problem with this
method may then be that areas with small desired outputs will be pruned much
more than others even if there are just as many inputs in these areas.

Node output ratio pruning removes the neurons unnecessary to the network
due to their distance to the inputs. Even if the total output of the network to a
given input is small the output ratio can be high for a node placed close to that
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input. This is also due to the localization principle. For the cross function in
the simulations here the z value is some places was small but the neurons placed
in these areas still had a large activation function output. These neurons were
thus not removed when the network was pruned by node output pruning. This is
desirable since the output in these areas also are important even if they have a
smaller value.

From the network over pruned with node output ratio based pruning this could
be seen as it was removed too many neurons from the whole network. No areas
gave a correct estimation and there were no large areas where the estimations
given were zero. Even in the areas where the z-values are small there were still
some outputs from the network. Achieving small z-values as outputs are done
with having a smaller weight magnitude as could be seen when the networks were
pruned too much with weight based pruning.

When comparing the final networks after pruning with either weight magnitude,
neuron output or both methods it can be seen that the final networks from weight
magnitude alone gave the poorest results. The smallest network here had 10 880
hidden units while neuron output pruning alone could obtain a network with 8221
hidden units. When implementing weight magnitude pruning it was used more
periods and it took more time to obtain the final network.

The approximation errors for the weight magnitude pruned networks were also
far worse than for the networks obtained with node output pruning. While the
network with 8221 hidden nodes from output pruning had an approximation error
of 0.0001182 the larger network from weight pruning with 10 880 hidden units had
an error of 0.0018618. This is more than ten times the error for a larger network.

The network with 8613 hidden nodes from node output pruning had an error
of 2.9779 × 10−5. If a network from weight pruning was to have an error equally
small it was needed more than 24 600 hidden units.

Combining the pruning methods with first pruning the network with node
output and then with weight magnitude gave that an even smaller network than
the one from only node output could be obtained. The smallest network then had
7269 hidden units with an approximation error of 0.00088648.

When using the combined method it was found that the best results were ob-
tained when most of the units were pruned by node output. This is consistent with
the fact that the node output pruning gave better results than the weight magni-
tude pruning. Only pruning with neuron output pruning gave however in general
always smaller approximation error than using the combined version. It could
also be pruned one period less when only using node output pruning. Thus the fi-
nal network would be ready a bit faster than when the combined pruning was used.
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Which network that can be concluded on being the best is perhaps dependent
on how large network that can be implemented for a given task. If to have the
smallest network possible is most important the combined pruning scheme is best
suited. If it however can be implemented a bit larger network it would be smarter
to use the node output pruning and obtain a network with better approximation
ability.
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Chapter 6

Online Learning Controller for a
2 DOF Manipulator

6.1 Introduction

After testing the proposed pruning methods, Weight Magnitude Pruning and Node
Output Pruning, for offline learning of the cross function the same pruning methods
are in this chapter implemented in an online learning controller for manipulator
tracking control. Since the networks here are in a different setting with much
smaller size from the network used to learn the cross function all the proposed
pruning methods are again tested.

The manipulator in these simulations is a 2-dof robot manipulator with revolute
joints controlled by a learning inverse kinematic controller to track a desired tra-
jectory. For learning the dynamics of the manipulator several radial basis function
networks are used. These dynamics are a part of the inverse kinematic controller
and learning for the networks happen online while following the desired trajectory.
The online learning consists of training the networks and pruning them. All the
networks initially are too big and contain several unnecessary hidden nodes that
are found and removed by either Weight Magnitude Pruning, Node Output Prun-
ing or a combination of them.

In this chapter it is calculated the tracking error for the manipulator as the
Sum Squared Error (SSE) for both joint 1 and joint 2.

For the approximation error of the networks the Root Mean Square Error
(RMSE) is used as it is with the cross function approximation error. The fi-
nal estimation error here is only found over the last 300 iterations out of 8795
iterations in total that the simulation takes. This is to check the approximation
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error for the networks after they are pruned and retrained. Simulation time is set
to be 4π.

Simulations are done by using Matlab and Simulink. The RBF networks used
in Matlab are made by Sigurd Fjerdingen and the manipulator model is made by
Stefan Pchelkin and Serge Gale. Serge Gale has also made the initial code without
pruning for learning the dynamic model.

6.2 2 Dof Robot Model

For a 2-dof manipulator the dynamic equations from equation (2.6.1) can be writ-
ten as

[
m11 m12

m21 m22

] [
q̈1
q̈2

]
+

[
c11 c12
c21 c22

] [
q̇1
q̇2

]
+

[
g1
g2

]
=

[
τ1
τ2

]
(6.2.1)

where q is the joint position, q̇ is the joint velocity, q̈ is the joint acceleration, M(q)
is the inertia matrix, C(q, q̇) is the centrifugal matrix, G(q) is the gravitation ma-
trix and τ is the control torque. In figure 6.1 a picture of a manipulator with 2
revolute joints can be seen. This picture is from [18].

6.3 Controller and Desired Trajectory

In these simulations an Inverse Kinematic Controller from [18] is used, given as

τ = M(q)(q̈d +Kd(q̇d − q̇) +Kp(qd − q)) + C(q, q̇)q̇d +G(q) (6.3.1)

The gains are as follow

Kp =

[
250 0
0 450

]
(6.3.2)

Kd =

[
0.5 0
0 4

]
(6.3.3)

In figure 6.2 below the trajectory the end effector is to follow is shown. The
desired trajectory for each joint separately is shown in figure 6.3.
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Figure 6.1: 2 DOF Revolute Joints Manipulator

In A.1 by use of Lyapunov theory it is shown that the inverse kinematic con-
troller can be made globally asymptotically stable (GAS) when it is implemented
with the model of the manipulator. This assures convergence of the trajectory to
the desired one.

For the situation where the dynamics are implemented by RBF networks prov-
ing stability and convergence to the desired trajectory is not so easy. While the
stability of the standard model-based inverse kinematic controller is well known
stability proves for controllers with neural networks are in general lacking in the
literature.

In A.2 an attempt to use a Lyapunov Function Candidate to prove stability of
the learning inverse kinematic controller is included. It is found that the system
with e, ė where e = qd − q is state strictly passive when an upper bound on the
approximation error from the networks are taken as input. From lemma 6.7 in [17]
this system will then be 0-GAS. However 0-GAS is when the input is zero and in
this case the input, e.g. the approximation error, is not zero. If the networks are
appropriately created and trained it follows from their universal approximation
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Figure 6.2: Desired Trajectory End Effector

Figure 6.3: Desired Trajectory Joint 1 and Joint 2

ability that this approximation error will be small. Small is still not zero and a
proof of stability for this controller should be further investigated.
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Here the networks are in addition pruned during real-time control of the manip-
ulator and this can with over pruning cause problems for the controller. Whether
these thresholds are suitable or not can only be tested by simulation.

6.4 Radial Basis Function Neural Network

The system matrices M(q), C(q, q̇) and G(q) are here learned by the radial basis
function neural networks described in chapter 2. Here one network per element in
the matrices as described in chapter 2.5 is used.

Comparing to the cross function learning the difference here is as mentioned
that the training and pruning are online and thus the outputs from the networks
are used in control of the robot from the beginning of the first training.

With notation from chapter 2.5 the estimated inertia matrix can be written as

M̂ = W T
M•AM(x) =

[
wT
m11 wT

m12

wT
m21 wT

m22

]
•
[
am11(x) am12(x)
am21(x) am22(x)

]
=

[
wT
m11am11(x) wT

m12am12(x)
wT
m21am21(x) wT

m22am22(x)

]

(6.4.1)
and the coriolis and centrifugal matrix as

Ĉ = W T
C •AC(x) =

[
wT
c11 wT

c12

wT
c21 wT

c22

]
•
[
ac11(x) ac12(x)
ac21(x) ac22(x)

]
=

[
wT
c11ac11(x) wT

c12ac12(x)
wT
c21ac21(x) wT

c22ac22(x)

]

(6.4.2)
while the gravitation matrix can be written as

Ĝ = W T
G • AG(x) =

[
wT
g1

wT
g2

]
•
[
ag1(x)
ag2(x)

]
=

[
wT
g1ag1(x)

wT
g2ag2(x)

]
(6.4.3)

One network for each element gives a total of ten networks. In the model
for the manipulator the element c22 is zero and to make things a bit simpler this
element has been set to zero and not learned by any network. Thus there are 9
networks.

It is only one output from each network and the number of inputs is varied
and based on how many variables the element is dependent on. By variables it is
meant q and q̇. For instance m11 is only dependent on q2 and the network for this
element has only one input. Element c11 is dependent on both q2 and q̇2 and hence
ĉ11 has two inputs. Which inputs each network have can be seen in table 6.1 below.

All the networks except m̂22 have hidden neurons in the interval [−π, π] with
a distance of 0.75 between the units. Since element m22 not is dependent on any
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variable this network is a bit different and has a constant input, m22. The hidden
units here span the interval [0, 30] with a distance of 0.75 between them.

All the M̂ networks have 1 input while the Ĝ and Ĉ networks all have 2
inputs and are thus much larger due to the number of inputs specifies the network
dimension.

For starting the RBFNN sizes are as shown in table 6.1 with the above men-
tioned intervals and distance.

RBF Neural Networks
Network Network Size Inputs
m̂11 9 q2
m̂12 9 q2
m̂21 9 q2
m̂22 41 1
ĉ11 81 q2, q̇2
ĉ12 81 q2, (q̇2 + q̇1)
ĉ21 81 q2, q̇1
ĝ1 81 q1, q2
ĝ2 81 q1, q2

Table 6.1: RBF Neural Networks

6.5 Simulations with Correct Model and Unpruned

RBFNNs

6.5.1 Correct Model

Here the correct and known matrices is used to control the robot. In this situation
there are no disturbances or friction and the is model correct.

In figure 6.4 the trajectory the end effector had with using the correct system
matrices can be seen and in 6.5 are the trajectories for the two joints. The sum
squared tracking error for the whole period was 0.079779.
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Figure 6.4: Trajectory End Effector Using Correct Model

Figure 6.5: Trajectory Joint 1 and 2 Using Correct Model
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6.5.2 Unpruned RBFNN

It is also used the networks without pruning them to control the robot. The SSE
tracking error was then 0.079723.

For the end effector and for the two joints the resulting trajectory can be seen
in figure 6.6 and figure 6.7 respectively. The approximation error for each network
along with their sizes is shown in table 6.2.

Figure 6.6: Trajectory End Effector Using Unpruned RBFNNs

6.6 Simulations with Online Pruning

In this section the networks used in the inverse kinematic controller are also pruned
with weight magnitude pruning, node output pruning and these two methods com-
bined.

Until the simulation has done 1000 iterations (out of a total of 8795 iterations)
the networks are not pruned. Also the approximation error has to be smaller than
0.01 over the last 400 iterations before the pruning begins. This is done to avoid
starting the pruning to soon. The Ĝ networks both have worse approximation
error so they has here been pruned if the approximation error for the last 400
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Figure 6.7: Trajectory Joint 1 and 2 Using Unpruned RBFNNs

Unpruned Networks
Network Network Size Error Last 300 Iterations [RMSE]
m̂11 9 0.056283
m̂12 9 0.033363
m̂21 9 0.033363
m̂22 41 0
ĉ11 81 0.041565
ĉ12 81 0.051779
ĉ21 81 0.014998
ĝ1 81 0.1302
ĝ2 81 0.71542

Sum 473 1.076971

Table 6.2: Unpruned Networks

iterations is smaller than 0.03 for ĝ1 and 0.08 for ĝ2.

Elements m12 and m21 are identical due to the inertia matrix being symmet-
ric. Two separate networks is still used to approximate the elements to see if the
networks end up as the same and if they give different approximation results.
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6.6.1 Weight Magnitude Pruned RBFNN

The threshold is set to be 20% of the weight norm and increasing for each time
the networks are pruned. Max 5 times can the threshold increase in order to make
sure that it does not grow too much. In the simulations done here the networks
are never pruned more than 2 times so the growing of the thresholds were never a
problem.

This pruning gave the networks in table 6.3. The table shows the final network
sizes, the approximation error for each network over the last 300 iterations of the
simulation and at what iteration the networks were pruned. Since it here is used
growing weight pruning some networks are pruned more than one time. It is then
showed at which iteration and how many units that are pruned.

Weight Magnitude Pruned Networks
Network Final Size Error Last 300 Iterations Pruned at Iteration

[RMSE] (Number of Units)
m̂11 3 0.057609 3791(4), 8143(2)
m̂12 3 1.5269 3812(6)
m̂21 3 1.5269 3812(6)
m̂22 1 3.5527× 10−15 1001(38), 1002(2)
ĉ11 2 0.91704 2648(73), 3728(6)
ĉ12 4 0.25724 2453(77)
ĉ21 4 0.049003 7106(76), 8028(1)
ĝ1 8 0.099321 7785(73)
ĝ2 8 0.81306 1325(73)

Sum 36 5.247073 -

Table 6.3: Weight Magnitude Pruned Networks

When starting with the networks in table 6.1 and ending up with the networks
in table 6.3 the tracking error for the whole simulation was 0.078715. This tracking
error is actually better than using the real model and unpruned networks.

In figure 6.8 the trajectories for the two joints together with the desired tra-
jectories are shown. Since the trajectory for the end effector is very similar to the
one obtained from the unpruned networks it is here not included a plot of it.
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Figure 6.8: Trajectory Joint 1 and 2 Using Weight Pruned RBFNNs

6.6.2 Neuron Output Pruned RBFNN

Here a pruning threshold of 15% of the node output ratio sum is used and the
pruned neurons are all removed at the same iteration.

In table 6.4 it is shown the resulting networks when they are pruned with
neuron output based pruning. It can be seen what the final number of hidden
units was for each network and the root mean squared approximation error for the
last 300 iterations of the simulation.

It can in table 6.4 be seen that the total number of nodes is 11 units larger
than with only weight magnitude pruning. Also the tracking error is a bit larger.
This was here 0.079692 found by the SSE function. However, when looking at the
approximation error it can be seen that this is much better than with weight based
pruning. The sum of approximation error for 20% weight magnitude pruning was
5.247073 while it here only is 1.3195043.

The trajectory for the joints can be seen in figure 6.9. Even with poorer track-
ing error the obtained tracking is very accurate as can be seen. It is not included
a plot of the end effector trajectory due to this looking exactly the same as the
previously shown ones.
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Neuron Output Ratio Pruned Networks
Network Final Size Error Last 300 Iterations Pruned at Iteration

[RMSE]
m̂11 3 0.050703 3791
m̂12 3 0.033421 3812
m̂21 3 0.033421 3812
m̂22 3 0 1001
ĉ11 10 0.027652 2661
ĉ12 8 0.085565 2605
ĉ21 9 0.0096223 7113
ĝ1 11 0.1351 7786
ĝ2 7 0.94402 1325

Sum 57 1.3195043 -

Table 6.4: Neuron Output Ratio Pruned Networks

Figure 6.9: Trajectory Joint 1 and 2 Using Node Output Pruned RBFNNs
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6.6.3 Mixed Methods Pruned RBFNN

Weight magnitude pruning gave in total fewer hidden units than node output
pruning as shown in the two previous sections. The estimations given by the node
output pruned networks were however much better. When looking at the networks
separately it can be seen that the networks m̂11, m̂12 and m̂21 had the same sizes
for both methods however with much better approximation error when using out-
put ratio based pruning. So now 15% output ratio pruning for these three small
networks and 20% weight magnitude pruning for the other larger networks are
tried to see if the approximation error could be better for the smallest number of
hidden units.

With the above mentioned pruning the total number of hidden nodes is 36 as
with only weight magnitude pruning and the RMS approximation error is 2.252727.
This is much better than the approximation error from the weight magnitude
pruned networks and still not as good as the node output pruned networks. The
final networks and approximation errors are shown in table 6.5.

Final tracking sum squared error with these networks was 0.079410 and the
joint trajectory is shown in figure 6.10.

Mixed Weight Magnitude and Output Ratio Pruned RBFNNs
Network Network Size Error Last 300 Iterations Pruned at Iteration

[RMSE] (Units Removed)
m̂11 3 0.050711 3791(6)
m̂12 3 0.033426 3812(6)
m̂21 3 0.033426 3812(6)
m̂22 1 3.5527× 10−15 1001(38), 1002(2)
ĉ11 2 0.91639 2648(73), 3728(6)
ĉ12 4 0.25676 2453(77)
ĉ21 4 0.04934 7099(76), 8032(1)
ĝ1 8 0.099454 7786(73)
ĝ2 8 0.81322 1325(73)

Sum 36 2.252727 -

Table 6.5: Mixed Weight Magnitude and Output Ratio Pruned RBFNNs
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Figure 6.10: Trajectory Joint 1 and 2 Using Mixed Methods Pruned RBFNNs

6.7 Simulations with Friction and a Constant Dis-

turbance

In this section a simple model of friction and some constant disturbance is added
to the manipulator and thus the known model is no longer perfect. All the simula-
tions are repeated and the manipulator is controlled with the now incorrect model,
unpruned RBFNNs and the different versions of pruned RBF networks. Since the
data used to train the networks no longer are entirely correct the networks ability
to generalize will be more important.
With friction and constant disturbance the dynamic equation for the robot ma-
nipulator can be written as

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + d = τ (6.7.1)

where M(q) is the inertia matrix, C(q, q̇) is the centrifugal matrix, G(q) is the
gravitation matrix, F (q̇) is the friction matrix and d is a constant disturbance.
q, q̇, q̈ are respectively joint position, joint velocity and joint acceleration.

The friction and disturbance are given as
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F (q̇) =

[
0.7q̇1
0.7q̇2

]
d =

[
2
2

]
(6.7.2)

It is started the same initial RBF networks as earlier in this chapter for the
manipulator without friction and disturbance. These networks are given in table
6.1.

6.7.1 Incorrect Model and Unpruned Networks

Using the incorrect model gave a SSE tracking error of 0.080093 and the trajectory
for the end effector can be seen in figure 6.11. This trajectory looked quite similar
for all the simulations done in this section and thus this is the only figure of the end
effector trajectory included. In figure 6.12 plots of the desired trajectory together
with the actual trajectory for both joints are shown.

Figure 6.11: Friction and Disturbance - Trajectory End Effector Using Incorrect
Model

For the situation of using unpruned RBF networks the final tracking sum
squared error was 0.080038. There are no large differences in the plots of the
trajectories for using the incorrect model and the unpruned networks and hence
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Figure 6.12: Friction and Disturbance - Trajectory Joint 1 and 2 Using Incorrect
Model

it is not included a figure of the obtained trajectories for using the unpruned
RBFNNs.

6.7.2 Online Pruning

For the online pruning in control of a manipulator with friction and a disturbance
criteria for when to begin the pruning are as they were in the situation with
no friction and disturbance. These criteria were that the simulation must have
completed 1000 iterations and the RMS approximation error for a network has to
be smaller than 0.01 over a sliding window of 400 iterations before this network
can be pruned. For the networks ĝ1 and ĝ2 the approximation error again has to
be smaller than 0.03 and 0.08 respectively before they can be pruned.

The obtained plots of end effector and joint trajectories all look very much
alike and thus it is not found any reason to include all of them.
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Only Weight Magnitude Pruning

When the networks only are pruned with weight magnitude based pruning thresh-
old of 20% is used as it was when there was no friction and disturbance present.
The number of hidden units in the different networks end up as in table 6.3. Fi-
nal sum squared tracking error for the joints was 0.079035 and in figure 6.13 it
is shown a plot of the desired and actual joint trajectories. Even with the minor
modeling errors the tracking is very accurate as shown in this figure.

Figure 6.13: Friction and Disturbance - Trajectory Joint 1 and 2 Using Weight
Pruned RBFNNs

Only Neuron Output Pruning

Again the threshold is 15% for node output based pruning and the final networks
had the same size as those in table 6.4. This gave a tracking sum squared error of
0.08005 which is a bit better than the incorrect model and worse than the weight
magnitude pruned networks. The joint trajectories plot is very similar to the one
obtained with weight magnitude pruned RBF networks and it is not included here.
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Mixed Weight and Neuron Output Pruning

For the networks pruned with either weight based pruning or node output pruning
it is done as earlier with 15% node output for the smallest networks m̂11, m̂12 and
m̂21 and 20% weight for the remaining larger ones. This gave the same sizes of
the networks as when there were no friction or disturbance in the manipulator
and can be seen in table 6.5. The obtained tracking sum squared error for this
situation was 0.079727. This is almost as good as when the networks are pruned
with only weight based pruning. Again the plot of the trajectories looks like the
already shown and is thus not included here.

6.8 Discussion

In table 6.6 all the tracking errors and sum of approximation errors over the last
300 iterations of the simulation for the different ways to implement the system
dynamics in the inverse kinematic controller are shown. The situation here is no
friction or disturbance in the manipulator and thus the model used to train the
networks is correct. It is also included the total number of hidden units for all the
final networks.

As can be seen from this table using only weight based pruning for all the
networks give the best tracking error while implementation of the correct model
actually gives the worst tracking. The best estimations for the networks come from
the unpruned networks and second best from the node output pruned networks.
The definitely largest approximation error comes from using weight magnitude
pruning.

Trajectory Tracking and Network Approximation Errors
for Manipulator without Friction and Disturbance

Method Sum Hidden Tracking Error Sum Approx. Errors
Units [SSE] [RMSE]

Correct Model - 0.079779 -
Unpruned Networks 473 0.079723 1.076971

Weight Based Pruning 36 0.078715 5.247073
Neuron Output Pruning 57 0.079692 1.3195043
Mixed Method Pruning 36 0.079410 2.252727

Table 6.6: Trajectory Tracking and Approximation Errors

For the case when the manipulator has friction and a small disturbance the
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tracking errors are as shown in table 6.7. Here the approximation errors are not
shown since the training is based on the now incorrect manipulator model. The
sizes of the networks are as in table 6.6. Again weight based pruning give the
smallest tracking error and the incorrect model has the worst.

Friction and Disturbance - Trajectory Tracking Errors
Method Tracking Error [SSE]

Incorrect Model 0.080093
Unpruned Networks 0.080038

Weight Based Pruning 0.079035
Neurong Output Pruning 0.08005
Mixed Method Pruning 0.079727

Table 6.7: Friction and Disturbance - Trajectory Tracking Errors

From simulations done in this chapter it is found that using radial basis func-
tion networks to estimate the system dynamics give better tracking than using the
actual manipulator model both for the case when this model is incorrect and when
the it is perfect. The smallest tracking error is obtained with the weight magnitude
pruned networks both for controlling the manipulator with and without friction
and a constant disturbance. This is somewhat strange since this pruning method
gives the poorest approximations. In the situation where the manipulator model
is known and correct then using this should give the best tracking. Here it seems
that larger estimation error gives better tracking.

It is also found that using unpruned RBF networks gave better approximation
than using the smaller ones obtained with pruning. Out of the different pruned
networks it was the node output pruning which gave the networks with best ap-
proximation ability.

For the larger networks Ĝ, Ĉ and m̂22 it was possible to obtain smaller net-
works with weight magnitude pruning while for the small networks m̂11, m̂12 and
m̂21 both pruning methods gave the same sizes. They did however not remove
the exact same neurons and the networks from node output pruning gave much
better approximations. Thus could the same small size of only 36 hidden nodes in
total for all the networks be kept and the approximation improved by mixing the
different pruning methods. It was then used weight based pruning for the larger
networks and node output for the smaller networks. The tracking error obtained
was larger than the one for using weight magnitude pruning and smaller than us-
ing the node output pruning. The approximation error was smaller than for the
weight magnitude pruning and larger than for the node output pruning.
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In the chapter where the pruning methods were tested on the cross function it
was found that first pruning with node output ratio pruning and then weight mag-
nitude pruning in same pruning phase gave the smallest possible network. This
was also tested for the networks here and found to not give very good results.
Reducing the networks more than to 36 hidden units gave worse errors both in
tracking and approximation. Also the pruning time will be much larger as both
the pruning algorithms are done. Hence it was found to be unsuited for online
pruning in learning manipulator control.

In this chapter the simulation had to complete 1000 iterations before the net-
works could be pruned in addition to the criterion that the approximation error
had to be smaller than 0.01. This was an extra precaution to avoid pruning the
networks to early that was not needed in the offline learning with the cross func-
tion. To make the approximation error criterion suitable for online learning it
was changed to use a moving window of the last 400 iterations for checking the
approximation error. Since the Ĝ networks always had a pretty large estimation
error they were implemented to start the pruning if the approximation error was
smaller than 0.03 and 0.08 for ĝ1 and ĝ2 respectively. It was with these settings
found that the networks were pruned at a bit different iterations but none to early.

For the simulations in this chapter one network was dedicated to element m12

and one network to element m21 even if they are two equal elements due to the
symmetry of the inertia matrix. This was done to see if the networks initially cre-
ated identically were pruned at the same time and if they gave the same output.
It was found that this was the case and thus further on to use a network for each
of the elements in the symmetric inertia matrix will not be necessary. When the
number of joints increases more several elements will be equal and not needing to
use one network for each element would reduce the computational cost significantly.

Here it has been shown that the inverse kinematic controller is able to track a
desired trajectory quite well even if the system dynamics are approximated with
RBF networks that are pruned.

As with the simulations for the cross function it was clearly neuron output that
gave the best approximations compared to the weight magnitude pruning. Weight
based pruning did however here give smaller networks and a better tracking error.
The fact that the smallest tracking error is obtained with the networks that gave
the largest estimation errors is strange and it is difficult to draw any conclusion on
which pruning methods that obtained the best result here. Perhaps the networks
pruned with the mixed method that were neither best nor worse in any areas would
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be the preferred choice in total.
When the pruning methods are implemented in simulation with a larger ma-

nipulator they should however all be tested again to see what would give the best
results there.
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Chapter 7

Online Learning Controller for
ABB IRB140

7.1 Introduction

In this chapter the learning inverse kinematic controller with pruned RBF networks
is implemented to control the ABB IRB140 robot manipulator in simulations. This
manipulator has 6 joints where the last 3 are the wrist. Since the number of ele-
ments in the dynamic matrices will increase from 10 as with the 2 dof manipulator
to 21 elements for 3 dof it is here started with only control of the first 3 joints.

The different elements are now also depending on more variables, joint angle
and joint angular velocity. This gives that the RBFNN have more inputs than they
did when there only were 2 joints. Increasing the number of inputs for a network
gives more dimensions which again very fast leads to more hidden neurons.

NTNU has a manipulator of the type ABB IRB140 and thus is this exact model
used in here. Later it would then be possible to implement and try the learning
control scheme on the actual manipulator.

From the results in the previous chapter on learning controller for the 2 dof
manipulator it was difficult to conclude on which pruning method that gave the
best result. The fact that tracking error was good when approximation error was
poor and vice versa is found to be a bit strange. Some of the networks here will
also be bigger and testing to see if this has anything to say for the pruning result
is necessary. Thus all the pruning methods from last chapter are again tested in
this chapter.
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The results from the pruned networks are compared to the ones from using the
known model, unpruned networks and also growing RBFs known as RANEKFs.
Simulations for the case of no friction or disturbance in the manipulator and for
the case of a simple model of friction and a constant disturbance are done.

Again Sum Squared Error (SSE) is used to find the tracking error and Root
Mean Square Error (RMSE) to find the approximation error.

The simulations are done in Matlab and Simulink with the same RBF networks
created by Sigurd Fjerdingen. Model of the ABB IRB140 manipulator is found by
Stefan Pchelkin.

7.2 ABB IRB140

ABB IRB140 is a small manipulator with 6 revolute joints. The three last joints
are however only the wrist so it is possible to control the manipulator in a desired
trajectory by only controlling the first three joints. When increasing the number
of joints the number of networks will become much larger and also the size of the
networks will grow very fast. Hence only the three first dofs are learned by RBF
networks in this section.

Image 7.1 shows the ABB IRB140 and is from the data sheet given by ABB
on the manipulator B. From the same data sheet it can be read that ABB IRB140
is a fast and compact robot with a reach of 810 mm and can handle a payload of
6 kg. The manipulator may be mounted on the floor, in any angle on the wall or
it can be mounted inverted. Some of the things ABB IRB140 is suited for are arc
welding, assembly, cleaning/spraying, machine tending, material handling packing
and deburring.

7.3 Controller and Desired Trajectory

Again the controller is the inverse kinematic controller from [18] and is restated
here in the learning form

τ = M̂(q)(q̈d +Kd(q̇d − q̇) +Kp(qd − q)) + Ĉ(q, q̇)q̇d + Ĝ(q) (7.3.1)

The gains are now

Kp =




350 0 0
0 450 0
0 0 450


 (7.3.2)
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Figure 7.1: ABB IRB140

and

Kd =




2.5 0 0
0 4 0
0 0 2.5


 (7.3.3)

For each joint the desired trajectory is specified as

q1d(t) = 0.5sin(t) (7.3.4)

q2d(t) = 0.7sin(t) (7.3.5)

q3d(t) = 0.3sint(t) (7.3.6)

In figure 7.2 below the desired trajectory for the joints can be seen.
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Figure 7.2: Desired Trajectory for ABB IRB140

7.4 RBF networks

Again the notation from chapter 2.5 to find the estimated dynamics of the manip-
ulator for implementation in the inverse kinematic controller is used.

M̂ = W T
M • AM(x) =




wT
m11am11(x) wT

m12am12(x) wT
m13am13(x)

wT
m21am21(x) wT

m22am22(x) wT
m23am23(x)

wT
m31am31(x) wT

m32am32(x) wT
m33am33(x)


 (7.4.1)

Finding the approximated C matrix follows the same pattern

Ĉ = W T
C • AC(x) =




wT
c11ac11(x) wT

c12ac12(x wT
c13ac13(x)

wT
c21ac21(x wT

c22ac22(x wT
c23ac23(x

wT
c31ac31(x) wT

c32ac32(x wT
c33ac33(x)


 (7.4.2)
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and so does also the estimation of G

Ĝ = W T
G • AG(x) =




wT
g1ag1(x)

wT
g2ag2(x)

wT
g3ag3(x)


 (7.4.3)

Since the inertia matrix is symmetric only needed 6 networks instead of 9 are
needed to learn all the elements in M(q). The similar elements are

m12 = m21 (7.4.4)

m13 = m31 (7.4.5)

m23 = m32 (7.4.6)

Also c33 and g1 are known to be zero and thus not learned by any network.
This gives a total of 16 networks.

All the networks are spanned in the interval [−π, π] with a distance of 0.75 be-
tween the nodes. In table 7.1 the initial networks and the inputs to the networks
can be seen. Some of the joint velocities are added up and fed to the network as
one input in order to reduce the number of inputs and then reduce the size of the
networks.

7.5 Simulations with Correct Model and Unpruned

RBFNN

In this section the known and correct model is first used in the controller and then
unpruned RBF networks. Simulation time is 6 ∗ pi so the manipulator finishes 3
whole sinus waves. This gives a simulation time of approximately 18.85 seconds.
The time the simulation actually uses is in this and the next sections taken in
order to give a picture of the computational cost of each method.

It is also done the simulations with 20π simulation seconds which is approx-
imately 1.03 minutes instead of 6π. This would show how the networks develop
over a longer period of time. Also here it is found the actual time the simulation
takes.

Shown in the tables in this chapter is the approximation error for the last 300
iterations of the whole simulation in order to show to approximation error when
the networks are trained and also in the next section pruned. This is the same
as what is done earlier in this report for the simulations with the 2 dof manipulator.
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ABB IRB140 RBF Networks
Network Network Size Inputs
m̂11 81 q2, q3
m̂12 81 q2, q3
m̂13 81 q2, q3
m̂22 9 q3
m̂23 9 q3
m̂33 9 1
ĉ11 729 q2, q3, (q̇2 + q̇3)
ĉ12 729 q2, q3, (q̇2 + q̇2 + q̇3)
ĉ13 729 q2, q3, (q̇2 + q̇2 + q̇3)
ĉ21 729 q̇1, q2, q3
ĉ22 81 q3, q̇3
ĉ23 81 q3, (q̇2 + q̇3)
ĉ31 81 (q̇1 + q2), q3
ĉ32 81 q̇2, q3
ĝ1 81 q2, q3
ĝ2 81 q2, q3

Sum 3672 -

Table 7.1: ABB IRB140 RBF Networks

7.5.1 Correct Model

When the model of the manipulator is known and completely correct the inverse
kinematic controller with this model gives a tracking error of 0.031897 for the
whole simulation period when using the sum squared error function (SSE). The
desired trajectory together with the actual trajectory for the case when the con-
troller uses the perfect model can be seen in figure 7.3. It can be seen that the
tracking is very accurate.

Using the correct model gives a fast simulation and it only takes 25 seconds to
finish the 18.85 simulation seconds. When the simulation time is increased to 20π
seconds it takes 1.44 minutes for the simulation to complete. The tracking error
for the whole 1.03 simulation minutes was 0.031897.
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Figure 7.3: Trajectory all 3 Joints Using Correct Model

7.5.2 Unpruned Radial Basis Function Neural Networks

For the case of using not pruned RBF networks the sum squared tracking error was
0.032 for the whole 6π simulation time. This is a bit worse than using the perfect
model as would be expected. It is also as expected that this controller makes
the simulation slower and it takes 4.49 minutes to complete the 18.85 simulation
seconds.

The total approximation error for all the 16 networks was 0.26303 as can be
seen in table 7.2. Here the approximation errors for each network over the last 300
iterations of the simulation are also shown.

In figure 7.4 the desired trajectory and the actual trajectory for this situation
are visible. It can here be seen that using the initial networks give a very good
tracking result even if the total tracking error is slightly higher than for using the
correct model of the manipulator.

When the simulation is increased to 20π it takes 25.30 minutes to complete the
simulation of approximately 1.03 minutes. The sum squared tracking error for the
whole long simulation time was found to be 0.032015.
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Figure 7.4: Trajectory all 3 Joints Using Unpruned RBFNN

7.6 Simulations with Online Pruning

Here the networks from table 7.1 is implemented and pruned during simulation
with weight magnitude pruning, node output pruning or a mixed version of the
two pruning methods just mentioned.

As with the simulations for the 2 dof the rms estimation error for the last
400 iterations has to be smaller than 0.01 before a network can be pruned. An
exception to this is the network ĝ2 which can be pruned when the approximation
error is less than 0.05 for the last 400 iterations. Since the desired trajectory here
is a sinus wave the manipulator must have completed one half period of the first
sinus wave before the networks can be pruned. This is the same as π simulation
seconds which is found to be approximately 2200 iterations. Thus the pruning
for a network may only begin when the simulation has completed π simulation
seconds and the network has an estimation error smaller than 0.01 over the last
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Unpruned Networks
Network Network Size Approx. Error Last 300

Iterations [RMSE]
m̂11 81 0.0066688
m̂12 81 0.00058727
m̂13 81 0.0006894
m̂22 9 0.0041514
m̂23 9 0.001951
m̂33 9 4.4409× 10−16

ĉ11 729 0.0018134
ĉ12 729 0.0021467
ĉ13 729 0.0013094
ĉ21 729 0.0031408
ĉ22 81 0.0013634
ĉ23 81 0.00040688
ĉ31 81 0.0041832
ĉ32 81 0.00058631
ĝ1 81 0.23208
ĝ2 81 0.0019531

Sum 3672 0.26303

Table 7.2: Unpruned Networks

400 iterations.

In this section a simulation time of first 6π which is approximately 18.85 sec-
onds and a simulation time of 20π which approximately is 1.03 minutes are used.
It is found the sum squared tracking error for the whole period and the approxima-
tion error for the last 300 iterations of the simulation for both simulation lengths.
This makes it possible to see how the pruned and trained networks perform when
the training length is increased.

7.6.1 Weight Magnitude Pruned RBFNN

In this section the results from when the networks are pruned with 5% weight
magnitude pruning are given.

The threshold specified here is the starting threshold and for each time the net-
works are pruned this threshold grows as it did for the 2 dof weight based pruning.
In the second pruning the threshold is twice the threshold it was in the first prun-
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ing while the threshold in the third pruning is three times the starting threshold,
etc. It can only grow 5 times and after that the threshold stays the same. The
networks that initially were quite large, 729 hidden units, are here pruned over
many periods. Network ĉ21 is pruned most times and this is 9 periods. The nodes
are however mainly removed during the first pruning and only a few are pruned
in the later repetitions.

As an example at what iterations ĉ21 is pruned and how many neurons that
are removed at the different iteration are now mentioned. At iteration 2201 706
nodes is removed, 10 at iteration 2202, 2 at the next iteration 2203, then one unit
is removed at the iterations 2757, 2845, 4009, 4470 and 4764 before the last 3
neurons are pruned at iteration 5150.

The reason for that there are neurons pruned several times after the threshold
has stopped growing is that the threshold is specified as a percent of the weights
norm. While it for the case with the cross function was found that the norm of the
weights converged in this situation it is found that the norm does not converge.

In fact, for some of the networks the norm of the weights increases with time.
Thus it is found necessary to end the pruning since the networks may be too much
pruned if the simulation time is increased. The pruning lasts for 2π simulation
seconds which is one period of the sinus wave.

In table 7.3 the resulting networks after the learning has been implemented
with 5% weight based pruning are shown and the simulation time was 6π. Using
a starting threshold of 5% gave a total of 74 hidden units for all the networks and
the total approximation error summed together for all the networks was 0.29037.
With these networks in the inverse kinematic controller the tracking sum squared
error was 0.03201 for the whole simulation period. The actual time the simulation
took was 4.10 minutes.

In figure 7.5 the trajectories for each joint can be seen. Here the desired tra-
jectory is plotted together with the actual trajectory. As can be seen from this
figure the controller implemented with the weight magnitude pruned networks give
a good tracking result. The tracking is as shown in this plot accurate in the be-
ginning before the networks are pruned and also after the RBFNNs are pruned
several times.

The tracking error was 0.032053 for the whole 20π simulation time which took
23.30 minutes to complete. This is a bit faster than using the unpruned networks.
For the last 300 iterations the approximation error was 0.28429 which is smaller
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Weight Magnitude Pruned Networks

Network Final Size Error Last 300 Iterations [RMSE]
m̂11 6 0.0067127
m̂12 6 0.0005721
m̂13 2 0.001048
m̂22 3 0.004117
m̂23 3 0.001939
m̂33 2 4.4409× 10−16

ĉ11 3 0.0083142
ĉ12 13 0.0023642
ĉ13 8 0.0072465
ĉ21 3 0.0072956
ĉ22 2 0.0061949
ĉ23 3 0.0006785
ĉ31 2 0.0069534
ĉ32 2 0.0014019
ĝ2 10 0.23334
ĝ3 6 0.0021934

Sum 74 0.29037

Table 7.3: Weight Magnitude Pruned Networks

than the estimation error at the end of the shorter simulation time.

7.6.2 Neuron Output Pruned RBFNN

For neuron output pruning it is found to be necessary for the manipulator to fin-
ish one whole period of the sinus wave trajectory before pruning the networks.
This gives that the networks are not pruned until the simulation has completed
2π of the simulation time which corresponds to approximately 4400 iterations in
simulink.

In this section the results from pruning with neuron output based pruning with
30% thresholds are given. When the simulation time is 6π the final networks end
up with the sizes and approximation errors over the last 300 iterations as shown
in table 7.4.

Pruning with neuron output ratio has for all the simulations done so far given
better approximation ability for the final networks than using weight magnitude
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Figure 7.5: Trajectory all 3 Joints Using Weight Pruned RBFNN

pruning. This is found to be the case also in the simulations done here, however
with bigger networks than for weight based pruning. The total number of hidden
neurons here was 126 and the sum of all the root mean squared approximation er-
rors was 0.28021. Since the estimations are a bit better smaller tracking error than
for weight magnitude pruning is obtained and the final tracking error for the whole
simulation was 0.032002. It took 4.20 minutes to complete the 18.85 simulation
seconds something which is a bit more than for the weight based pruning situation.

The threshold for neuron output based pruning is not growing and the networks
are usually pruned 1-3 times with almost all of the nodes removed at the first
pruning. This however is not the case for the larger Ĉ networks with initially 729
hidden units. Also here most of the units are removed at the first pruning and
then several pruning phases where additionally one unit at the time is removed
follow.

Network ĉ13 is pruned over 7 periods and this is the network pruned most
times. Here first 701 units are removed at iteration 4401 and then one more at the
iterations 4616, 4722, 4818, 4926, 7134 and 7178.
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The smaller networks are pruned between iteration 4401 and 5700.

Figure 7.6 below shows the joint trajectories obtained when the RBF networks
were pruned with 30% threshold together with the desired trajectory. As can be
seen from this plot the obtained tracking is very accurate.

Neuron Output Pruned Networks
Network Final Size Error Last 300 Iterations [RMSE]
m̂11 5 0.0061364
m̂12 5 0.00050466
m̂13 5 0.00075247
m̂22 2 0.0065574
m̂23 2 0.0028382
m̂33 2 0
ĉ11 17 0.0016613
ĉ12 22 0.0037684
ĉ13 22 0.00073191
ĉ21 11 0.00084954
ĉ22 4 0.0012086
ĉ23 7 0.0010091
ĉ31 6 0.0043594
ĉ32 6 0.0011061
ĝ2 5 0.23923
ĝ3 5 0.0095059

Sum 126 0.28021

Table 7.4: Neuron Output Pruned Networks

The simulation time is also here increased to 20π and it took 23.25 minutes
to complete the simulation. This is 5 seconds less than for the case with weight
based pruned networks. After this simulation it is found that the final sum squared
tracking error for the whole simulation was 0.0320025 for all joints. The root mean
squared approximation error for the last 300 iterations is 0.2657 which is an im-
provement from the estimation error at the end of the simulation of 6π.

7.6.3 Mixed Methods Pruned RBFNN

Here it is tried to use weight magnitude pruning with different threshold for the
M̂ and Ĝ networks while it is used node output pruning for the Ĉ networks. This
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Figure 7.6: Trajectory all 3 Joints Using Neuron Output Pruned RBFNN

is done in order to obtain the networks with best possible approximation ability
that still are quite small.

It has been used 7% growing weight threshold to prune all the M̂ networks, 30%
neuron output pruning for the Ĉ networks and 5% growing threshold for weight
based pruning of the two Ĝ networks. This gave 129 hidden units in total for all
the RBFNNs as can be seen in table 7.7 below. The tracking error was 0.032001
for the whole simulation time of 18.85 seconds and the approximation error in
total for all the networks over the last 300 iterations was 0.26314. These errors
both are smaller than for the other two pruning methods. It took 4.20 minutes to
complete the whole simulation which is the same as for node output pruning alone.

A plot of the trajectory for each joint along with the desired trajectory can
be seen in figure 7.7. As with the other controllers it was also here obtained an
accurate tracking.

After a simulation time of 20π second the networks gave an approximation rms
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Mixed Methods Pruned Networks
Network Network Size Approx. Error Last 300 Iterations [RMSE]
m̂11 4 0.0054748
m̂12 4 0.00034923
m̂13 2 0.0010479
m̂22 3 0.0041168
m̂23 3 0.0019389
m̂33 2 0
ĉ11 17 0.0016601
ĉ12 22 0.0037649
ĉ13 22 0.00073047
ĉ21 11 0.00084958
ĉ22 4 0.0012063
ĉ23 7 0.0010054
ĉ31 6 0.0043596
ĉ32 6 0.0011059
ĝ1 10 0.23334
ĝ2 6 0.002195

Sum 129 0.26314

Table 7.5: Mixed Methods Pruned Networks

error of 0.25074 over the last 300 iterations which is better than at the end of
the shorter simulation and also better than the networks pruned with only weight
based pruning or only node output pruning. The tracking error for the whole pe-
riod was here 0.032018 and it took 23.40 minutes to finish this simulation. This is a
bit longer than for either weight magnitude pruning or node output pruning alone.

7.7 Simulations with Resource Allocation Net-

work EKF

In this section growing RBF networks are implemented in the controller instead
of creating initially large networks and pruning them. The growing networks used
are Resource Allocation Networks Extended Kalman Filter (RANEKF) which are
briefly described in chapter 2 in this report.

For all the RANEKFs used to learn the dynamics of the manipulator there are
only one output as with the RBFNNs and the number of inputs are also the same

90



Figure 7.7: Trajectory all 3 Joints Using Mixed Methods Pruned RBFNN

as with the corresponding RBFNNs. The networks are initially completely empty
in the hidden layer. To specify whether a new unit should be added to the network
or not the following thresholds have been used

εn = 0.1 (7.7.1)

emin = 0.1 (7.7.2)

e′min = 0.1 (7.7.3)

where εn is the size that the shortest distance from a new input to a neuron has to
be larger than, emin is the number that the approximation error for the network
to the new input has to be larger than and e′min is the value that the root mean
square approximation error over the last M inputs has to be larger than. If all
these thresholds are met for a new input there is added a new hidden unit.

After 18.85 simulation seconds the final network had 96 hidden units and the
approximation error for all the networks was only 0.024542 over the last 300 it-
erations. This is a significantly improvement from the pruned networks. It took
however 7.20 minutes to run the whole simulation something which is quite a
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lot of time. The tracking error for the three joints when these RANEKFs were
implemented was 0.032094 found with sum squared error for the whole simulation.

All the resulting networks and their estimation errors can be seen in table 7.6
and the joint trajectory plotted with the desired trajectory can be seen in figure
7.8. The obtained tracking is again very accurate.

Resource Allocation Networks EKF
Network Final Size Approx. Error Last 300 Iterations [RMSE]
m̂11 2 0.00081226
m̂12 3 0.00080336
m̂13 2 0.0013159
m̂22 1 0.00024869
m̂23 1 0.00011871
m̂33 1 0
ĉ11 13 0.00072606
ĉ12 19 0.0020651
ĉ13 15 0.00017359
ĉ21 4 0.0043685
ĉ22 3 0.00053882
ĉ23 7 0.00013039
ĉ31 3 0.0020125
ĉ32 6 0.00021268
ĝ1 14 0.009901
ĝ2 2 0.0011144

Sum 96 0.024542

Table 7.6: Resource Allocation Networks EKF

When the RANEKF networks were implemented in the controller it took 27.05
minutes to complete the simulation of 20π. The networks had then grown to have
a total of 147 hidden units. This is many more hidden units than after the 6π
simulation and the approximation error over the last 300 iterations was now in-
creased to be 0.058592. Still a very small error but it is more than twice as much
as after the shorter simulation. The tracking error for all three joints over the
whole period was 0.032095.
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Figure 7.8: Trajectory all 3 Joints Using RANEKFs

7.8 Simulations with Friction and a Constant Dis-

turbance

Now a simple model of friction and some constant disturbance is added to the
manipulator which make the known model incorrect. All the simulations done
earlier in this chapter are now repeated for the different methods to implement
the system dynamics in the inverse kinematic controller. The different methods
are first the incorrect model, then unpruned RBF networks, pruned RBF networks
with either weight magnitude pruning, neuron output based pruning or a mixed
version of these two pruning methods and at last the growing resource allocation
network extended kalman filter (RANEKF).

As in the previous sections the initially networks which can be found in table
7.1 are used. The simulation time is again set to 6π seconds so the trajectory has
completed 3 whole sinus waves.

With friction and constant disturbance can the dynamic equation for the robot
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manipulator be written as it was in the previous chapter and repeated here

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + d = τ (7.8.1)

where M(q) is the inertia matrix, C(q, q̇) is the centrifugal matrix, G(q) is the
gravitation matrix, F (q̇) is the friction matrix and d is a constant disturbance.
q, q̇, q̈ are respectively joint position, joint velocity and joint acceleration.

Now the friction and disturbance are implemented as

F (q̇) =




1.2q̇1
1.4q̇2
0.8q̇3


 d =




3
5
4


 (7.8.2)

The tracking errors when the model used to train the networks is not com-
pletely correct are off course a bit larger then when it was used a correct model
to train the networks. However the tracking is still quite accurate and the results
obtained with the different methods to implement the system dynamics are not
very large. Only one figure of the joint trajectory is included since all the plots
look the same. The different sum squared tracking errors will however be specified
for both the whole period and for the last 2π simulation seconds only. This is the
last whole sinus wave of the trajectory and the tracking error for this part alone is
found to see how the networks performs when they have experienced some learning.

In figure 7.9 the desired trajectory and the actual trajectory for each joint can
be seen for the situation where the system dynamics are implemented with mixed
method pruned RBF networks.

7.8.1 Incorrect Model and Unpruned Networks

Whit friction and a constant disturbance present in the manipulator the known
model is no longer entirely correct and implementing this in the controller would
thus give a bit larger tracking error than for the case with no friction and distur-
bance present. The sum squared tracking error for the whole simulation was found
to be 0.052887 and for the last 2π simulation time 0.0072445.

For the situation where the system dynamics are implemented with unpruned
radial basis function neural networks as in table 7.1 the final tracking error was
0.052977 for the whole period and 0.0072385 for the last whole sinus wave of the
trajectory.
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Figure 7.9: Friction and Disturbane - Trajectory all 3 Joints Using Mixed Methods
Pruning

It can then be seen that the total tracking error for using the incorrect model is
slightly better than using the unpruned networks while the tracking error for only
the last 2π simulation time is a little bit better for the RBFNNs without pruning.

The unpruned networks have a total of 3672 hidden units in the 16 different
networks.

7.8.2 Online Pruning

In the situation where the RBF networks now are pruned again the root mean
squared approximation error has to be smaller than 0.01 for all the networks ex-
cept the network ĝ2 which must have an approximation error less than 0.05 before
the RBFNNs can be pruned. This approximation error is found over a moving
window of the 400 last simulation iterations.

The manipulator must also have completed one half of the sinus wave trajec-
tory, π simulation time, before the weight pruning begins. For the pruning based
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on neuron output ratio the manipulator has finished one whole period of the sinus
wave, that is 2π of the simulation time. This was also the case in the last section
without friction and disturbance.

Weight Magnitude Pruned Networks

All the RBF networks are pruned with 5% weight magnitude based pruning where
the threshold again is growing. It can at most grow 5 times and the highest possible
threshold in percent of the weights norm is thus 5× 5.

After the simulation has completed 4π simulation time it is no longer possible
to prune the networks. This is done as in the previous section in order to make
sure the networks are not over pruned due to the fact that the weights not converge.

The final networks after 6π simulation time is the same as they wore when
there were no friction or disturbance in the manipulator and the final sizes can be
seen in table 7.3. In total there were 74 hidden neurons.

For the whole simulation the SSE tracking error was obtained as 0.052898 while
it for the last 2π time of the simulation was found to be 0.0072129. These two
tracking errors are somewhat smaller than for the case where it was used unpruned
RBF networks instead.

Node Output Pruned Networks

When the dynamics of the manipulator is implemented with RBF networks pruned
with neuron output based pruning it is used a threshold of 30% of the activation
function ratio sum. This is the same as when the manipulator was without friction
and disturbance but all the final networks here are not equal to the networks
obtained in that case. The final networks ĉ12 and ĉ13 are both one node smaller in
this section and the total sum of hidden units is now 124 instead of 126 as it was
in the situation with no friction or disturbance.

All the final networks can be seen in table 7.7 below.

The reason for some of the final networks here being a bit different is that the
inputs to the networks no longer are the same due to the friction and disturbance
present. This again gives activation function ratio sums unequal to the ones ob-
tained with no friction and disturbance. Since the inputs not are much changed
only two networks have experienced a different pruning.
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In this case a tracking error of 0.052975 for the whole simulation and 0.0072379
for the 2π simulation seconds at the end of the simulation are obtained. This is
higher errors than for weight based pruning but smaller than for not pruning the
networks. The tracking error for the last part of the trajectory is also smaller than
using the incorrect model.

Friction and Disturbance
Node Output Pruning

Network Network Size
m̂11 5
m̂12 5
m̂13 5
m̂22 2
m̂23 2
m̂33 2
ĉ11 17
ĉ12 21
ĉ13 21
ĉ21 11
ĉ22 4
ĉ23 7
ĉ31 6
ĉ32 6
ĝ1 5
ĝ2 5

Sum 124

Table 7.7: Friction and Disturbance - Node Output Pruning

Mixed Methods Pruned Networks

The RBF networks are also pruned with the same mixed methods as in the last
section. It is used 7% and 5% weight based pruning for the M̂ networks and
the Ĝ networks respectively while it is used 30% node output pruning for the Ĉ
networks. The latter is the same as was used when all the networks were pruned
with node output pruning and the same result regarding the different sizes of the
Ĉ networks was obtained here. Both the two networks for ĉ12 and ĉ13 had one
unit less than they had after pruning in the control of a manipulator without
friction and disturbance. For the rest of the networks they all are the same as
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after being pruned with the mixed method in the last section. In table 7.8 all the
final networks can be seen.

The figure 7.9 of the trajectories included earlier in this section are obtained
with networks.

After the whole simulation of 6π the total tracking error is 0.052563 while for
the last 2π simulation seconds it is 0.0071018. Compared to the incorrect model,
unpruned networks and also the pruned networks from both weight based pruning
and neuron output pruning alone these tracking errors are the smallest.

Friction and Disturbance
Mixed Method Pruning

Network Network Size
m̂11 4
m̂12 4
m̂13 2
m̂22 3
m̂23 3
m̂33 2
ĉ11 17
ĉ12 21
ĉ13 21
ĉ21 11
ĉ22 4
ĉ23 7
ĉ31 6
ĉ32 6
ĝ1 10
ĝ2 6

Sum 127

Table 7.8: Friction and Disturbance - Mixed Method Pruning

7.8.3 Resource Allocation Networks EKF

The growing resource allocation networks extended kalman filter (RANKEF) is
now implemented with the same thresholds as for the case of no friction or distur-
bance.
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In table 7.9 the final networks after the 18.85 simulation seconds can be seen.
The total sum of units is here 78 while it for the situation with no friction or dis-
turbance was 129 hidden nodes in total. This is a huge difference in the networks
for a small change in the system dynamics. One reason for this difference is that
having fewer hidden units would give better generalization which is needed here.

This simulation gave the worst tracking error for the whole period of all the
cases where friction and disturbance were included. It was found to be 0.053116
while the tracking error for the last sinus wave of the trajectory was 0.007243. The
latter is worse than all the other cases except for the incorrect model.

Friction and Disturbance
RANEKFs

Network Network Size
m̂11 2
m̂12 3
m̂13 2
m̂22 1
m̂23 1
m̂33 1
ĉ11 9
ĉ12 9
ĉ13 9
ĉ21 8
ĉ22 4
ĉ23 3
ĉ31 3
ĉ32 3
ĝ1 18
ĝ2 2

Sum 78

Table 7.9: Friction and Disturbance - RANEKFs

7.9 Ill-Posed Learning and Weight Convergence

In the section about weight based pruning it was mentioned that the norm of
the weights not converged and thus the pruning did not end even if the threshold
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stopped growing. Since the norm of the weights not converge it follows that the
individual weights for the networks not converge.

For neural network training it is crucial that the weights converge to a value
for the training to be completed. Here the situation however is found to be an
ill-posed learning problem. For a brief explanation of what an ill-posed problem
is see chapter 2.

The learning here is ill-posed due to the training data set contains to little in-
formation for the networks to be able to experience enough varied training. Since
increasing the simulation length only repeated the same training data the infor-
mation was not sufficient to complete the training for the networks. Hence the
weights did not converge properly. Increasing the simulation length gave however
that the networks approximation errors decreased and thus the learning is not very
ill-posed.

There was however one exception and that was the network m̂33. This network
has the input 1 since the element m33 only is a constant. The training for this
network do not need much information since it is simple and the weights here
converge extremely fast as can be seen in figure 7.10a. In this figure it can be
seen that there is a small change in the norm after some time. This is when the
network was pruned with 30% node output pruning and the remaining weights
were changed. Even if the network was reduced from 9 hidden units to only
2 hidden nodes the norm stayed approximately constant due to the remaining
weights having their magnitude increased. For this figure the simulation time was
6π.

Along the x-axis is the iteration number shown for all the plots in this section
while the value of the norm at the different iterations is shown along the y-axis.

In figure 7.10b the norm for the network m̂13 when the network is pruned with
weight based pruning is also shown. Simulation time was 6π. As visible from the
figure the norm oscillates very much. The amplitude of the oscillations were how-
ever not the same for the weight magnitude pruned and the node output pruned
networks.

A figure of the norms for the two Ĝ networks when the networks are pruned
with 30% neuron output based pruning and the simulation had the length 20π is
also included. These are shown in figure 7.11 below. The norm of the weights oscil-
lates in different ways for these two networks. For network ĝ2 the amplitude is very
large for some of the waves while for the network ĝ3 the amplitude is much smaller.

For the Ĉ networks it is found that the norms not oscillates as nicely like for M̂

100



(a) m̂33 Node Output Pruned (b) m̂13 Weight Based Pruned

Figure 7.10: Norm of Weights some M̂ Networks

(a) ĝ2 Node Output Pruned (b) ĝ3 Node Output Pruned

Figure 7.11: Norm of Weights Ĝ Networks

and Ĝ. This can be seen from the plots in figure 7.12. Here the norm of network
ĉ21 pruned with either node output pruning 7.12a or weight magnitude pruning
7.12b are shown. Both norms for the pruned and the not pruned Ĉ networks do
not start to oscillate before the simulation has done more than 20π simulation
second. The oscillations are not even and not smooth.
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(a) ĉ21 Node Output Pruned (b) ĉ21 Weight Based Pruned 20π

Figure 7.12: Norm of Weights Different ĉ23 Networks

In figure 7.12a the network ĉ21 is pruned with 30% node output pruning in a
simulation that lasted 6π simulation seconds. Here it can be seen that the norm
grows up to almost 5 before it starts to decrease again. In the figure 7.12b the
network is pruned with weight based pruning with 20π simulation time. This plot
shows that the norm behaves very differently from when the network was pruned
with node output pruning. The norm do not start to decrease as fast after being
pruned with weight pruning and it actually grows until it almost reaches 25.

The Ĉ networks have more inputs and some of the variables, q and q̇, are added
together into one input to the network in order to reduce the number of dimen-
sions. Thus it could be that the learning for these networks are more ill-posed than
for the M̂ and Ĝ networks depending on fewer variables. Adding of the inputs
is not found to create any larger ill-posing than having them separately and the
network ĉ21 in the figure 7.12 has 3 different inputs that not are added together. In
the beginning of the simulation it looks like if the norm starts to converge before
it grows a lot instead.

From the above mentioned facts it is obvious that having a pruning threshold
depending on this norm would give uncertainties regarding how many times the
networks are pruned and how many neurons that will be removed in total. Since
the norm always starts to decrease again at some point the pruning will also stop
by itself when the threshold in percent stops growing. This may however take
many simulation seconds as it would in the case with weight pruning for the net-
work ĉ21. Hence it is very likely that some networks will be pruned to much. In the
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previous section it was specified a stopping time in the simulation for the pruning
to avoid removing too many units.

In chapter 3 it was briefly described regularization in the literature review since
it often is mentioned together with pruning. However originally it was developed
for ill-posed problems. In regularization a regularizing term to the cost function
that is minimized during training of a network is included. The cost function then
becomes Ẽ = E + λΩ, where E is the standard error term and λΩ is the regular-
izing term. The regularization factor, λ, is an indicator of the sufficiency of the
information in the training data set. A problem that is highly ill-posed will have a
large regularization factor while if the problem is completely well-posed this term
goes to zero and the training is as normal. How the term Omega is defined is
varied and one example can be seen in the literature review.

7.10 Discussion

7.10.1 Results

In table 7.10 it is summarized the results from using the different methods to im-
plement the system dynamics in the controller when the simulation time was 6π.
For each of the method the final number of hidden units for all the networks can
be seen together with the tracking sum squared error for the whole simulation, the
approximation error for the last 400 iterations of the simulation and also the time
it actually took to complete the 18.85 simulation seconds.

From this table it can be seen that all the methods gave almost the same track-
ing error and that using the correct model for the manipulator obtained the best
tracking. The unpruned networks gave better tracking and smaller approxima-
tion error than using pruned networks. It took however more time to finish the
simulation with unpruned networks.

The smallest networks were obtained when using weight magnitude pruning for
the RBFNNs while the node output pruning gave several more hidden neurons.
Weight magnitude pruning resulted however in larger tracking error and larger
approximation error than the node output pruned networks did. Mixing the two
methods and using weight pruning for M̂ and Ĝ while using node output for Ĉ
gave a few more hidden neurons than node output pruning and smaller tracking
and approximation errors. The quickest method when using RBF networks was
the weight based pruning, then the mixed method and neuron output used the
same amount of time and using the networks without pruning took most time.
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In this chapter the growing RBF networks RANEKFs has also been imple-
mented. As can be seen from table 7.10 gave RANEKFs a much smaller approx-
imation error for the last part of the simulation. The estimations were probably
not so accurate in the beginning while the RANEKFs had few neurons and the
largest tracking error for the whole simulation came from these networks. Growing
the networks must also be a time consuming process as is visible when looking at
the long time this method used.

Trajectory Tracking and Network Approximation Errors
6π Simulation Time

Method Sum of Tracking Error Sum Approx. Time
Hidden Whole Sim. Errors [min]
Units [SSE] [RMSE]

Correct Model - 0.031897 - 0.25
Unpruned Networks 3672 0.032 0.26303 4.49

Weight Based Pruning 74 0.03201 0.29037 4.10
Neuron Output Pruning 126 0.032002 0.28021 4.20
Mixed Methods Pruning 129 0.032001 0.26314 4.20

RANEKF 96 0.032094 0.024542 7.20

Table 7.10: Trajectory Tracking and Approximation Errors 6π Simulation Time

Table 7.11 shows the same as the previous table except that the simulation
time here was 20π and thus much longer than the last. The pruned networks
all had the same amount of hidden nodes at the end of simulation and a smaller
approximation error. Also the unpruned networks had a better approximation
error that still was smaller than the one from any of the pruned networks. This
shows that the networks give better estimations when they have experienced some
more training.

The RANEKFs however do not have the same number of hidden neurons as
after the shorter simulation. Here the networks have grown a lot more and also the
approximation error at the end of this simulation is worse than after the shorter
simulation. Still this approximation error is far better than for any of the other
RBF networks. RANEKFs however are developing in the wrong direction and the
networks start to overfit the training data. Again RANEKF is the method with
the longest time to finish the simulation. It seems however that the most time
consuming part for the RANEKFs is the beginning of the simulation since the gap
between the pruning methods and the RANEKFs not is much bigger after 20π
simulation time than after 6π simulation time.
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Trajectory Tracking and Network Approximation Errors
20π Simulation Time

Method Sum of Tracking Error Sum Approx. Errors time
Hidden Units Whole Sim.[SSE] [RMSE] [min]

Correct Model - 0.031897 - 1.44
Unpruned Networks 3672 0.032015 0.24867 25.30

Weight Based Pruning 74 0.032053 0.28429 23.30
Neuron Output Pruning 126 0.0320025 0.2657 23.25
Mixed Methods Pruning 129 0.032018 0.25074 23.40

RANEKF 147 0.032095 0.058592 27.05

Table 7.11: Trajectory Tracking and Approximation Errors 20π Simulation Time

All of the methods of implementing the learning inverse kinematic controller
were also used when there was added some friction and constant disturbance to
the manipulator. The obtained results from this can be seen in table 7.12. In this
table the total number of hidden nodes for all the networks, the tracking error for
the whole period and also the tracking error for only the last 2π simulation time
are shown.

Here it can be seen that the tracking errors all are worse than for the case
without friction and disturbance. This is due to the model of the manipulator
that is used in the controller and also in the training of the networks now contains
modelling errors.

The sizes for the networks are the same after weight magnitude pruning as
they were when the manipulator was without friction and disturbance while the
node output pruning and mixed methods both have two hidden units less. For
the mixed methods these two units come from the networks that are pruned with
node output pruning. This is due to the inputs no longer being the same and thus
the node output ratio sums are not the same. RANEKFs do also have less hidden
neurons and for these networks the differences in hidden layers are larger.

For the whole simulation the best tracking is obtained with the RBF networks
that are pruned with the mixed method. This method gives better tracking than
using the know incorrect model directly in the controller. When looking at the
tracking error for the last sinus wave of the manipulator trajectory it can be seen
that it again is the mixed method that has the smallest error. Since the networks
have been trained a bit for this last part of the simulation they all give better
tracking than using the incorrect model. It can also be seen that the pruned
networks now gives better tracking than the RBF networks not pruned. This is
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probably due to the pruned networks having a better generalization ability than
the larger networks.

Weight based pruning gave here a better result than node output pruning for
both the whole period and the last 2π simulation seconds only. Neuron output
pruning do as known from previous chapters not remove neurons that are close to
the inputs. This gives that node output pruned networks are better in approxi-
mation when the training data are correct as was shown in the last table. Weight
magnitude pruning can also remove units that are close to the inputs due to there
being more neurons than necessary in an area. Thus the weight magnitude pruned
networks were smaller in size and from the simulations with friction and distur-
bance they were also found to be better in generalization.

The worst tracking error out of the different RBF networks came again from
the RANEKFs. When looking at the whole simulation these networks did worse
than all the other methods. At the end of the simulation when the networks had
grown they did however give better tracking than the model with modelling errors.
This may suggest that the generalization ability of the RANEKFs is less than for
pruned networks.

Disturbance and Friction
Trajectory Tracking and Network Approximation Errors

Method Sum of Tracking Error Tracking Error Last
Hidden Units Whole Sim. [SSE] 2π Time[SSE]

Incorrect Model - 0.052887 0.0072445
Unpruned Networks 3672 0.052977 0.0072385

Weight Based Pruning 74 0.052898 0.0072129
Neuron Output Pruning 124 0.052975 0.0072379
Mixed Methods Pruning 127 0.052563 0.0071018

RANEKF 78 0.053116 0.007243

Table 7.12: Disturbance and Friction - Trajectory Tracking and Approximation
Errors

From this it is clear that using RBF networks make the controller more robust
towards modelling errors. Pruning the networks enhanced their generalization
ability and made the inverse kinematic controller better for dealing with uncer-
tainties.

The growing networks are much better in giving accurate approximations when
the model used to train them is correct. When the simulation time is increased
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they do however keep on growing and increases their estimation errors. A problem
with their accuracy is also that they seem to be poorer when it comes to general-
ization. This suggest that RANEKFs very quickly overfit the training data. These
growing networks are also a lot more time consuming.

7.10.2 Simulation Time

In the results the time the simulation actually take to complete is given. This is
however not measured very accurately and there are probably some minor errors.
It has however been used the same computer for all simulations and the amount
of other programs running on the computer at the same time have been approx-
imately equal. Thus he time measurement is possible to use for comparing the
different methods. The dimension would give a hint of what method that uses
most computational time.

Radial basis function neural networks with their structure are very well suited
for use in parallel processing. All of the hidden units can be processed simulta-
neously which would give much faster computations. Here many small networks
is used which also would make it more possible to utilize parallel processing for
making it more usable to real-time control.

In a master’s thesis [5] to use a Graphic Processing Unit (GPU) for calculations
with neural networks is proposed. Here it is found that a GPU may be better suited
for the small parallel tasks of a neural network than the normal Central Processing
Unit, CPU.

7.10.3 Ill-Posed Problem

In this chapter the learning problem is found to be an ill-posed one. The training
data do not contain sufficiently information on the desired solution for the training
to be complete and weights to converge to an optimal value. Even if the weights
do not converge they do not grow for ever. All the norms of the weights oscillated
in some way.

Implementing the weight magnitude pruning that removes units based on the
norm of the weights may give some problems when this norm varies a lot. Stop-
ping the pruning threshold in percent from growing is not necessarily the same as
stopping the actual threshold from growing when the norm increases. Thus when
the pruning should end can be specified as was done in this chapter to prevent the
networks from being pruned too much.
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It is also found that networks dependent on many variables are more ill-posed
than the networks with fewer variables as inputs. For the situation in this chapter
the networks Ĉ became more ill-posed due to the many joint positions and joint
velocities the elements in the centrifugal matrix were depending on. Pruning of
these networks with neuron output pruning gave thus the best result.

For the other networks, M̂ and Ĝ, that estimated the inertia matrix and the
gravitational matrix the weight based pruning did however give a good result.

When the number of joints increases the elements in the dynamic model matri-
ces become dependent on more variables. If it should be included the last 3 joints
of the ABB IRB140 in the controller this would give networks with very many
dependencies, especially for the centrifugal matrix C. This again would make the
learning even more ill-posed. Thus it should be tried with regularization before
including more of the joints in the controller.
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Chapter 8

Concluding Remarks and Future
Work

8.1 Conclusion

In this report two different pruning methods for radial basis function neural net-
works, Weight Magnitude Pruning and Neuron Output Pruning, suited for use in
an online learning controller for robot manipulators have been proposed. Imple-
mentation of pruning in the learning controller made it easier to create suitable
RBF networks. The model-based learning controller is also more robust towards
system uncertainties than the pure model-based controller. By pruning the RBF
networks the generalization abilities were increased and the obtained networks
performed better in the case of modelling errors. Pruning also reduced the com-
putational cost for the networks.

Some essential background information on radial basis function neural networks
and an overview of some of the different pruning schemes existing today have in
this report been given. Theory on the proposed pruning methods and a general
algorithm are also presented. Simulations with the two pruning methods for first
learning of a cross function and then for learning the dynamics of a 2 dof manip-
ulator have been conducted. Finally the pruning methods were implemented in a
learning controller for the first 3 joints of the ABB IRB140 manipulator.

For both pruning methods a threshold specified as a percent and thus less
problem dependent to find was developed. This made it possible to only give one
threshold for pruning off all the different networks.

From the simulations the weight based pruning and the node output pruning
was found to not always remove the same nodes. Neuron output pruning often
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gave networks with a good approximation ability since all the neurons close to the
inputs were kept. Weight based pruning had the ability to remove neurons if there
were too many units in an area even if this area was close to the inputs. This
resulted in smaller networks better to generalize.

Which method that was best suited depended on the situation. Thus a better
result in total by looking at the different networks separately could be obtained.

Networks with more hidden units often had more accurate estimations. The
question then is how important to reduce the network sizes as much as possible
is or if larger networks can be accepted. This again would be dependent on the
situation and what the networks are implemented on.

8.2 Further Work

NTNU has a manipulator of the type ABB IRB140 and the next step would be to
implement the learning inverse kinematic controller on this robot.

When discussing the ill-posed learning situation for the ABB IRB140 a known
solution to ill-posed problems was mentioned to be regularization. Thus including
regularization in the training to see if the learning then becomes well-posed should
be done.
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Appendix A

Stability Proves

A.1 Stability of Inverse Kinematic Controller

Here it is proven that the inverse kinematic controller used in the simulation is
Globally Asymptotically Stable (GAS) when the matrices in the dynamics equa-
tions of the manipulator are used. The equilibrium points considered are

The controller is given as in equation (6.3.1) and restated here

τ = M(q)(q̈d +Kd(q̇d − q̇) +Kp(qd − q)) + C(q, q̇)q̇d +G(q) (A.1.1)

Defining the error variable
e , qd − q (A.1.2)

where qd is the desired trajectory and q is the actual joint position.

It is started with the following Lyapunov Function Candidate

V (e, ė) =
1

2
ėTM(q)ė+

1

2
eTKe (A.1.3)

which has V (0, 0) = 0, is positive definite and radially unbounded when it is as-
sumed that M(q) = M(q)T and K both are positive definite.

The derivative of V (e, ė) is given as

V̇ = ėTMë+
1

2
ėTṀė+ eTKė (A.1.4)

Using that ë = q̈d − q̈ and inserting this gives

V̇ = ėTMq̈d − ėTMq̈ +
1

2
ėTṀė+ eTKė (A.1.5)

= ėTMq̈d − ėT (τ − Cq̇ −G) +
1

2
ėTṀė+ eTKė (A.1.6)
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where it in the last equation has been used equation (2.6.1). Then inserting that
q̇ = q̇d − ė gives

V̇ = ėTMq̈d − ėT (τ − Cq̇d + Cė−G) +
1

2
ėTṀė+ eTKė (A.1.7)

= ėT (Mq̈d − τ + Cq̇d +G+Ke) +
1

2
ėT (Ṁ − 2C)ė (A.1.8)

(A.1.9)

Using the skew symmetric property of Ṁ − 2C and inserting for τ with equation
(A.2.1) it is obtained

V̇ = ėT (Mq̈d − (M(q̈d +Kd(q̇d − q̇) +Kp(qd − q)) + Cq̇d +G) + Cq̇d +G+Ke)
(A.1.10)

= ėT (−(M(Kdė+Kpe) +Ke) (A.1.11)

= −ėTMKdė− ėT (MKp −K)e (A.1.12)

(A.1.13)

If Kd is chosen to be positive definite and Kp is chosen such that MKp −K = 0
then

V̇ = −ėTMKdė ≤ 0 (A.1.14)

is negative semi-definite and it can be concluded that the controller in equation
(6.3.1) will make the equilibrium point (e, ė) = 0 stable according to Theorem 4.1
in [17].

In order to show asymptotic stability LaSalle’s theorem is applied. It is then
started by defining the set

E = {(e, ė)|V̇ = 0} = {(e, ė)|ė = 0} (A.1.15)

An error equation for the system can be found by starting with the dynamic
equation from (2.6.1) and then inserting with the controller from (A.2.1)

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (A.1.16)

Mq̈ + Cq̇ +G = M(q̈d +Kd(ė) +Kpe) + Cq̇d +G (A.1.17)

From (A.1.2) it is now used q = qd − e and the following is obtained

−Më+Mq̈d − Cė+ Cq̇d +G = M(q̈d +Kd(ė) +Kpe) + Cq̇d +G (A.1.18)

−Më− Cė = M(Kd(ė) +Kpe) (A.1.19)

where the last step is from cancelling terms.
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When (e, ė) is within the set E it follows from (A.1.19) that the solution will
converge to the invariant set M = (0, 0). Thus it can be concluded by LaSalle’s
theorem that the inverse kinematic controller will make the equilibrium point
(e, ė) = (0, 0) globally asymptotically stable (GAS). For a trajectory that starts
close to the desired trajectory it then follows that the actual trajectory will con-
verge to the desired one and stay there.

A.2 Stability of Learning Inverse Kinematic Con-

troller

The stability proof here is somewhat similar to the ones in to the book by Ge, Lee
and Harris [7].

A.2.1 RBF Networks for Learning System Dynamics

Now the system dynamics matrices are approximated by Radial Basis Function
Neural Networks.

The controller is then given as

τ = M̂(q)(q̈d +Kd(q̇d − q̇) +Kp(qd − q)) + Ĉ(q, q̇)q̇d + Ĝ(q) (A.2.1)

where M̂ , Ĉ and Ĝ are estimations of M , C and G respectively. They are given
as in chapter 2.5,

M̂ = W T
M • AM(x) (A.2.2)

Ĉ = W T
C • AC(x) (A.2.3)

Ĝ = W T
G • AG(x) (A.2.4)

where WM is the weight matrix and AM(x) is the activation function matrix to
input x, both for the RBF networks belonging to M̂ . Ĉ has the weight matrix
WC and the activation function matrix AC(x) for input x while Ĝ has the weight
matrix WG and the activation function matrix AG(x) to the same input.

The matrices can be described with an optimal estimation and an estimation
error as

M = M∗ + EM = W ∗
M
T • AM(x) + EM (A.2.5)

C = C∗ + EC = W ∗
C
T • AC(x) + EC (A.2.6)

G = G∗ + EG = W ∗
G
T • AG(x) + EG (A.2.7)
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where M∗, C∗ and G∗ are the optimal estimations and W ∗
M , W ∗

C and W ∗
G are the

optimal weights and EM , EC and EG are the estimation errors. From the theory
on RBF networks these estimation errors can be made arbitrary small and thus
they can be bounded as

EM ≤ E∗M (A.2.8)

EC ≤ E∗C (A.2.9)

EG ≤ E∗G (A.2.10)

where E∗M > 0 is the optimal approximation error for M̂∗, E∗C > 0 is the optimal
approximation error for Ĉ∗ and E∗G > 0 is the optimal approximation error for Ĝ∗.
All the optimal approximation errors are very small in size.

Since the learning rule used is the gradient descent the weights will converged
to a minima. [10]. Thus the weights will always be bounded since they start at
zero and do never grow to infinity due to convergence guarantee.

The differences from the optimal estimation and the estimation given from the
networks are defined as

M̃ ,M∗ − M̂ (A.2.11)

C̃ , C∗ − Ĉ (A.2.12)

G̃ , G∗ − Ĝ (A.2.13)

which are bounded due to the fact that both the optimal estimation and the ac-
tual estimation will be bounded from the weights and activation functions being
bounded. As the networks are trained this difference will become very small.

As mentioned the update law for the weights is the gradient descent rule which
also is given in (2.3.3). It is restated here with the approximation error for the
network to the given input renamed to eA

∆w = −eAa(x) (A.2.14)

where a(x) is the activation function output for the input x.
Writing the approximation error in matrix form gives

EA =



eA11 · · · eA1n

...
. . .

...
eAn1 · · · eAnn


 (A.2.15)

where n is the number of joints in the manipulator. Now the the update law from
(A.2.14) may be written in matrix form as
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∆W =



−eA11a11(x) · · · −eA1na1n(x)

...
. . .

...
−eAn1an1(x) · · · −eAnnann(x)


 = −EA • A(x) (A.2.16)

This can be done for all the estimated dynamic matrices as

∆WM = −EAM • AM(x) (A.2.17)

∆WC = −EAC • AC(x) (A.2.18)

∆WG = −EAG • AG(x) (A.2.19)

A.2.2 Error Equation

Now the tracking error variable is defined in the same way as for the case without
neural networks, that is

e , qd − q (A.2.20)

where qd is the desired trajectory and q is the actual joint position.

An error equation can then be found starting with the dynamic equation (2.6.1)

Mq̈ + Cq̇ +G = τ (A.2.21)

⇒−Më+Mq̈d − Cė+ Cq̇d +G = τ (A.2.22)

where the tracking error from (A.2.20) has been used. By inserting with the
optimal estimations from RBF networks it is obtained

−Më+M∗q̈d + EM q̈d − Cė+ C∗q̇d + EC q̇d +G∗ + EG = τ (A.2.23)

Now is a new approximation error defined as

E , EM q̈d + EC q̇d + EG (A.2.24)

Using this approximation error and inserting with the controller from equation
(A.2.1) it is obtained

−Më+M∗q̈d − Cė+ C∗q̇d +G∗ + E = M̂((q̈d +Kdė+Kpe) + Ĉq̇d + Ĝ
(A.2.25)

⇒(M∗ − M̂)q̈d + (C∗ − Ĉ)q̇d + (G∗ − Ĝ) + E = Më+ Cė+ M̂Kdė+ M̂Kpe
(A.2.26)

⇒M̃ q̈d + C̃q̇d + G̃+ E = Më+ Cė+ M̂Kdė+ M̂Kpe (A.2.27)
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A.2.3 Lyapunov Function Candidate

It is started with the following Lyapunov Function Candidate

V (e, ė) =
1

2
ėTM(q)ė+

1

2
eT W̃ T

MW̃Me (A.2.28)

which has V (0, 0) = 0, is positive definite and radially unbounded when it is as-
sumed that M(q) = M(q)T is positive definite.

The derivative V is

V̇ = ėTMë+
1

2
ėTṀė+ eT W̃ T

MW̃M ė+ eT W̃ T
M

˙̃WMe (A.2.29)

Inserting for Më with (A.2.27) gives

V̇ = ėT (−Cė− M̂Kdė− M̂Kpe+ M̃ q̈d + C̃q̇d + G̃+ E) +
1

2
ėTṀė+ eT W̃ T

MW̃M ė+ eT W̃ T
M

˙̃WMe

(A.2.30)

=
1

2
ėT (Ṁ − 2C)ė− ėTM̂Kdė− ėTM̂Kpe+ ėT (M̃ q̈d + C̃q̇d + G̃+ E)

+ eT W̃ T
MW̃M ė+ eT W̃ T

M
˙̃WMe (A.2.31)

= −ėTM̂Kdė− ėTM̂Kpe+ ėT (M̃ q̈d + C̃q̇d + G̃+ E) + eT W̃ T
MW̃M ė+ eT W̃ T

M
˙̃WMe

(A.2.32)

where in the last step the skew symmetric property of Ṁ − 2C has been used.

Since the terms q̈d and q̇d are bounded by choice all the terms in the expression

M̃ q̈d + C̃q̇d + G̃+ E (A.2.33)

are bounded and it may be taken a maximum constant value of them as

M̃ q̈d + C̃q̇d + G̃+ E ≤ θ (A.2.34)

Inserting this into (A.2.32) gives

V̇ ≤ −ėTM̂Kdė− ėTM̂Kpe+ ėT θ + eT W̃ T
MW̃M ė+ eT W̃ T

M
˙̃WMe (A.2.35)

= −ėTM̂Kdė− ėT
(
M̂Kp − W̃ T

MW̃M

)
e+ ėT θ + eT W̃ T

M
˙̃WMe (A.2.36)

It is now looked at the last term. Here

˙̃WM =
˙̂
W = ∆WM = −EAM • AM (A.2.37)
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from equation (A.2.18). The approximation error for the inertia matrix may be
written as

EAM = M − M̂ = M∗ + EM − M̂ = M̃ + EM (A.2.38)

This gives that the last term in equation (A.2.36) can be written as

eT W̃ T
M

˙̃WMe = eT W̃ T
M

˙̂
WMe (A.2.39)

= eT W̃ T
M(−EAM • AM)e (A.2.40)

= −eT W̃ T
M(M̃ + EM) • AMe (A.2.41)

= −eT (M̃ + EM)W̃ T
M • AMe (A.2.42)

= −eT (M̃ + EM)M̃e (A.2.43)

(A.2.44)

Equation (A.2.36) then becomes

V̇ ≤ −ėTM̂Kdė− eT (M̃ + EM)M̃e− ėT
(
M̂Kp − W̃ T

MW̃M

)
e+ ėT θ (A.2.45)

≤ −ėTM̂Kdė− eT (M̃ + EM)M̃e+ ėT
(
M̂Kp − W̃ T

MW̃M

)
e+ ėT θ (A.2.46)

Now young’s inequality may be used

ėT
(
M̂Kp − W̃ T

MW̃M

)
e =

(
M̂Kp − W̃ T

MW̃M

)
ėT Ie (A.2.47)

≤ 1

2

(
M̂Kp − W̃ T

MW̃M

)
(ėT Iė+ eT Ie) (A.2.48)

=
1

2
ėT
(
M̂Kp − W̃ T

MW̃M

)
ė+

1

2
eT
(
M̂Kp − W̃ T

MW̃M

)
e (A.2.49)

Inserting this into (A.2.46) gives

V̇ ≤ −ėTM̂Kdė− eT (M̃ + EM)M̃e+
1

2
ėT
(
M̂Kp − W̃ T

MW̃M

)
ė+

1

2
eT
(
M̂Kp − W̃ T

MW̃M

)
e+ ėT θ

(A.2.50)

= −ėT
(
M̂(Kd −

1

2
Kp) +

1

2
W̃ T
MW̃M

)
ė− eT

(
(M̃ + EM)M̃ − 1

2
M̂Kp +

1

2
W̃ T
MW̃M

)
e+ ėT θ

(A.2.51)

≤ −ėT
(
M̂(Kd −

1

2
Kp) +

1

2
W̃ T
MW̃M

)
ė− eT

(
(M̃ + E∗M)M̃ − 1

2
M̂Kp +

1

2
W̃ T
MW̃M

)
e+ ėT θ

(A.2.52)

where the last line comes from (A.2.11).
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For the second term actually to be negative then

(M̃ + E∗M)M̃ − 1

2
M̂Kp +

1

2
W̃ T
MW̃M > 0 (A.2.53)

⇒ −1

2
M̂Kp > −(M̃ + E∗M)M̃ − 1

2
W̃ T
MW̃M (A.2.54)

⇒ −Kp > 2M̂−1
(
− (M̃ + E∗M)M̃ − 1

2
W̃ T
MW̃M

)
(A.2.55)

⇒ Kp < 2M̂−1
(

(M̃ + E∗M)M̃ +
1

2
W̃ T
MW̃M

)
(A.2.56)

For the first term actually to be negative then

M̂(Kd −
1

2
Kp) +

1

2
W̃ T
MW̃M > 0 (A.2.57)

⇒ M̂Kd −
1

2
M̂Kp > −

1

2
W̃ T
MW̃M (A.2.58)

By inserting from (A.2.56) it is found

M̂Kd −
(

(M̃ + E∗M)M̃ +
1

2
W̃ T
MW̃M

)
> −1

2
W̃ T
MW̃M (A.2.59)

⇒ M̂Kd > (M̃ + E∗M)M̃ (A.2.60)

⇒ Kd > M̂−1
(

(M̃ + E∗M)M̃
)

(A.2.61)

Assuming that (A.2.56) and (A.2.61) are true equation (A.2.52) may be written
as

V̇ ≤ −ėTαė− eTβe+ ėT θ (A.2.62)

where the the variables α and β are defined as

α , M̂(Kd −
1

2
Kp) +

1

2
W̃ T
MW̃M

β , (M̃ + E∗M)M̃ − 1

2
M̂Kp +

1

2
W̃ T
MW̃M

By looking at V̇ as a storage function and the system (e, ė) with θ as input
and ė as output it follows that this system will be state strictly passive according
to definition 6.3 in [17]. By lemma 6.7 also in [17] the origin of the system will be
0-GAS.
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IRB 140
Industrial Robot

Robotics

Main Applications
Arc welding
Assembly
Cleaning/Spraying
Machine tending 
Material handling 
Packing
Deburring

Small, Powerful and Fast
Compact, powerful IRB 140 industrial robot. 
Six axis multipurpose robot that handles payload of 6 kg,  
with long reach (810 mm). The IRB 140 can be floor mounted, 
inverted or on the wall in any angle. Available as Standard, 
Foundry Plus 2, Clean Room and Wash versions, all mechani-
cal arms completely IP67 protected, making IRB 140 easy to 
integrate in and suitable for a variety of applications. Uniquely 
extended radius of working area due to bend-back mecha-
nism of upper arm, axis 1 rotation of 360 degrees even as 
wall mounted. 
The compact, robust design with integrated cabling adds to 
overall flexibility. The Collision Detection option with full path 
retraction makes robot reliable and safe. 

Using IRB 140T, cycle-times are considerably reduced where 
axis 1 and 2 predominantly are used. 
Reductions between 15-20 % are possible using pure axis 
1 and 2 movements. This faster versions is well suited for 
packing applications and guided operations together with 
PickMaster.
IRB 140 Foundry Plus 2 and Wash versions are suitable for 
operating in extreme foundry environments and other harch 
environments with high requirements on corrosion resistance 
and tightness. In addition to the IP67 protection, excellent 
surface treatment makes the robot high pressure steam wash-
able. Also available in white Clean Room ISO class 6 version, 
making it especially suited for environments with stringent 
cleanliness standards. 
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Specification

Robot versions Handling Reach of Remarks

  capacity 5th axis 

IRB 140/IRB 140T 6 kg 810 mm 

IRB 140F/IRB 140TF 6 kg 810 mm Foundry Plus 2 Protection

IRB 140CR/IRB 140TCR 6 kg 810 mm Clean Room

IRB 140W/IRB 140TW 6 kg 810 mm SteamWash Protection

Supplementary load (on upper arm alt. wrist)

 on upper arm  1 kg 

 on wrist  0.5 kg

Number of axes

 Robot manipulator   6

 External devices  6

Integrated signal supply 12 signals on upper arm

Integrated air supply Max. 8 bar on upper arm

IRC5 Controller variants: Single cabinet, Dual cabinet, Compact,  

  Panel mounted

Performance

Position repeatability 0.03 mm (average result from ISO test)

Axis movement Axis Working range

 1 360°

 2 200°

 3 280°

 4 Unlimited (400° default)

 5 240°

 6 Unlimited (800° default)

Max. TCP velocity   2.5 m/s

Max. TCP acceleration   20 m/s2

Acceleration time 0-1 m/s  0.15 sec

Velocity *)

Axis no. IRB 140 IRB 140T 

1 200°/s 250°/s

2 200°/s 250°/s

3 260°/s 260°/s

4 360°/s 360°/s

5 360°/s 360°/s

6 450°/s 450°/s

*) Max velocity is reduced at single phase power supply, e.g. Compact 

controller. Please, see the Product specification for further details.

Cycle time

5 kg Picking side  IRB 140                IRB 140T

cycle 25 x 300 x 25 mm 0.85s                    0.77s

www.abb.com/robotics 

IRB 140

Electrical Connections

Supply voltage  200–600 V, 50/60 Hz

Rated power

 Transformer rating  4.5 kVA

Power consumption typicly 0.4 kW

Physical

Robot mounting  Any angle

Dimensions

 Robot base  400 x 450 mm

 Robot controller H x W x D 950 x 800 x 620 mm

Weight

 Robot manipulator  98 kg

Environment

Ambient temperature for

 Robot manipulator  5 – 45°C 

Relative humidity  Max. 95%

Degree of protection, 

Manipulator  IP67

Options  Foundry Plus 2

   SteamWash  

   (High pressure steam washable)

   Clean Room, class 6  

   (certified by IPA) 

Noise level  Max. 70 dB (A)

Safety   Double circuits with supervision, 

   emergency stops and safety 

   functions, 

   3-position enable device

Emission  EMC/EMI-shielded

Data and dimensions may be changed without notice

Working range
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Appendix C

Contents of Zip File

PDF of the report

Neural Network Files - +MRL

• FA.m - superclass definition of abstract function approximator class. From
Sigurd Fjerdingen

• RBFNN.m - class RBFNN, inherits FA. Code originally from Sigurd Fjerdin-
gen. The function Calculation changed to include activation function ratio
calculations and pruning functions have been added.

• ARBFNN.m - class ARBFNN, inherits FA. Implement the growing net-
works RANEKFs. From Sigurd Fjerdingen.

Cross Function

• CrossFunction.m - do all the simulations concerning the cross function.
Changeable variables to obtain different networks. Framework from Sigurd
Fjerdingen.
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2 dof manipulator

• IniFile.m - initialize all the networks and parameters for the manipulator.
Gains used in the controller is also initialized here along with the pruning
thresholds. Framework from Serge Gale.

• Run.m - runs the IniFile.m, start the simulation in Simulink RBFinvKinControl.mdl
and runs Disp.m when simulation done.

• Disp.m - display sizes of RBFNNs, tracking error, approximation errors, at
what iteration the networks are pruned. Plots the desired trajectories and
the actual trajectories. Comment/Uncomment to show different things.

• Tau.m - Inverse kinematic controller. Change between using the model and
RBF networks. Framework from Serge Gale.

• M.m, C.m and G.m - Model of the 2 dof manipulator. From Stepan
Pchelkin and Serge Gale.

• M hat.m, C hat.m and G hat.m - estimate the manipulator model
by using pruned RBFNNs. Framework from Serge Gale.

• DynamicsOfTheManipulator.m - Returns q̇ and q̈ for the manipulator.
Used in Simulink block Dynamics. Framework from Stepan Pchelkin and
Serge Gale.

• ForwardKinematic.m - forwards kinematic to find end effector position.
From Stepan Pchelkin and Serge Gale.

• Rmse.m - calculates the root mean square error of a error vector.

• Simulink RBFinvKinControl.mdl - simulink diagram for the simula-
tion. From Serge Gale and Stepan Pchelkin

• DesiredTrajectory.mat - desired trajectory file. From Stepan Pchelkin
and Serge Gale.

• time.mat - the time belonging to the desired trajectory. From Stepan
Pchelkin and Serge Gale.
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ABB IRB140

• Init.m - initialize all the networks and parameters for the manipulator.
Gains used in the controller is also initialized here along with the pruning
thresholds. Displays the initial networks.

• Run.m - runs the Init.m, start the simulation in NNinvKinCntrl 3dof Sim.mdl
and runs Disp.m when simulation done.

• Disp.m - display sizes of RBFNNs, tracking error, approximation errors, at
what iteration the networks are pruned. Plots the desired trajectories and
the actual trajectories. Comment/Uncomment to show different things.

• DesiredTrajectory.m - generates the desired trajectory for each joint.

• Tau.m - Inverse kinematic controller. Change between using the model and
RBF networks.

• M.m, C.m and G.m - Model of the ABB IRB140 manipulator. From
Stepan Pchelkin.

• M hat.m, C hat.m and G hat.m - estimate the manipulator model
by using pruned RBFNNs.

• DynamicsOfTheManipulator.m - Returns q̇ and q̈ for the manipulator.
Used in Simulink block Dynamics. Framework from Stepan Pchelkin.

• Rmse.m - calculates the root mean square error of a error vector.

• NNinvKinCntrl 3dof Sim.mdl - simulink diagram for the simulation.

• K.mat - coeffisients for the parameters in the dynamic model of the manip-
ulator. From Stepan Pchelkin.
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Pruning of RBF Networks in Robot Manipulator Learning Control

Siri Vestheim∗, Serge Gale∗, Jan Tommy Gravdahl∗ and Sigurd Fjerdingen∗∗

Abstract— Two simple and efficient pruning methods of RBF
networks for use in a learning controller for robot manipula-
tors will in this paper be proposed. They are called Weight
Magnitude Pruning and Node Output Pruning.

Simulations with the two pruning methods in a learning
inverse kinematic controller where the system dynamics are
learned have been done. From the simulations it was found
that implementing RBF networks to learn the system dynamics
make the inverse kinematic controller more robust towards
uncertainties and disturbances. Pruning these RBF networks
further improved the performance in the case of modeling
errors and reduced the computational cost.

I. INTRODUCTION

Over the last years robot manipulators have become a very
important part of the industry and are used all over the world
in factories and places with high risk involved for humans.
Thus also the subject of how to control the manipulators
in a best possible way has become an active research field.
Previously model-based control for robotic manipulators has
been found to give better performance than non-model based
controllers. [1] The precision of the model-based regulators
is closely linked to the accuracy of the dynamic model and
the parameters in it. Finding a completely correct model is
however not an easy task due to the robot manipulator itself
and also the surrounding environment are containing a great
deal of uncertainties and disturbances.

Controllers utilizing learning include methods coping well
with the uncertainties and modeling errors. Out of the
different learning schemes currently existing Artificial Neural
Networks have proven to be well suited for storing the
experienced knowledge of the system. They also have the
ability to generalize from the knowledge on situations to
new and unknown tasks similar to the already experienced
ones.

Performance of a neural network is however very depen-
dent on size of the network and the main problem with
them is the Curse of Dimensionality [7]. To give an accurate
approximation the networks have to be large enough. On
the other hand if they should become too large the problem
of over-fitting is likely to occur. Over-fitting is when there
are too many hidden neurons and the network starts to
fit the errors within the training data in addition to the
underlying function. This gives poor generalization ability
for the network.

Another major problem that follows with the curse of
dimensionality is the computational cost of implementing

∗Department of Engineering Cybernetics, NTNU, NORWAY
∗Department of Engineering Cybernetics, NTNU, NORWAY
∗Department of Engineering Cybernetics, NTNU, NORWAY
∗∗SINTEF ICT Applied Cybernetics, NORWAY

neural networks. When used in robot manipulator control it
is absolutely necessary that the computations are fast enough
so the outputs can be used in a regulator.

Radial Basis Function Neural Networks (RBFNN) is a
type of artificial neural networks appropriate for use in robot
manipulator learning control due certain properties like their
known ability of universal approximation [13]. They are
also reported to be computationally more efficient compared
to multilayer perceptron networks in a number of control
applications [14].

There are in general two ways to create a network with
appropriate size, 1) growing and 2) pruning. Growing starts
with a small or empty neural network and adds neurons
until some threshold for the approximation error is met. The
second method starts with an over dimensioned network and
removes the weights and/or neurons that not are necessary
for the network in order to be able to approximate. Pruning
for artificial neural networks is based on the same concept as
what naturally happens in the human brain when connections
are pruned. For humans some synapses are cut to increase
the brains ability to generalize from situation to situation
when the humans are around the age of 20. The remaining
connections in the brain then have their strength increased.[8]

Most of the developed pruning algorithms so far have
been concerned with finding the optimal network with best
possible approximation and generalization abilities. In order
to be sure of not removing an incorrect neuron many pruning
schemes have become very time demanding. Like the prun-
ing method proposed in [16] which is based on complexity.

Some pruning schemes utilize two different networks in
a performance check called Cross Validation to make sure
that the removed unit is the correct one. [9] Both sets are
pruned and the performance is found for each set separately
before and after pruning. In [15] this performance check is
used for a pruning scheme based on local sensitivity for the
parameters in the network.

Sensitivity or saliency based pruning schemes are perhaps
the most common group of pruning schemes. In this group
the well known method Optimal Brain Surgeon (OBS)
[6] can be found. This again is based on Optimal Brain
Damage (OBD) [3] which proposed that the weight with the
smallest saliency will generate the smallest error variation
when removed. Both OBD and OBS start with a network
that already has been trained to converge to a local minima
and tries to minimize the cost function by setting one of
the weights to zero. In OBD it was made an assumption
that the hessian is diagonally dominant. However in [6] it
was found that the hessian in fact was far from diagonally



dominant and this resulted in OBD for some cases removing
the wrong weights. Hence this assumption is not made in
OBS and the saliency is found by solving the minimization
problem with a Lagrangian multiplier. The weight with the
lowest saliency then is pruned. From the same minimizing
problem the optimal weight change is also found and this is
used to update all the remaining weights. It is necessary to
calculate the inverse Hessian for each weight that is pruned.
Pruning is done until there are no more weights that can
be removed without causing a large increase in the cost
function.

All of the above mentioned pruning schemes find the
optimal network. They are however not concerned with the
computational cost the pruning algorithm needs or how com-
putational demanding the final network is. For use in real-
time control of a robot manipulator it is crucial that pruning
happens fast since this will be done online while controlling
the manipulator. In this setting it is probably better with
a small network that perhaps not gives the best possible
estimations but can give a satisfyingly approximation fast
enough to be used in the controller.

Thus two simple pruning methods that fast removes
many units and will give a network with satisfyingly
approximation and generalization results by choosing an
appropriate pruning threshold is here proposed. The first
pruning method is based on Weight Powers Method in [5]
and here enhanced into a scheme called Weight Magnitude
Pruning. In the second proposed pruning method a definition
from [2] is used. This is now put into a new setting in a
Node Output Pruning scheme.

In the next section the two proposed pruning methods,
Weight Magnitude Pruning and Node Output Pruning, are
described. Then in section 3 a learning inverse kinematic
controller with RBF networks that learns the system dy-
namics based on [4] and [12] is designed. This learning
controller with the proposed pruning methods is then used
in simulations for the first three joints of the ABB IRB140
manipulator in section 4.

Notation: RBFNN - radial basis function neural network,
one training period - pruning and retraining once each, M̂
and other variables estimated by RBFNNs are written with
a ĥat, network size is the number of hidden units.

II. PRUNING METHODS

The two pruning methods proposed in this paper are both
developed for RBF networks with unity weights connecting
the input layer and the hidden layer while the weights
between the hidden layer and output layer are changeable.
Due to the application these two pruning methods have been
developed for RBF networks with one single output neuron
is only taken into consideration. Thus removing a neuron
and a weight will be equivalent. It should however not be
any problem to extend the schemes to include networks with
several output nodes.

With only one output neuron the final output of the
network will be given as

F (x) =

N∑

i=1

wiai(||x− µi||) (1)

where there are N units in the hidden layer, wi is the weight
between the output neuron and hidden unit i and ai(||x−µi||)
is the output of the activation function in hidden unit i to
an input x. µi is the center for neuron i and || · || is the L2

norm. The activation function is the Gaussian function given
for node i as

ai(||x− µi||) = kge
||x−µi||
σ2 (2)

where kg is a positive constant, x is the input to the network
and σ is the width of the activation function. Here the width
is fixed the whole time and set to be the distance to the next
unit.

From (1) it is possible to see that the output of the neural
network is a sum of the contribution from each hidden
neuron. This contribution depends in general on two factors,
1) the magnitude of the weights, and 2) the output of the
activation functions. If one or both of them are zero or very
small for a hidden unit this neuron may be removed from the
network without affecting the output of the network much.

A. Weight Magnitude Pruning

This pruning method is based on a scheme in [5] and by
looking at the magnitude of the weights the method finds
the weights/units which are unnecessary for the network.
A neuron that has a weight with small magnitude may be
pruned. The novel idea of the weight magnitude pruning
is using a certain percent of the L2 norm of the weights
as a threshold for pruning. This norm converges when the
weights converge and also after some of the neurons in the
network are removed it stays the same. Pruning some nodes
result in the remaining ones having their weights increased
in magnitude as to match the weights that were deleted. The
pruning threshold is then found as

pWth =
‖W ‖ pW%

100
(3)

where ‖ W ‖ is the L2 norm of the weight vector and
pW% is the percent that the pruning threshold is of the
weight norm. Now the the percent, pW%, is the only value
to be chosen. Finding this should be less problem dependent
than setting the threshold, pWth, directly. Weights with a
magnitude smaller than the threshold are then removed. This
gives that there are several weights/neurons being pruned at
the same time.

Weights change most at the beginning of the training phase
and only little towards the end. The L2 norm of the weights
grows quickly to a certain value and stays approximately
constant while the weights do some final smaller changes.
Thus the weights not have to converge completely before
pruning may begin.

It is not desired to remove all the weights in one period. A
neuron which all the surrounding units have been pruned may



become much more important after the pruning then before.
After pruning the remaining weights have their magnitude
increased and thus the pruning threshold also must increase
to remove more nodes. First time the network is pruned the
specified threshold in percent, pW% is used. Next pruning
the threshold is 2∗pW%, third time 3∗pW% and so on until
the threshold for pruning time N is N ∗ pW%. The number
N is specified along with the percentage threshold.

Due to the localization principle [7] weights belonging to
neurons in areas far from the input space will have their
magnitude little increased. Hence these neurons are pruned
with the weight magnitude pruning. In addition some neurons
close to the inputs will have weights with small magnitude
due to the area being too densely populated with nodes.
These units are also pruned and the final network will obtain
better generalization ability.

B. Neuron Output Pruning

The output from the activation function in the hidden
neurons is the second factor which decides the contribution
of a node to the final network output. Since the activation
function here is the Gaussian function the size of the ac-
tivation function output will be dependent on the distance
from the inputs to the hidden neurons. Units in remote areas
compared to the input space may thus be pruned. Here it is
used an activation function output ratio which comes from
[2]. This is given as

oji =
∣∣∣ai(||j − µi||)

amax

∣∣∣ (4)

where j is the input, ai(||j − µi||) is the activation func-
tion for neuron i, µi is the center of node i and amax

is the maximum activation function output for that given
input. Activation function output ratio is here referred to as
node/neuron output to shorten the writing. New in the neuron
output pruning method is to sum up all the node output ratios
for each neuron and remove those with a small sum. To find
the nodes not close to the inputs a threshold found as a
percent of the maximum output ratio sum is here proposed.
The activation function output ratio sum is defined as

osi =
T∑

j=1

oji (5)

where T is the number of previous inputs and oji is the
activation function output ratio for neuron i to input j. By
specifying a threshold in percent the actual threshold, pOth,
will then be given as

pOth =
osmax ∗ pO%

100
(6)

where osmax is the highest output ratio sum and pO% is the
pruning threshold percent.

Units in remote areas compared to where the inputs
occur are here removed. This give a smaller network with
good approximation ability due to all the active neurons are
kept. However the generalization ability will not be much
improved.

C. Mixed Method

The learning controller implemented in this paper has one
RBF network to learn each of the elements in the dynamic
matrices as done in [4]. This result in many smaller networks
with different properties and thus would pruning them with
different threshold or method would perhaps give better
result than using the same for all of them.

III. CONTROL DESIGN

The control design is made for an ABB IRB140 manipula-
tor which later will be used in simulations. This manipulator
has 6 revolute joints where the three last are the wrist. Thus
it is possible to do trajectory tracking by only controlling the
first three joints as done in this paper.

Tracking error is found by using the sum squared error
(SSE) function for all three joints while the network approx-
imation error is found by the root mean square error (RMSE)
function.

A. Manipulator Model

With friction and constant disturbance the dynamic equa-
tion for the robot manipulator can be written as

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + d = τ (7)

where M(q) is the inertia matrix, C(q, q̇) is the centrifugal
matrix, G(q) is the gravitation matrix, F (q̇) is the friction
matrix and d is a constant disturbance. q, q̇, q̈ arejoint
position, joint velocity and joint acceleration respectively.

Friction and disturbance are implemented as F =
[1.2q̇1 1.4q̇2 0.8q̇3]

T and d = [3 5 4]T .
For the situation where there are no friction or disturbance

in the manipulator these terms are set to zero.

B. Controller and Desired Trajectory

An inverse kinematic controller from [12]:

τ =M(q)(q̈d+Kd(q̇d− q̇)+Kp(qd−q))+C(q, q̇)q̇d+G(q)
(8)

and when the manipulator dynamics are implemented by
RBF networks it can be written as

τ = M̂(q)(q̈d+Kd(q̇d− q̇)+Kp(qd−q))+Ĉ(q, q̇)q̇d+Ĝ(q)
(9)

Gain has been used: Kp = diag(350, 450, 450) and
Kd = diag(2.5, 4.0, 2.5).

The desired trajectory is specified for each joint as

q1d(t) = 0.5sin(t) (10)
q2d(t) = 0.7sin(t) (11)
q3d(t) = 0.3sint(t) (12)



C. Manipulator Model by RBF Networks

The changeable weights can be written in a vector as

w =




w1

w2

...
wN


 (13)

where w1 is the weight between hidden unit 1 and the output
unit, w2 is the weight between hidden unit 2 and the output
unit and N is the number of units in the hidden layer. In the
beginning all the weights are initialized to zero.

Writing the activation functions in a vector gives

a(||x− µ||) =




a1(||x− µ1||)
a2(||x− µ2||)

...
aN (||x− µN ||)


 (14)

To simplify the writing a(||x− µ||) will be written as a(x)
since the centres are fixed.

Now it is done as in [4] with one RBF network dedicated
to each of the elements in the dynamic matrices.

The estimated inertia matrix, M̂ , can then be written as

M̂ =WT
M •AM (x) (15)

where WM is the weight matrix defined as

WT
M ,




wT
m11 wT

m12 wT
m13

wT
m21 wT

m22 wT
m23

wT
m31 wT

m32 wT
m33


 (16)

when the elements in the matrix such as wm11 is a column
vector as defined in (13). AM (x) is the activation function
matrix for an input x, defined as

AM (x) ,




am11(x) am12(x) am13(x)
am12(x) am22(x) am23(x)
am31(x) am32(x) am33(x)


 (17)

where the elements are as in (14).
Finding the approximated C matrix follows the same

pattern

Ĉ =WT
C •AC(x) (18)

=




wT
c11ac11(x) wT

c12ac12(x) wT
c13ac13(x)

wT
c21ac21(x wT

c22ac22(x) wT
c23ac23(x

wT
c31ac31(x) wT

c32ac32(x) wT
c33ac33(x)


 (19)

and so does the estimation of G

Ĝ =WT
G •AG(x) =




wT
g1ag1(x)

wT
g2ag2(x)

wT
g3ag3(x)


 (20)

Since the inertia matrix is symmetric only 6 networks
instead of 9 are needed to learn all the elements in M(q).
The similar elements in the inertia matrix are m12 = m21,
m13 = m31 and m23 = m32. It is also known that the

elements c33 and g1 are zero and thus not needed to be
estimated by RBF networks.

All the networks are spanned in the interval [−π, π] with
a distance of 0.75 between the nodes. In table I the initial
networks and the inputs to the networks can be seen. Some
of the joint velocities are added up and fed to the network as
one input in order to reduce the number of inputs and then
reduce the size of the networks.

Initial RBF Networks
Network Network Size Inputs
m̂11 81 q2, q3
m̂12 81 q2, q3
m̂13 81 q2, q3
m̂22 9 q3
m̂23 9 q3
m̂33 9 1
ĉ11 729 q2, q3, (q̇2 + q̇3)
ĉ12 729 q2, q3, (q̇2 + q̇2 + q̇3)
ĉ13 729 q2, q3, (q̇2 + q̇2 + q̇3)
ĉ21 729 q̇1, q2, q3
ĉ22 81 q3, q̇3
ĉ23 81 q3, (q̇2 + q̇3)
ĉ31 81 (q̇1 + q2), q3
ĉ32 81 q̇2, q3
ĝ1 81 q2, q3
ĝ2 81 q2, q3

Sum 3672 -

TABLE I
INITIAL RBF NETWORKS

IV. SIMULATION

Simulations with the inverse kinematic controller for one
case where there are no friction or disturbance in the ma-
nipulator and also for a case with friction and a constant
disturbance present are done. For both cases the inverse
kinematic controller is implemented with a model of the
manipulator, the initial networks from table I without prun-
ing and also the initial networks pruned by the proposed
pruning methods. In addition to this simulations with the
growing RBF networks called Resource Allocation Networks
Extended Kalman Filter (RANEKF) [10] has been conducted
to compare the performance from these growing networks to
the performance of the pruned networks.

Simulations are done in Matlab and Simulink.

A. Pruning of Networks

Before the networks may be pruned it is crucial that they
have experienced enough training. With weight magnitude
pruning all of the weights have to be updated enough to
avoid removing some wrong ones. Here the manipulator
must have completed one half period of the first sinus
wave before the networks can be pruned. For neuron output
pruning it is necessary that the different areas of the input
space all are visited since the pruning is done based on the
distance from the units to the inputs. Thus the manipulator
now had to complete one whole sinus wave, that is 2π
simulation seconds and approximately 4400 iterations in



simulink. In addition to the simulation time criteria it is
used that the rms estimation error over a moving window of
400 simulink iterations has to be smaller than 0.01 before
a network may be pruned. The exception to this is the
network ĝ2 which can be pruned when the approximation
error is less than 0.05 over the last 400 iterations.

All the networks are initially created as in table I and
then pruned with the different methods. For the weight
magnitude pruned networks it has been used a starting
threshold as 5% which can grow 5 times. Threshold for the
node output pruning has been taken as 30%. Due to the
threshold being specified as a percent the same threshold
for all the networks is possible to use even if they are quite
different. Looking at the networks more separately however
will make it possible to obtain better result. Thus a mixed
method where it has been used different pruning for the
estimated dynamic matrices was implemented. Networks
belonging to M̂ was pruned with 7% weight based pruning
while it was used 30% node output pruning for the Ĉ
networks and 5% weight magnitude pruning for the two
networks belonging to Ĝ.

B. Obtained Networks After Pruning

In table II the final networks after pruning as described in
the last section can be seen. Here the final number of hidden
units in the different networks and the approximation error
for the last 300 iterations of the simulation for each network
are shown. The approximation error is only shown for the
last part of the simulation in order to show the performance
of the networks after they are pruned and retrained. From
this table it is visible that pruning the networks with the
proposed method either separately or mixed for the different
dynamic matrices reduce the number of hidden units a lot.
Weight magnitude pruning obtained the networks with fewest
hidden units in total while the mixed methods and the node
output pruning almost had the same number.

C. Results for the Case Without Friction and Disturbance

In table III the simulation results from implementing
the system dynamics in the inverse kinematic controller
in different ways are visible. Here the method, the total
number of hidden units for all the networks, the tracking
error for the whole simulation and the approximation error
for all the networks over last 300 iterations of the simulation
are visible. The latter is shown for both a simulation with
time 6π seconds and a simulation of 20π seconds.

As can be seen from this table implementing the correct
model of the manipulator in the inverse kinematic controller
gives the best tracking result. This would be as expected. It
can also be seen that not pruning the networks give better
tracking result than pruning them. Out of the pruned network
the mixed pruning method gives the smallest tracking error.
RANEKFs have the largest tracking error which probably is

Resulting Networks After Pruning
Weight Magn. Node Output Mixed Method

NN NN Approx. NN Approx. NN Approx.
Size Error Size Error Size Error

[RMSE] [RMSE] [RMSE]
m̂11 6 0.0067127 5 0.0061364 4 0.0054748
m̂12 6 0.0005721 5 0.00050466 4 0.00034923
m̂13 2 0.001048 5 0.00075247 2 0.0010479
m̂22 3 0.004117 2 0.0065574 3 0.0041168
m̂23 3 0.001939 2 0.0028382 3 0.0019389
m̂33 2 ≈ 0 2 0 2 0
ĉ11 3 0.0083142 17 0.0016613 17 0.0016601
ĉ12 13 0.0023642 22 0.0037684 22 0.0037649
ĉ13 8 0.0072465 22 0.00073191 22 0.00073047
ĉ21 3 0.0072956 11 0.00084954 11 0.00084958
ĉ22 2 0.0061949 4 0.0012086 4 0.0012063
ĉ23 3 0.0006785 7 0.0010091 7 0.0010054
ĉ31 2 0.0069534 6 0.0043594 6 0.0043596
ĉ32 2 0.0014019 6 0.0011061 6 0.0011059
ĝ1 10 0.23334 5 0.23923 10 0.23334
ĝ2 6 0.0021934 5 0.0095059 6 0.002195

Sum 74 0.29037 126 0.28021 129 0.26314

TABLE II
RESULTING NETWORKS AFTER PRUNING

due to the poorer approximation ability at the beginning of
the simulation when enough neurons has not been added.

Not pruning the networks also gave smaller approximation
error in total for all the networks than the pruned ones did.
Again the mixed method gives the best result from the pruned
networks. Here RANEKFs are far superior compared to the
other RBF networks with a much smaller estimation error.
However the approximation error increases when the simula-
tion length is increased for the RANEKFs. Also the networks
did not stop to add neurons and after 20π simulation time the
total number of hidden neurons in the RANEKFs was 147.
Thus it seems like the RANEKFs keep growing and start to
overfit the simulation data as the time goes. All of the other
networks had the same sizes after the longer simulation and
their estimations all improved.

It can also be mentioned that the actual time it took to
complete the simulation was much longer when RANEKFs
were implemented. It then took 7.20 minutes while the
simulation with weight based pruning took 4.10 minutes to
complete. Both node output and mixed methods pruning
used 4.20 minutes for the whole simulation. Not pruning
the networks gave an actual time of 4.50 minutes.

In figure 1 a plot of the desired trajectories and actual
trajectories for each joint when it is used a learning inverse
kinematic controller with 5% weight magnitude pruning can
be seen. Here it is visible that the obtained tracking is very
accurate.

D. Results for the Case With Friction and Disturbance

Now a simple model of friction and a constant disturbance
are included in the manipulator. These dynamics are not
added to the model of the manipulator which is used to train
the networks and also implemented in the inverse kinematic
controller. The networks ability to generalize will thus be



Trajectory Tracking and Network Approximation Errors

Method Sum of Tracking Approx. Err Approx. Err
Hidden Error [RMSE] [RMSE]
Units [SSE] 6π 20π

Correct Model - 0.031897 - -
Unpruned 3672 0.032 0.26303 0.24867

Weight Magnitude 74 0.03201 0.29037 0.28429
Neuron Output 126 0.032002 0.28021 0.2657
Mixed Methods 129 0.032001 0.26314 0.25074

RANEKF 96 0.032094 0.024542 0.058592

TABLE III
TRAJECTORY TRACKING AND APPROXIMATION ERRORS

Fig. 1. Trajectory all 3 Joints Using Weight Pruned RBFNN

tested.
Results from simulations that lasted 6π seconds and in-

cluded friction and disturbance are shown in table IV. This
table shows the method that is used to implement the system
dynamics in the controller, the total number of hidden units
in the final networks, the tracking error for all three joints
for the whole simulation and also the tracking error for only
the last 2π simulation time. During the whole simulation the
manipulator completes 3 whole sinus waves and it is found
the tracking error of only the last sinus wave to see how the
networks performs in tracking after being pruned.

For the networks pruned with node output and for the
obtained networks from mixed methods pruning the size of
all the networks were not the same. The two networks for
ĉ12 and ĉ13 had one unit less than they had after pruning in
the control of a manipulator without friction and disturbance.
This is due to the change of inputs and thus the activation
function ratios are no longer the same as in the previous
situation.

Best tracking for both the whole simulation and the last
part only is obtained with the learning controller with mixed
methods pruned RBF networks. All the pruned networks give
more accurate tracking than the other methods. Worst track-
ing for the whole simulation come from when the RANKEFs
are implemented. In the final wave of the trajectory they
do however obtain better tracking then the now incorrect
model. RANEKFs are much smaller than for the case without
friction and disturbance. This is probably due to it here being

more difficult to overfit the training data.

Disturbance and Friction
Trajectory Tracking and Network Approximation Errors

Method Sum of Tracking Error Track. Error
Hidden Whole Sim. Last 2π
Units [SSE] Time [SSE]

Incorrect Model - 0.052887 0.0072445
Unpruned Networks 3672 0.052977 0.0072385
Weight Magnitude 74 0.052898 0.0072129

Neuron Output 124 0.052975 0.0072379
Mixed Methods 127 0.052563 0.0071018

RANEKF 78 0.053116 0.007243

TABLE IV
DISTURBANCE AND FRICTION - TRAJECTORY TRACKING AND

APPROXIMATION ERRORS

A plot of the desired joint trajectories together with the
actual joint trajectories for the case with friction and distur-
bance can be seen in figure 2. Here mixed method pruning of
the RBF networks in the learning inverse kinematic controller
has been used. Also in this case the tracking result is very
good.

Fig. 2. Friction and Disturbance - Trajectory all 3 Joints Using Mixed
Methods Pruning

V. CONCLUDING REMARKS

A. Conclusion

In this paper two simple and efficient pruning methods
of RBF network for implementation in a learning controller
for robot manipulators have been presented. Simulations
with the pruning methods in a learning inverse kinematic
controller where the system dynamics are learned have
been done. Implementing this learning inverse kinematic
controller instead of the normal model-based version made
the system more robust towards uncertainties like friction
and disturbance. If the learning was implemented with
pruning schemes it was found that the generalization ability
was improved and the computational cost reduced.



B. Future Work

The learning here is found to be ill-posed since the training
data contain too little information about the desired solution.
[7] Networks for the Ĉ matrix which were dependent on
several variable, q and q̇, had more ill-posed learning than
the networks depending on fewer variables.

A solution to the ill-posed problem is regularization and
hence to see if the learning can be made more well-posed
this should be implemented. Especially if it should be
included control of the remaining 3 joints of the manipulator
which would give system dynamics dependent on even more
variables and hence an even more ill-posed problem.

STABILITY FOR THE LEARNING INVERSE
KINEMATIC CONTROLLER

C. RBF Notation

From RBF theory an optimal network can approximate any
given function with an arbitrary small approximation error
[13]. For a matrix, F , the optimal estimation may be given
as

F = F ∗ + E =W ∗T •A(x) + E (21)

where F ∗ is the optimal estimation, E is the network
approximation error, W ∗ are the optimal weights and A(x)
is the activation function matrix. With optimal weights it is
normally assumed that E < E∗ with E∗ > 0 and very small
may be taken as a bound on the optimal approximation error.

The difference from the actual network estimation and
optimal estimation is defined as

F̃ , F ∗ − F̂ (22)

For training the networks the gradient descent (delta rule)
algorithm is used. The update of Ŵ is then given as

˙̂
W = −EA•A(x) =



−eA11a11(x) · · · −eA1na1n(x)

...
. . .

...
−eAn1an1(x) · · · −eAnnann(x)




(23)
where EA is the approximation error matrix for the networks
to a given input x and n is the number of joints.

D. Error Equation

Defines the tracking error variable as

e , qd − q (24)

where qd is the desired trajectory and q is the actual joint
position.

An error equation can then be found starting with the
dynamic equation

Mq̈ + Cq̇ +G = τ ⇒ (25)
−Më+M∗q̈d + EM q̈d − Cė+ C∗q̇d + EC q̇d +G∗ + EG = τ

(26)

where it has been used (24) and (21). Now a new approxi-
mation error is defined as

E , EM q̈d + EC q̇d + EG (27)

Using (27), (9) and (22) it is obtained

M̃ q̈d + C̃q̇d + G̃+ E =Më+ Cė+ M̂Kdė+ M̂Kpe
(28)

E. Lyapunov Function Candidate

It is started with the following Lyapunov Function Candi-
date

V (e, ė) =
1

2
ėTM(q)ė+

1

2
eT W̃T

MW̃Me (29)

which has V (0, 0) = 0, is positive definite and radially
unbounded when it is assumed that M(q) = M(q)T is
positive definite.

The derivative is

V̇ = ėTMë+
1

2
ėT Ṁ ė+ eT W̃T

MW̃M ė+ e
T W̃T

M
˙̃WMe (30)

Inserting for Më with (28) and using the skew symmetric
property of Ṁ − 2C give

V̇ = −ėT M̂Kdė− ėT
(
M̂Kp − W̃T

MW̃M

)
e+

ėT (M̃ q̈d + C̃q̇d + G̃+ E) + eT W̃T
M

˙̃WMe (31)

From [7] the weights are guaranteed to converge with the
training algorithm used and thus the weights are bounded.
The activation functions are bounded from the localization
principle and hence is F̂ and F ∗ are for all the matrices
bounded. By choice q̈d and q̇d may be bounded. Since all
the terms are bounded it follows that an upper bound on the
following expression may be taken as

M̃ q̈d + C̃q̇d + G̃+ E ≤ θ (32)

Using the fact that ˙̃W =
˙̂
W and inserting with (23) and (32)

in (31) give

V̇ = −ėT M̂Kdė− ėT
(
M̂Kp − W̃T

MW̃M

)
e+ėT θ

+eT W̃T
M

(
− EAM •AM (x)

)
e (33)

where the last term may be rewritten as EAM = M − M̂ ,
(21) and (22)

−eT (M̃ + EM )W̃T
M •AMe = −eT (M̃ + EM )M̃)e (34)

Inserting this back into (33)

V̇ = −ėT M̂Kdė− eT (M̃ + EM )M̃e

− ėT
(
M̂Kp − W̃T

MW̃M

)
e+ ėT θ (35)

≤ −ėT M̂Kdė− eT (M̃ + E∗
M )M̃e+

ėT
(
M̂Kp − W̃T

MW̃M

)
e+ ėT θ (36)

(37)



Now young’s inequality is used on the third term and it is
obtained

V̇ ≤ −ėT M̂Kdė− eT (M̃ + E∗
M )M̃e+ ėT θ

+
1

2
ėT
(
M̂Kp − W̃T

MW̃M

)
ė+

1

2
eT
(
M̂Kp − W̃T

MW̃M

)
e

(38)

= −ėT
(
M̂(Kd −

1

2
Kp) +

1

2
W̃T

MW̃M

)
ė−

eT
(
(M̃ + E∗

M )M̃ − 1

2
M̂Kp +

1

2
W̃T

MW̃M

)
e+ ėT θ

(39)

For the second term actually to be negative then

Kp < 2M̂−1

(
(M̃ + E∗

M )M̃ +
1

2
W̃T

MW̃M

)
(40)

For the first term actually to be negative then by inserting
with (40)

Kd > M̂−1
(
(M̃ + E∗

M )M̃
)

(41)

Assuming that (40) and (41) are true equation (39) may be
written as

V̇ ≤ −ėTαė− eTβe+ ėT θ (42)

By looking at V̇ as a storage function and the system (e, ė)
with θ as input and ė as output it follows that the system will
be state strictly passive according to definition 6.3 in [11].
By lemma 6.7 also in [11] the origin of the system will be
0-GAS.
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