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Abstract. Spacecrafts, especially satellites, play an ever greater role
in our daily lives as we increasingly depend on the services they pro-
vide, which in turn, more often than not, critically depend on main-
taining correct payload attitude. As smaller educational satellites pave
the way for organization, group and privately owned pico-satellites, we
explore the possibilities of attitude control through magnetic coil actua-
tion. We approach the whole problem, from control theory development
to �rst prototype actualization and control algorithm implementation,
presenting the steps taken in a user-friendly manner while pointing out
the pitfalls and drawbacks of di�erent solutions. The control is based
on a dissipative detumbling controller which after the initial phase is
overridden by the reference controller attaining �nal desired payload
attitude. We �nd that a simple 8-bit, 16Mhz microcontroller unit
has the su�cient processing power to continuously compute the geo-
magnetic �eld using the complex International Geomagnetic Reference
Field model, while simultaneously maintaining correct coil actuation.
The power consumed by the controllers during the < 300 minute con-
trol phase, from initial tumbling to desired attitude, given a typical
tumbling velocity of absolute magnitude 0.2 rad

s
, is found to be no more

than 150 Joules across the randomly selected test scenarios. Thus we
are able conclude that three perpendicular magnetic coils, together with
constantly present disturbances and complex geomagnetic �eld model
preventing it from remaining at an ill-aligned attitude where one actu-
ating degree of freedom is lost, provide su�cient actuation for reference
control of a spacecraft.





Preface

In 2006, the Norwegian Center for Space-related Education (NAROM), the
Norwegian Space Center (NSC) and Andøya Rocket Range (ARR) decided
to initiate the Norwegian Student Satellite Program (ANSAT). This project
was to be a continuation of the nCube-project and its scope; to build and
launch 3 CubeSats in the period 2007 � 2014.

The three satellites are planned to follow the CubeSat standard. The stan-
dard describes the satellites as put together of cubes weighing no more than
1.33kg and measuring 10x10x10cm. The satellites can be single, double or
triple cubes, all connected along the same axis. The �rst two of the three
satellites are the HINCUBE, being developed by the students from Narvik
University College and CUBESTAR, developed by students at the University
of Oslo.

In September 2010, the Norwegian University of Science and Technology
(NTNU) signed an agreement with NAROM to develop and build the last of
the three CubeSats named NTNU Test Satellite (NUTS). This was to be a
two unit CubeSat - a 10× 10× 20cm satellite.

A Master's thesis proposal regarding attitude control of the NUTS satel-
lite was among others issued by Jan Tommy Gravdahl at the Institute for
Engineering Cybernetics, NTNU. Attitude control, together with attitude
determination, combine into the Attitude Determination and Control Sys-
tem (ADCS), which is required to make use of the intended scienti�c camera
payload. This thesis is thus written as a start phase for the �rst prototype
of the satellite's Attitude Control module.

Before moving on, we wish to thank our supervisor, Jan Tommy Gravdahl
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for being one of the most down-to-earth professors a student can encounter,
and for being so easy to relate to, thus keeping the motivation high.

We also wish to thank all the peer students working on the satellite: Kaan
Huseby Yabar and Kristian Lindgård Jenssen for constantly being there to
bounce ideas o� of and for co-operation throughout the whole project; De-
wald De Bruyn and Marius Volstad for their assistance with practical elec-
tronics components and issues; Fredrik Sola Holberg for his help with the
ODE output functions, and Roger Birkeland for keeping us all productive
and helping out in every way possible.

We would also like to thank John Olav Horrigmo at the Engineering Cy-
bernetics institute for helping out with the practicalities when making the
prototype PCB; Oddvar Landrø at the Department of Electric Power Engi-
neering for spinning the prototype coil; Johannes Skaar for providing insight
on magnetic coils; Terje Mathiesen for helping with the temperature test
chamber and �nally we wish to thank the institute of engineering cybernet-
ics, NAROM and all others providing the funding and support for such a
innovative project - thus making it a reality.
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To my young brother Isak; may he grow up to explore the stars.
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Chapter 1

Introduction

Creating a non-commercial satellite, able to operate in extreme conditions
of outer space, using only commercial o�-the-shelf components is a daunting
task to say the least. This is however a requirement when operating with a
marginal budget.

Nevertheless, the NUTS CubeSat is to be a fully functional 10× 10× 20cm
satellite with the payload being a nightvision camera. With this camera the
�nal mission objective, beyond its immense educational value, is to acquire
images of atmospheric waves as they pass through an airglow layer. The
reason we wish to study these is that they are the primary way in which
atmosphere exchanges energy up and down between the climate and weather
region (0-12km) and the upper atmosphere (90km). As such, they play a
major role in the climate and weather of the earth, but their global and sea-
sonal variations are not yet quanti�ed.

The camera mounted on the satellite needs to stand rather still and point
towards the Earth in order to gather any useful imagery of this phenomenon.
This is where attitude control, which is the topic of this thesis, is utilized.

In this paper we discuss the whole procedure of designing a working attitude
control module; from theoretical analysis and simulations, through hardware
choice, programming and design; �nally ending in hardware testing.

In our experience, the transitional costs of moving the project onward to a
suceeding group are quite large. Thus we try to be as detailed as possible

1



CHAPTER 1. INTRODUCTION 2

when presenting our results, providing insights and shedding light on the
possible pitfalls when designing a system of this sort. In order to do this
we include a great number of �gures to help explain concepts at hand. We
also attach Matlab and C code in the appendix to make things as clear as
possible. With this we wish to plant the seed for a successful development
and launch of the NUTS satellite in the years to come.

1.1 Previous Work

Early work consists mostly of the research done for the nCube2 and nCube1
projects which were launched on 27.10.05 and 26.07.06 respectively. Unluck-
ily the nCube2 team was never able to make radio contact with the satellite,
while nCube1 was destroyed during the second launch phase, when an error
was detected with the carrier rocket. There are thus no indicators, even af-
ter two unsuccessful missions, that there is anything wrong with the existing
control theory which has been rigorously simulated if not analytically proven
functional. We therefore focus on re-implementing and improving the exist-
ing control algorithms.

The best of the earlier works, the major leap in our opinion, was done by Per
Kolbjørn Soglo in his MSc thesis [20]. Soglo develops all the necessary control
algorithms, using the theory from Spacecraft Attitude Dynamics by Peter C.
Hughes [7]. In [12] Raymond Kristiansen creates the Matlab code for the
rather analytically complex Earth's magnetic �eld model (IGRF11). Other
noteworthy work is done by e.g. Fauske and Makovec in [5, 14] respectively.
Some of these, but also many other can be found on Jan Tommy Gravdahl's
web page [9].

1.2 Thesis Outline

Chapter 2: Introduces the mathematical preliminaries for the thesis, in-
volving notations and de�nitions. This chapter also includes some
Lyapunov stability theorems.

Chapter 3: Explains and models the dynamics of a rigid body in orbit -
our satellite. Derives equations for gravity gradient torque and satel-
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lite's potential energy. Introduces the dipole and IGRF11 geomagnetic
models.

Chapter 4: Presents the two controllers to be implemented: a detumbling
controller and a reference controller for large deviations. We provide
the reasoning and theory behind these two controllers but omit stability
analysis, which has already been done in e.g. [20]. The principle of
pulse-width-modulation is explained as well.

Chapter 5: Compares the IGRF and dipole models. Shows results of the
satellite simulations done in Matlab, and attempts to provide some
basic intuition behind controller's behavior.

Chapter 6: Explains the reasoning and approach behind hardware choice
and design. This chapter is particularly important for hardware novices
as it points out possible pitfalls. We also provide reasoning for pulse-
width-modulation initialization in the C-code.

Chapter 7: Presents the results of the tests done on the �nal prototype.
Points out which aspects need further analysis in the future.

Appendix A: Provides additional simulation �gures which may help in un-
derstanding the simulations perormed in Chapter 5.

Appendix B: Here we include an excerpt from the American Wire Gauge,
the IGRF-11 coe�cient table and an illustration of the IGRF model.

Appendix C: All the essential programming code is included here. It is
primarily intended for those attempting to recreate the results in this
thesis.





Chapter 2

Background and Mathematical

Notation

We begin with the mathematical background and notations necessary to
grasp the concepts and ideas presented in later chapters. More speci�cally,
we discuss the reference frames needed for our purposes, matrix and vector
notations and rotation matrices together with their quaternion representa-
tions. Most of these concepts have carefully been described earlier in similar
theses such as [20, 5, 12] by Soglo, Fauske and Kristiansen respectively. Due
to the innate nature of this thesis, the mathematical background presented
follows that of the earlier work closely. In addition most of the mathematical
notation expressed here is in line with that in the Modelling and Simulations
book by Olav Egeland and Jan Tommy Gravdahl [4], with slight additions
from [7] to hopefully avoid any possible confusion.

2.1 Reference Frames

The most convenient set of reference vectors used to describe both the posi-
tion and orientation of a satellite, is a dextral orthonormal triad1 as described
by Peter C. Hughes in [7]. Such a triad is given the descriptive term reference
frame. There is a number of coordinate reference frames used when describ-
ing a satellite's position and its attitude. The particular reference frame used
is a function of what one is attempting to achieve or describe. The frames

1Dextral - right handed. Orthonormal - Mutually perpendicular and of unit length.
Triad - group of tree, a triplet

5
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Figure 2.1: Aphelion and Perihelion.

used in this thesis are presented below.

2.1.1 Earth Centered Inertial (ECI) Frame

Earth Centered Inertial frames represent a group of coordinate frames with
their origins at the center of mass of the Earth de�ned by its unit axis
vectors: xi, yi, and zi. For our purposes we will de�ne this frame in the
following manner: zi-axis is directed towards the celestial north pole, along
the Earth's rotation axis, xi-axis points towards the northern hemisphere's
vernal equinox 2. The yi axis is de�ned by the right hand rule to complete a
right hand orthogonal frame. From this we see that the fundamental plane for
the ECI de�ned here is the Earth's equatorial plane. The ECI frames are not
truly inertial since the Earth itself accelerates as it travels in its orbit around
the Sun, due to its elliptical orbit. The eccentricity of the orbit can be found
using: ε = a−p

a+p
where a is the Earth's distance to the Sun at aphelion and

p the distance at perihelion as illustrated in Figure (2.1). From the Science
NASA webpage, [15], we obtain a = 152.1 · 106m and p = 147.5 · 106m which
give us the eccentricity ε ≈ 1.67 ·10−2. Such low eccentricity for our purposes
can be neglected and we consider this frame as inertial.

2The point where the sun crosses the Earth's equatorial plane, going from south to
north. The xi axis is parallel to the line from the center of the Earth to the Sun on the
�rst day of spring in the northern hemisphere, which happens approximately on March
21. On this day, at the equator, the sun is directly overhead. For further illustration the
reader is encouraged to see Figure 3.4 in [14].
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Figure 2.2: NED frames for di�erent longitudes.

2.1.2 Earth Centered Earth Fixed (ECEF) Frame

The Earth Centered Earth Fixed frame di�ers from the ECI frame by the fact
that it rotates together with the Earth. As the name suggests, the ECEF has
its origin at the center of mass of the Earth. We de�ne the orientation of the
frame by the following unit axis vectors: xe, ye and ze. As in the ECI frame
the ze-axis is directed along the Earth's rotational axis towards the celestial
north pole, the xe-axis is directed along the intersection of 0◦ latitude and 0◦

longitude half-planes while the ye-axis is again de�ned such that xe, ye and
ze span a right hand frame vector space. The constant angular velocity of
the ECEF frame is easily found as the 2·π

pe
, where pe represents the Earth's

rotation period (one day) in seconds. The rotation period relative to �xed
stars, called a stellar day is pe ≈ 86164s which gives us the ECEF rotation
ωe = 7.2921 · 10−5. This constant is con�rmed on p. 19 in [8].

2.1.3 North East Down (NED) Frame

The North East Down frame is mounted on the Earth's surface, and varies
with location of interest. We de�ne it by unit axis vectors: xn, yn and zn,
where the xn- and yn-axis are located in the plane tangential to the Earth's
surface at the location of interest, while zn is perpendicular to this plane and
thus points towards the Earth's center. Besides lying in the tangential plane,
the xn-axis is de�ned to always point towards the true north, which means
that the yn-axis ends up pointing roughly towards the east, therefore the
name. In Figure 2.2 we show the NED frame at three di�erent longitudes.
The dashed line represents the zn-axis.
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2.1.4 Orbit Frame

The Orbit frame has its origin in the satellite's center of mass and its vector
space is spanned by the unit axis vectors xo, yo and zo. The axis zo-is de�ned
to always point towards the Earth's center (nadir direction) while the xo-axis
is de�ned to point along the satellite's linear velocity vector, tangential to
its orbit. This places the yo-axis normal to the orbital plane.

2.1.5 Body Frame

The Body frame too, has its origins in the center of the mass of the satellite,
but it is in addition �xed to the satellite body and thus moves and rotates
with the satellite. Body frame is de�ned by yb-which is the axis of maximum3

inertia and zb-the axis of minimum inertia. As earlier we de�ne the Body
frame to be a right hand orthogonal coordinate system such that xb-is found
by the right hand rule.

2.2 Attitude Representation

The attitude of the satellite is most conveniently represented as a coordinate
transformation (deviation) relative to a reference frame of choice. Now that
the reference frames in the previous section have been de�ned, we need to
develop the mathematical agility that enables us to seamlessly transform and
rotate one frame into the other and back. This can be done in several ways.
For our purposes, we present the concepts of the rotation matrices, Euler
parameters and quaternions. As mentioned earlier, the theory presented
here is in line with that in [4].

2.2.1 The Rotation Matrix

Let us start by introducing two arbitrary coordinate systems Fa, Fb ∈ R3,
spanned by orthogonal unit vector sets ~a1, ~a2, ~a3 and ~b1, ~b2, ~b3 respectively.
We also assume the existence of a vector v which can be represented with
respect to any of the frames Fa and Fb. We use notation:

3The reasoning for this can be found in 4.1, the 3-axes stabilization section.
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~v =
3∑
i=1

vai ~ai and ~v =
3∑
i=1

vbi
~bi (2.1)

where vai = ~v · ~ai are the coordinates of ~v in Fa, and vbi = ~v · ~bi are the
coordinates of ~v in Fb. The column vectors in frame Fa and Fb become:

va =
[
va1 va2 va3

]T
and vb =

[
vb1 vb2 vb3

]T
. (2.2)

Combining (2.1) and (2.2) we are able to establish the relation between the
coordinate vectors va and vb:

vai = ~v · ~ai = (vb1
~b1 + vb2

~b2 + vb3
~b3) · ~ai =

3∑
j=1

vbj(~ai · ~bj). (2.3)

This leads to the following result:

va = Ra
bv

b where Ra
b = {~ai · ~bj}. (2.4)

We call Ra
b the rotation matrix from Fa to Fb. We procede to present the

properties of the rotation matrices. Proofs can be found in [4].

Property 1: Rb
a = (Ra

b )
−1 = (Ra

b )
T

Property 2: detRa
b = 1.

Thus a special orthogonal group de�nition exists for the rotation matrices
presented here: SO(3) = {R|R ∈R3x3, RTR = I and det(R)= 1}.

Important results of the analysis done here are the two interpretations of the
rotation matrix Ra

b :

1. Let the vector ~v have the coordinate vector vb in Fb and the coordinate
vector va in Fa. Then the rotation matrix Ra

b transforms the coordinate
vector in Fb to the coordinate vector in Fa according to
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va = Ra
bv

b .

In this equation Ra
b acts as a coordinate transformation matrix. In layman's

terms, this means that through multiplication Ra
bv

b we can obtain the coor-
dinates va in Fa, of frameless vector ~v from its coordinates vb in Fb. From
a third, arbitrary non-interacting coordinate system, the vectors va,vb, ~v re-
main the same.�

2. A vector ~p with coordinate vector pa in Fa is rotated to the vector ~q with
coordinate vector qb = pa by

qa = Ra
bp

a.

In this equation Ra
b acts as a rotation matrix. In simpler terms, to help

distinguish these two de�nitions: the rotation matrix rotates the coordinate
vector pa to a coordinate vector qb that has the same coordinates relative to
Fb as pa has relative to Fa and then �nally expresses it in Fa.�

Finally, an important property of the rotation matrices is that of composite
rotations. A rotation from frame Fa to frame Fc may be described as a
rotation from frame Fa to Fb followed by a rotation from Fb to Fc. To
illustrate: a vector ~v represented in Fa as va can be transformed to vb in Fb
by the following transformationvb = Rb

av
a, and vbcan then be transformed

to vc in Fc byvc = Rc
bv

b. This gives us the transformation matrix from Fc
to Fa:

vc = Rc
bR

b
av

a → Rc
a = Rc

bR
b
a.

2.2.2 Rotation Matrix Derivative

The time derivative of a rotation matrix gives us the angular velocity of a
coordinate vector space. This is of importance for e.g. Body frame where it
directly describes the satellites rotation velocity. We start o� with the �rst
property in the previous section:

Ra
b = (Rb

a)
−1 = (Rb

a)
T =⇒ Ra

b (R
a
b )
−1 = Ra

b (R
a
b )
T = I. (2.5)
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Time di�erentiation of this product yields:

d

dt

[
Ra
b (R

a
b )
T
]

= Ṙa
b (R

a
b )
T + Ra

b (Ṙ
a
b )
T = 0. (2.6)

By de�ning a matrix S as: S , Ṙa
b (R

a
b )
T = Ṙa

bR
b
a, we can express (2.6)

as S + ST = 0, and it immediately follows that S = − ST which makes S
skew-symmetric. Now, since any skew-symmetric 3× 3 matrix can uniquely
be expressed with 3 elements, we can de�ne S(ωaab) as an operator on a
column vector ωaab that yields its skew-symmetric representation. Note that
literature sometimes uses (ωaab)

× to represent S(ωaab).

S(ωaab) = (ωaab)
× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (2.7)

It turns out that the the vector ωaab has a fundamental physical interpretation:
let the vector ~ωab be de�ned by requiring that its coordinate form ω

a
ab in frame

Fa satis�es:

S(ωaab) = Ṙa
b (R

a
b )
T . (2.8)

The vector ~ωab is then said to be the angular velocity vector of frame Fb
relative to frame Fa, which then makes the coordinate vector ωaab the angular
velocity of frame Fb relative to frame Fa expressed in the coordinate frame
Fa.
We post-multiply (2.8) with Ra

b , arriving at:

S(ωaab)R
a
b = Ṙa

b (R
a
b )
TRa

b = Ṙa
b =⇒ Ṙa

b = S(ωaab)R
a
b . (2.9)

By following the same line of though; using (2.7) we can rewrite (2.9) to
arrive at the alternative form:

Ṙa
b = Ra

bS(ωbab). (2.10)

We can note that angular velocity has the property ωaab = −ωaba.
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2.2.3 Euler Parameters and Quaternions

We start o� brie�y with Euler angles. With these we refer to both the
roll-pitch-yaw angles and classical Euler angles. Both of these use a three
parameter representation to de�ne any rotation (orientation) of a frame by
a composition of three simple rotations4 around some of the principal axis of
a frame. The downside to this very intuitive representation of any arbitrary
rotation is that it su�ers from possible singularities at e.g. cos(π

2
). This

leads to numerical problems and in worst cases infeasibility when inverting
a matrix with such ill conditioned elements. Euler parameters on the other
hand use a four parameter representation of orientation. The advantage is
to avoid the singularity problem that arise with Euler angles.

Let us start by stating that any rotation can be represented as a rotation of
speci�c angle θ about a particular axis k = [k1 k2 k3]T ; for proof see section
6.6.2 in [4]. From this we de�ne the Euler parameters in the following manner:

η = cos(
θ

2
) and ε = [ε1 ε2 ε3] = k sin( θ

2
). (2.11)

We note that

η2 + εTε = 1. (2.12)

Through insertion of trigonometric identities and manipulation (See [4]) of
(2.12), we are able to express the rotation matrix Rk,θ in terms of Euler
parameters η and ε:

Rk,θ = Re(η, ε) = I + 2ηS(ε) + 2S2(ε). (2.13)

It may be of interest that:

Re(η, ε) = Re(−η,−ε) and Re(η, ε)
T = Re(η,−ε). (2.14)

4A rotation around the x-,y- or z-axis. E.g. Rx(φ) - a rotation of φ radians around
the principal x-axis.
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To simplify things and enable us to apply a wealth of techniques and analysis
tools, we exploit the fact that the vector we are dealing with, p=(η εT )T , is
a unit quaternion vector. Thus quaternion theory may be applied. Basically
a quaternion is a hypercomplex number 5, in our case a four dimensional one.

A quaternion may be represented as a vector of the form q =
[
α βT

]T
,

where α represents the real scalar part and βT represents a 1×3 dimensional
imaginary vector part. We introduce the di�erential equations for the Euler
parameters connecting them to the angular velocity of the satellite, ωBOB, in
order to analyze attitude changes in time:

η̇ = −1

2
εTωBOB (2.15)

ε̇ =
1

2
[η1 + S(η)]ωBOB. (2.16)

For proof and derivation see [4].

2.3 Transformations Between Frames

For later reference, we here derive the essential frame transformations. We
make two assumptions: the eccentricity of the satellite's orbit is zero and the
altitude of its orbit is 600km. However we do not, for theory development,
assume the inclination to be exactly6 90◦.

2.3.1 ECI to ECEF

The transformation from ECI to ECEF frame depends on the type of orbit
the satellite assumes, e.g. a sun-synchronous polar orbit. It also depends
on the speci�c parameters of the orbit and a speci�c, suitable de�nition of
relative time. Since we at the present have very little information on the
orbit, we choose to set the transformation matrix from ECI to ECEF to an
identity matrix:

5We may say that complex numbers are a subgroup of hypercomplex numbers, just
as real numbers are a subgroup of complex numbers. Although some special rules apply
when manipulating quaternions

6We do not assume to have a perfect polar orbit.
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RE
I = RI

E =

 1 0 0
0 1 0
0 0 1

 . (2.17)

We make this simpli�cation to be able to manipulate frames seamlessly even
with insu�cient information. This simpli�cation does not impact our pro-
totype design. The exact transformation is however important for the �nal
module, since satellite rotation about the earth is expressed relative to the
ECI frame. For more information on a possible transformation matrix see
Kristiansen, [12].

2.3.2 ECEF to Orbit Frame

This frame rotation can be represented as a composition of four simple rota-
tions. Three of these are needed to account for every possible satellite orbit
position, while the fourth rotation is just a static (constant) rotation7. The
rotations appear in the following order:

1. Rotation θ about the ze-axis.

2. Rotation −λ about the new, current, y-axis.

3. Rotation −90◦ about the new, current, y-axis.

4. Rotation δ about the new, current, z-axis.

Here θ is the longitude of the satellite, λ the latitude and δ the angle between
the satellite's velocity vector and the ( ~zm, ~zo) plane

8. It is important to note
in the above rotations that after each rotation the proceding rotation-axis
changes. The complete rotation can be expressed as:

RE
O = Rze,ηRy,−λRy,−90Rz,δ (2.18)

7These can easily be compressed into three rotations but we choose to keep them
separated for clarity.

8We de�ne ~zm as the vector pointing towards the magnetic north pole, but for the
dipole geomagnetic �eld we set ~zm and ~ze identical each other, thus simplifying the δ
variable.
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In Figure (2.3), we provide an illustration to shed some light on this somewhat
tedious rotation. Note that the last (δ) rotation is not included as we did
not manage to create �gure depicting it clearly. The θ rotation is done in
the negative direction to obtain a simpler �gure:

RE
O =

 cθ −sθ 0
sθ cθ 0
0 0 1

 cλ 0 −sλ
0 1 0
sλ 0 cλ

 0 0 −1
0 1 0
1 0 0

 cδ −sδ 0
sδ cδ 0
0 0 1


=

 −cθsλcδ − sθsδ cθsλsδ − sθcδ −cθcλ
cθsδ − sθsλcδ cθcδ + sθsλsδ −sθcλ

cλcδ −cλsδ −sλ

 . (2.19)

We use notation s◦ to denote sin(◦) and c◦ to denote cos(◦). In the sec-
ond matrix that we exploit the fact that cos(−λ) = cos(λ) and sin(−λ) =
− sin(λ). From here we arrive at our destination through a rotation matrix
property:

RO
E = (RE

O)T =

 −cθsλcδ − sθsδ cθsδ − sθsλcδ cλcδ
cθsλsδ − sθcδ cθcδ + sθsλsδ −cλsδ
−cθcλ −sθcλ −sλ

 . (2.20)

2.3.3 NED to ECEF

The rotation to and from NED frame is be used directly in the control mod-
ule. The attitude provided by the determination module, under development
by Kristian Jenssen and Kaan Yabar, is however represented in the NED
frame. Thus, in order to combine the two systems we need to have a rotation
matrix transforming the attitude from NED frame to the Orbit/Body frames
- which happens via the ECEF frame.

The rotation from NED to ECEF can be represented as a composition of two
rotations, the �rst being a rotation θ about the zn axis and a second rotation
−
(
π
2

+ λ
)
about the new yn axis, where θ is the longitude and λ the latitude

of the satellite. Mathematically this is expressed as:
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Figure 2.3: Illustration of the ECEF to Orbit frame transformation.
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RN
E =

 −sλ 0 cλ
0 1 0
−cλ 0 −sλ

 cθ sθ 0
−sθ cθ 0

0 0 1

 =

 −sλcθ −sλsθ cλ
−sθ cθ 0
−cλcθ −cλsθ −sλ


(2.21)

where we use the trigonometric identities for a π
2
shift, such as: sin(λ+ π

2
) =

cosλ and cos(λ + π
2
) = − sinλ. This gives us the NED to ECEF rotation

matrix:

RE
N =

(
RN
E

)T
=

 −sλcθ −sθ −cλcθ−sλsθ cθ −cλsθ
cλ 0 −sλ

 . (2.22)

2.3.4 Orbit to Body Frame

Once the quaternions (Euler parameters) for the body frame are available
the frame transformation is obtained directly out of the theory presented in
(2.2.3). From (2.13) we see that:

RO
B = I + 2ηS(ε) + 2S2(ε) (2.23)

and �nally:

RB
O = (RO

B)T =
[
c1 c2 c3

]
. (2.24)

.

We include the last columnwise notation, as we later make use of the column
vectors in RB

O.

2.4 Stability

We present the necessary Lyapunov stability theorems which will be applied
in the later sections. These are extracted from Chapter 4.1 in Nonlinear
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Systems by Hassan K. Khalil [11].

Theorem 1: Let x = 0 be an equilibrium point for ẋ = f(x) and D ⊂ Rn be
a domain containing x = 0. Let V : D → R be a continuously di�erentiable
function such that

V (0) = 0 and V (x) > 0 in D − {0} (2.25)

V̇ (x) ≤ 0 in D. (2.26)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (2.27)

then x = 0 is asymptotically stable ♦.

Theorem 2: Let x = 0 be an equilibrium point for ẋ = f(x). Let V : Rn →
R be a continuously di�erentiable function such that

V (0) = 0 and V (x) > 0, ∀x 6= 0 (2.28)

||x|| → ∞ ⇒ V (x)→∞ (2.29)

V̇ (x) < 0, ∀x 6= 0 (2.30)

then x = 0 is globally asymptotically stable ♦.

Remark 1: For a system with an equilibrium in x 6= 0 we may perform a
change of variables as: y = x− xe, where xe is the equilibrium.
Remark 2: Theorem 2 di�ers from the �rst at two points: the domain D
in Theorem 2 is the whole state space and V (x) is radially unbounded.
Remark 3: We present only the time invariant Lyapunov theorems. This
is because the geomagnetic �eld as the only time-varying component of the
system is varying at a relatively negligable rate. For time varying systems
we would refer to uniform stability when choice of t0 does not e�ect system
stability.



Chapter 3

Mathematical Modelling

The mathematical models for the the relevant dynamics appear to mostly
have been developed and collected by Per Kolbjørn Soglo in [20] from books
such as [7], then further re�ned in [5, 12] and neatly summed up by Jan
Tommy Gravdahl in [6]. Thus the modelling presented here follows these
texts closely.

3.1 Gravitational Torque

Gravitational torques are fundamental to the attitude dynamics of space-
crafts. An object with a non-uniform, non-symmetrically positioned mass
distribution (w.r.t. the gravity vector), and exposed to a quadratically di-
minishing gravity �eld will be a�ected by a torque - gravitational torque. In
other words, because the center of gravity and the center of mass in prac-
tice never exactly overlap, everything is exposed to this gravitational torque.
According to Chapter 8.1 in [7], when developing a simple model for the
gravitational torque it is convenient to make four simple assumptions:

1. Only one celestial primary is considered - i.e. we ignore the gravita-
tional �elds from all other objects besides the Earth, such as the Moon,
Sun and self-gravity.

2. The considered primary (Earth) possesses a spherically symmetrical
mass distribution.

3. The spacecraft is small compared to its distance to the mass center of
the primary.

19
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4. The spacecraft consists of a single body.

As we see, these assumptions are not all that conservative, as expanding
the model to account for all the imperfections would only slightly increase
it's accuracy. With these assumptions in place we are ready to develop the
equations we need. Using the Newton's law of gravity we start o� with the
force that an element dm in the satellite is exposed to:

~df = −µ
~R

R3
dm (3.1)

where µ = Geme = 3.986 · 1014, Ge is the Earth's gravitational constant,
me the Earth's mass, ~R = ~Rc + ~r the vector to the element dm as shown
in Figure 3.1, and R = |~R| the absolute distance of dm from Earth's center.
Further we have that the torque from dm about satellite's center of mass is:

~dgc = ~r × ~df. (3.2)

From this we can obtain the total gravitational torque on the satellite by
integrating over its entire body:

~gc = −µ
ˆ
B

~r × ~R

R3
dm. (3.3)

In addition we can express the satellite's potential energy as:

U = −µ
ˆ
B

dm

R
. (3.4)

Due to our third assumption r
Rc
� 1 we are able to apply a binomial expan-

sion:

R−3 = R−3
c

[
1− 3(~r · ~Rc)

R2
c

+O(
r2

R2
c

)

]
(3.5)

where O(◦) denotes the higher order terms. This gives us:

R−1 = R−1
c

[
1− ~r · ~Rc

R2
c

− 1

2

r2

R2
c

+
3

2

(~r · ~Rc)
2

R4
c

+O(
r3

R3
c

)

]
. (3.6)
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Earth

R
c

r
R

dm

Figure 3.1: Gravitational forces working on the satellite. Inspired by [7].

By inserting for ~R and 3.5 into 3.3 we obtain:

~gc = −3

(
3µ

R5
c

)
~Rc ×

ˆ
B

~r~rdm · ~Rc. (3.7)

Exploiting the fact that the second moment of inertial about a center of mass
is:

~I ,
ˆ
B

(r2~1− ~r~r)dm (3.8)

where ~1 represents the unit dyadic1. We can rewrite the gravitational torque
as:

~gc = 3

(
µ

R3
c

)
~zo × ~I · ~zo (3.9)

where ~zo is the z-axis in the orbit frame which can mathematically be de�ned

as ~zo =
~Rc

Rc
. Similarly by inserting 3.6 into 3.4 we arrive at the potential

energy of the satellite:

U = −µm
Rc

− 1

2

µ

R3
c

· trace(Ī) +
3

2

µ

R3
c

~zo · Ī · ~zo (3.10)

where we exploit the fact that
´
r2dm = 1

2
trace(Ī). We can �nally arrive at

the gravitational torque and potential energy expressed in the body frame,
using the vectricies2 de�nition I , Fb · Ī · FTb and the equality ~zo = FTb c3 :

1Interested reader may look to [4] for explanation of dyadics.
2Explained and introduced in [7]
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gBc = 3(
µ

R3
c

)c3 × Ic3 (3.11)

U = −µm
Rc

− 1

2

µ

R3
c

· trace(I) +
3

2

µ

R3
c

cT3 Ic3 (3.12)

where c3 is de�ned in 2.24.
We assume to position the Fb frame in the satellite such that the inertia
matrix I becomes:

I =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 . (3.13)

3.2 Dynamical Satellite Attitude Model

A satellite's dynamics can be represented as those of a rigid body. From Ch.3
in [7] together with the papers mentioned, we shortly arrive at a dynamic
equation for the satellite's momentum:

Iω̇B
IB = τB − ωBIB × (IωBIB) (3.14)

where I is the satellite's moment of inertia, ωBIB is the angular velocity of
the body frame relative to inertial frame expressed in the body frame and
τB is the sum of all torques working on the satellite. The angular velocity
ωBIB can be expressed as a composition of two rotations:

ωBIB = ωBOB + ωBIO = ωBOB + RB
Oω

O
IO = ωBOB − c2ωo (3.15)

where angular velocity ωOOI has a simple form (this is a rotation about the
yo axis; try to visualize it):

ωOOI =
[

0 −ωo 0
]T

(3.16)

where ωo =
√

µ
R3

c
. The scalar ωo is obtained by equalling Newton's 2. law

for uniform circular motion to the law of universal gravitation.
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a =
v2
o

Rc

→ mB
v2
o

Rc

= F = Ge
memB

R2
c

(3.17)

vo =

√
µ

Rc

→ ωo =

√
µ
Rc

Rc

=

√
µ

R3
c

. (3.18)

The total torque τB in 3.14 can be split up as:

τB = τBg + τBm (3.19)

where τBg is the gravitational torque on the satellite and τBm is the torque
produced by the magnetic coils. We set τBg = gBc from Section 3.1 and
develop τBm in the next section.

3.3 Magnetic Torque

Here we present two models for the Earth's magnetic �eld: a simplistic dipole
geomagnetic model and a more sophisticated and accurate International Ge-
omagnetic Reference Field (IGRF-11) model. We also derive and present the
equations for the magnetic coil actuators installed on the satellite in order
to control its attitude.

3.3.1 The Geomagnetic Field Models

The geomagnetic �eld model to be implemented on the satellite is obviously of
central importance for the attitude control. The better the model, taking into
account the computational time and required power, the better the control
ultimately will be. Nevertheless we start of with a simple dipole model as
proposed in [20], and then move on to the IGRF-11 model and its equations
presented in [12].

3.3.1.1 Dipole Model

Dipole model is a simple symmetrical model of the geomagnetic �eld, that
completely ignores the longitudinal components of the magnetic �eld vector
and can thus simply be illustrated two-dimensionally, as in Figure 3.2. We
note that the geographic and magnetic poles do not (necessarily) overlap, in
fact the magnetic poles wander constantly relative to the geographic poles
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Earth

N

North pole

South pole

Figure 3.2: Dipole model.

- but for control simulation purposes with an already imperfect model, we
ignore this fact.

The dipole model given in the orbit frame, is extracted from [20]:

BO = B0

 cosλ cos δ
− cosλ sin δ

2 sinλ

 (3.20)

where B0 = µ
R3

c
, λ is the latitude, and δ the angle between the satellite's

velocity vector and the (~zi, ~zo) plane. The time derivative of this �eld is:

ḂO = ωoB0

 − sinλ
0

2 cosλ

 . (3.21)

3.3.1.2 International Geomagnetic Reference Field

The IGRF model estimated every 5 years by the International Association
of Geomagnetism and Aeronomy (IAGA), is essentially a set of Gaussian
coe�cients gmn and hmn , that can be used in a spherical harmonic3 model to

3Spherical harmonics may be seen as an extension of a 2 dimensional Taylor approxi-
mation to approximate 3 dimensional phenomena.
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approximate the Earth's magnetic �eld. Because the geomagnetic �eld is
time-varying, the IGRF model also includes the so called secular variation
(SV) coe�cients such that for the 5 years after the most recent epoch, the
SV can be used for forward linear extrapolation. The IGRF-11 model is the
11th generation model which gives the 2010 spherical harmonic coe�cients
together with their respective SV. These coe�cients are extracted from [16]
and can be found in Table B.1. For obvious reasons, this model describes the
geomagnetic �eld much more accurately then the naive dipole model. The
model is somewhat complex and both its theoretical and implementational
aspects have already been studied thoroughly in [12, 14] and especially well
explained in [3]. We therefore only brie�y present the main IGRF equation
for reference, extracted from [3], which is the negative gradient of a scalar
potential function modelled by spherical harmonics:

B = −∇V (Rc, λ
′
, θ)

= ∇

{
Re

k∑
n=1

(
Re

Rc

)n+1 n∑
m=0

[gmn cos(mθ) + hmn sin(mθ)]]Pm
n (λ

′
)

}
(3.22)

where Re = 6371.2·103m is the Earth radius, Rc the distance from the Earth's
center to the satellite, and Pm

n (λ
′
) the Schmidt normalized associated Leg-

endre polynomials. From 3.22 we can see that the magnetic �eld, obviously,
depends on distance Rc, co-latitude λ

′
and longitude θ. Thus taking the

gradient of V (Rc, λ
′
, θ) gives us the geomagnetic �eld vector components in

spherical coordinates, represented in the ECEF frame. The �nal equations
for the three vector components are:

Br = − ∂V
∂Rc

=
k∑

n=1

(
Re

Rc

)n+2

(n+ 1)
n∑

m=0

[gm,ncos(mθ) + hn,msin(mθ)]Pm
n (λ

′
)

(3.23)

Bλ′ = − 1

Rc

∂V

∂λ′

= −
k∑

n=1

(
Re

Rc

)n+2 n∑
m=0

[gm,ncos(mθ) + hn,msin(mθ)]
∂P n,m(λ

′
)

∂λ′ (3.24)
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Bθ = − 1

Rc · sin(λ′)

∂V

∂θ

= − 1

sin(λ′)

k∑
n=1

(
Re

Rc

)n+2 n∑
m=0

m [−gm,nsin(mθ) + hn,msin(mθ)]Pm
n (λ

′
)

(3.25)

For illustrative insight, Figure 2.9 in [14] can provide the reader with basic
intuition on the nature of spherical harmonics.

3.3.2 Magnetic Coil Model

It is well known that a current �owing through a conductor in a loop generates
a dipole magnetic �eld. This magnetic dipole is a magnetic moment which
can be described as a vector. The vector is perpendicular to the loop and
points in the same direction as the extended thumb of one's right hand when
the �ngers are wrapped around the loop in the direction of the current -
therefore the right-hand rule. The magnitude of the moment generated by a
single loop is relatively tiny, but is also proportional to the number of turns.
By stacking turns on top of each other we construct a winding to arrive at
the concept of a magnetic coil. For multiple turns we can still apply the right
hand rule in order to �nd the moment's direction4. The magnitude on the
other hand, for the coils mounted on the x+-, y+- and z+-faces of the satellite
can be expressed as:  mx

my

mz

 =

 Nx · Ax · ix
Ny · Ay · iy
Nz · Az · iz

 (3.26)

where N is the number of turns in the coil, A the area enclosed by the coil and
i the current �owing through the coil. The cross product of this magnetic
moment and the moment of the geomagnetic �eld generate a torque with
which the satellite can be maneuvered. The three magnetic coils installed
on the satellite are placed perpendicular to one another in order to gain the
highest degree of controllability.

4E.g. for a solenoid the north magnetic pole will be at the end where the current exits
the coil.
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Earth

Equator

z+

x+

y+

Figure 3.3: Loss of controllability.

By its nature, a coil can only produce a moment in one direction; more
speci�cally a moment perpendicular to the area it encloses. This obviously
sets restrictions on how the control algorithms have to be created, as the
direction of the desired, optimal moment, will rarely coincide with the any
single coil moment vector. Thus the desired moments have to be decomposed
and split between the three coils. The biggest issue however, comes from
the way the torque is generated. It is trivial that the cross product of two
vectors is the largest when the two vectors are perpendicular to each other
and zero if the vectors are parallel. Assuming a dipole geomagnetic model
we will attempt to illustrate this problem through Figure 3.3. In the �gure
the satellite is above the equator with its x+ face orientated towards earth.
Lets now say that the operator wishes to rotate the satellite such that its z+

face points towards the earth. To obtain the desired orientation we need to
apply a torque about the y axis. Sending a current through the x- or z-face
coils creates torques about the z- and x-axis respectively, while sending a
current through the y-face coil generates no torque at all because the y-axis
is parallel to the earth's magnetic �eld. Thus if the satellite was to reach such
a state, all control would be lost. Luckily this scenario is only theoretical
due gravitational torque, varying geomagnetic �eld and di�erent kinds of
disturbances the satellite is exposed to. In practice we only need to be aware
of the problem in order to save battery life when the body and geomagnetic
frames are ill-aligned.





Chapter 4

Control

In this chapter we analyze the satellite-earth system to �nd the satellite's
requirements for achieving both 3-axes and 1-axis stabilization. We then
move on to develop the nonlinear controllers necessary for this stabilization.
We �rst develop a detumbling controller and �nally a reference controller for
large deviations, both to be used on the prototype and eventually on the
�nal module. Finally we introduce and explain some basics concerning the
practicalities when executing such control, such as Pulse Width Modulation
(PWM). For the stabilization requirements and control algorithms we look at
the work done by Soglo, who elegantly derived these equations in his thesis
[20].

4.1 Requirements for 3-axes Stabilization

Before discussing any control strategies we need to analyze the system equa-
tions with zero input, e.g. τm = 0. From Section 3.1, we have that whenever
Ix 6= Iy 6= Iz the satellite will be exposed to gravity torque, however, there
exist certain satellite attitudes at which the satellite is in equilibrium. At
these attitudes the gravity gradient will exert zero torque on the satellite.
Peter C. Hughes argues in Chapter 9.2 in [7] that there exist 24 such equi-
libria. Each of the principal axes can point either towards the Earth's center
or away from it; and, for each of these, the remaining two axes can either
point along the orbit normal or opposite of the orbit normal. To investigate
the required properties of the satellite's inertia that make one or more of
the equilibria stable we apply Lyapunov theory to analyze the system and

29
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attempt to draw useful conclusions.

We start with the satellite's potential energy expressed in 3.12. By inserting
for ωo we arrive at:

U = −µmB

Rc

− 1

2
ω2
o(Ix + Iy + Iz) +

3

2
ω2
oc

T
3 Ic3. (4.1)

Satellite's kinetic energy on the other hand, assumes a relatively simple form,
as a sum of its translational and rotational kinetic energy:

T = Ttrans + Trot =
1

2
mBω

2
oR

2
c +

1

2
(ωBIB)2IωBIB. (4.2)

By inserting for ωBI from 3.15 we arrive at:

T = T0+T1+T2 =
1

2
mBω

2
oR

2
c+

1

2
ω2
oc

T
2 Ic2−ωocT2 IωBOB+

1

2
(ωBOB)T IωBOB (4.3)

where

T0 =
1

2
mBω

2
oR

2
c +

1

2
ω2
oc

T
2 Ic2 (4.4)

T1 = −ωocT2 IωBOB (4.5)

T2 =
1

2
(ωBOB)T IωBOB. (4.6)

As shown in [7] we can from here de�ne an energy function H, which will
help us arrive at a suitable Lyapunov function:

H = T2 − T0 + U

=
1

2
(ωBOB)T IωBOB +

3

2
ω2
oc

T
3 Ic3 −

1

2
ω2
oc

T
2 Ic2

−1

2
mBω

2
oR

2
c −

µmB

Rc

− 1

2
ω2
o(Ix + Iy + Iz). (4.7)



CHAPTER 4. CONTROL 31

Because a Lyapunov equation has to be zero when the state vector equals zero
and we wish to analyze the equilibrium state where ωBOB = 0 and RO

B = 1
we need to substract the energy, H0 , H|wB

OB=0, RO
B=1, from H to reach the

�nal Lyapunov equation. We end up with:

V , H−H0 =
1

2
(ωBOB)T IωBOB+

3

2
ω2
oc

T
3 Ic3−

1

2
ω2
oc

T
2 Ic2+

1

2
ω2
o(Iy−3Iz). (4.8)

Soglo points out in [20], that it is usefull to write 4.8 in its scalar form, and
use the rotation matrix properties c2

12 + c2
22 + c2

32 = 1 and c2
13 + c2

23 + c2
33 = 1,

to reach:

V =
1

2
(ωBOB)T IωBOB +

3

2
ω2
o

[
(Ix − Iz)c2

13 + (Iy − Iz)c2
23

]
+

1

2
ω2
o

[
(Iy − Ix)c2

12 + (Iy − Iz)c2
32

]
. (4.9)

Now we can de�ne a state vector x =
[

(ωBOB)T c13 c23 c12 c32

]T
, and

�nally examine the system's stability properties based on di�erent moments
of inertia. To assert any kind of stability of x = 0 through Lyapunov stability
theorems, we need V to be positive de�nite. It is easy to see from 4.9 that
this is true for Iy > Ix > Iz. Our Lyapunov function has to satisfy the
decrescent property as well - we have to examine its time derivative.
Taking the time derivative of 4.8 and manipulating it1 we arrive at:

V̇ = (ωBOB)TτBm. (4.10)

But as we mentioned at the start of our derivation, we are examining the
system with zero input, e.g. τm = 0. From this we can see that for x =[

(ωBOB)T c13 c23 c12 c32

]T
= 0, with V̇ ≡ 0, the system satis�es the

decrescent condition V̇ (x) ≤ 0, and according to Chapter 9.2 in [7], is stable
in Lyapunov sense. Now, using orthonormality property of rotation matrices:
c2
i1 + c2

i2 + c2
i3 = 1 and c2

1i + c2
2i + c2

3i = 1 we can examine a generic rotation
matrix, to see whether c13 = c23 = c12 = c32 = 0 de�nes a unique state.

RB
O =

 c11 0 0
c21 c22 0
c23 0 c33

 (4.11)

1See Chapter 7 in [20] for proper derivation.
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From the orthonormal property it immediately follows that c21 = c23 = 0.
Exploiting yet another rotation matrix property, det(R) = 1, we get that
c11c22c33 = 1, leaving us with four stable attitudes; relative to the orbit
frame:

RB
O =

 1 0 0
0 1 0
0 0 1

 RB
O =

 −1 0 0
0 −1 0
0 0 1


RB
O =

 1 0 0
0 −1 0
0 0 −1

 RB
O =

 −1 0 0
0 1 0
0 0 −1

 . (4.12)

These are the four attitudes where xb||xo and zb|| zo. If we however have
Ix = Iy, given the satellite's symmetry, we end up with the state vector

x =
[

(ωBOB)T c13 c23 c32

]T
and the generic matrix:

RB
O =

 c11 c12 0
c21 c22 0
c23 0 c33

 (4.13)

from which we can only deduce that c23 = 0, giving us an in�nite set of stable
attitudes - all attitudes where zb|| zo. Simpy put, this is 1-axis stabilization.

4.2 Detumbling Controller

A small experimental satellite of this type is carried to its orbit only as a
companion of a much larger, commercial satellite. In addition each of these
commercial launches carries multiple CubeSats. Once a certain altitude is
reached, the small satellites are ejected in succession one after the other
by a spring separation mechanism on the carrier rocket. Depending on the
rocket's orientation and obvious design imperfections, the initial orientation
and angular velocity of the satellite are as good as arbitrary. In other words,
there is no way of knowing these in advance. This initial angular velocity is
often in the literature referred to as tumbling. Removing (dissipating) this
rotational energy from the system is thus called detumbling.

Below we present two detumbling controllers: a dissipative and a B-dot de-
tumbling controller. Our focus is mainly on the dissipative controller because
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the data for its computation will be readily available from the attitude de-
termination module, while the second, B-dot detumbling controller, requires
rather heavy computation of the IGRF �eld's time derivative.

4.2.1 Dissipative Controller

Our primary control objective is to orient the satellite's camera mounted on
one of the two 10 × 10cm faces to point towards the Earth. In order to do
this, the control system needs �rst to dissipate the satellite's angular velocity
relative to the Orbit frame. Note that having zero angular velocity of Body
frame, relative to the Orbit frame, in principle means that the satellite does
one full rotation around the −yo axis during one orbit-period.

We start o� by examining the hypothetical case where we are able to create
torques about arbitrary axes even though this is not possible in reality as
the magnetic coils can only create a torque perpendicular to their magnetic
�eld. A possible controller could be one that creates a torque in the opposite
direction of the current rotation, such as:

τBd = −dωBOB d > 0. (4.14)

The subscript d is used to denote the desired torque vector. In order to assert
system stability with this controller, we go back to our Lyapunov function
in 4.8 or more precisely its derivative from 4.10:

V̇ = (ωBOB)TτBm (4.15)

which, after inserting for the controller torque becomes:

V̇ = −d · (ωBOB)TωBOB < 0 ∀ ωBOB 6= 0. (4.16)

According to Theorem 2 in Section 2.4, it is easy to see from this equation that
we truly do have a dissipative controller which constantly drains the satellite
of its kinetic energy. There is a possibility that the satellite settles in an
unstable equilibrium, this however can not last due to the constant presence
of small disturbances, which in practice guarantee that the satellite reaches
one of the four stable orientations from 4.12. The immediate problem with
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this controller though, is that it is completely hypothetical. This is because
the coils on the satellite are �xed, and can only provide a momentummB that
has to be mathematically crossed with the geomagnetic �eld BB to produce
a torque τm, as:

τBm = mB ×BB. (4.17)

This torque is always in the plane perpendicular to the B vector and is
depicted in Figure 4.1. In the �gure we depict τm as a projection of τ d into
the plane perpendicular to B. Torque τm is the torque closest to τ d, which
we are able to generate. We thus need to �nd the moment m which gives us
torque τm when crossed with B gives, as in 4.17.

B

τ
m

τ
d

m

Figure 4.1: Projection of desired torque. Inspired by Figure 8.1 in [20].

From Figure 4.1 we can see that m can be expressed as:

mB = f(·)τBd ×BB (4.18)

where f(·) is an unknown scalar function making sure we preserve length of
the τm vector. Inserting this into 4.17 we get:

τBm = f(·)
(
τBd ×BB

)
×BB. (4.19)

If we denote the angle between BB and τBd as α, we �nd the length of τBm
as:
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|τBm| = |mB||BB| = f(·)|BB||τBd ||BB| sin(α). (4.20)

Exploiting that |τBm| = |τBd | sin(α), it is easy to �nd f(·):

f(·) =
1

|BB|2
. (4.21)

We can now insert the previously unknown scalar to �nd our control algo-
rithm:

mB = − d

|BB|2
BB × ωBOB (4.22)

τBm = − d

|BB|2
(
BB × ωBOB

)
×BB. (4.23)

This controller turns out to be uniformly asymptotically stable (UAS). For
proof see [20].

4.2.2 B-dot Controller

Relative to the dissipative detumbling controller in the previous section, the
B-dot controller does not require direct knowledge of the angular velocity of
the satellite. It does however require a derivative of the geomagnetic �eld,
B-dot. This is a common controller in literature and is given as:

mB = −dḂB d > 0. (4.24)

This can be expanded as:

mB = −k d
dt

(
RB
OB

O
)

= −d
(
ṘB
OB

O + RB
OḂ

O
)

= −d
(
−S
(
ωBOB

)
RO
BB

O + RB
OḂ

O
)

= −d
(
BB × ωBOB + RB

OḂ
O
)
. (4.25)

From 4.25 we see that the �rst term is the same as the dissipative detum-
bling controller. From 4.24 we can see that this controller attempts to align
the satellite with the geomagnetic �eld. Penalizing any change in the ge-
omagnetic �eld means that this controller in practice would not rest until
the satellite follows the the geomagnetic �eld exactly. This works well for a
dipole model where the magnetic �eld has a simple structure and the �eld
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derivative is easily computable. For an IGRF model on the other hand it
would mean constant draining of the battery and high power consumption on
derivative computation. We present this controller because of its popularity,
and because it is included in the code attached in the appendices. Our pro-
totype controller implementation will only include the dissipative controller.
For more information on this controller and its stability see [20].

4.3 Reference Controller for Large Deviations

Ultimately the attitude we wish to obtain is the one where the camera (pay-
load), of the satellite points towards the earth. The camera will be mounted
on one of the 10 × 10cm sides. This face of the satellite is the one that the
zb-axis goes through and by de�nition in Section 2.1.5 is the axis with the
lowest moment of inertia. We can therefore de�ne our control goal as aligning
the orbit and body frames. In other words reaching RB

O = 1, where 1 is a
3× 3 identity matrix.

By using the Euler parameter vector as a measure of error we can extend the
Lyapunov function in 4.8 as:

V =
1

2
(ωBOB)T IωBOB +

3

2
ω2
oc

T
3 Ic3 −

1

2
ω2
oc

T
2 Ic2 +

1

2
ω2
o(Iy − 3Iz)

+ k
[
εTε+ (1− η)2

]
. (4.26)

Where k > 0, and which at correct attitude has ε = 0 and η = 1, such that V
is zero in this state and positive otherwise. Exploiting that εTε+ η2 = 1, we
are able to rewrite the last term as 2k(1− η). By taking the time derivative
of V , the last term becomes −2kη̇, which according to 2.15, can be written
as kηTωBOB. Combining this result with V̇ found in 4.10, we obtain:

V̇ =
(
ωBOB

) [
kε+ τBm

]
. (4.27)

Which, assuming we can generate any arbitrary torque, gives us the control
law:

τBm = −dωBOB − kε d, k > 0. (4.28)

With this controller the equilibrium state ωBOB = 0, ε = 0, η = 1 becomes
uniformly asymptotically stable, though not globally. For more stability
information see [20], who also provides a gain requirement:
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k > 8ω2
o(Iy − Iz). (4.29)

In order to �nd the control law for the practical case when the moments are
generated by the coils, we follow the same projection procedure as in 4.2.1
to arrive at:

mB = − d

|BB|2
BB × ωBOB −

k

|BB|2
BB × ε (4.30)

generating the torque:

τBm = − d

|BB|2
(
BB × ωBOB

)
×BB − k

|BB|2
(
BB × ε

)
×BB (4.31)

We note that the �rst part is identical to the dissipative detumbling con-
troller. This can be exploited in the C-code to save memory and computa-
tional power, making the implementation more e�cient.

4.4 Pulse Width Modulation (PWM)

Inside the satellite we will have access to voltage of a nearly2 constant am-
plitude. This means that we cannot directly control the amplitude of the
voltage and thus the current applied to the coils. E�ectively this means that
without further care we end up combining continuous time controller with a
discrete time output. There is a solution however; and it comes in the form
of Pulse Width Modulation (PWM).

PWM is similar to a Digital to Analog Converter (DAC). We choose to de-
scribe one of PWM's modes of operation through Figure 4.2, generated in
Matlab. A microcontroller with a PWM contains counters which can be
turned on to count, e.g. upwards, as illustrated by the thin seesaw in the
upper graph. We can then pick a desired output, in our case voltage am-
plitude, which is stored into compare-registers on the microcontroller. From
this we can con�gure the PWM to set one of its pins high3 whenever the
counter value exceeds value of the compare register. This is exactly what is

2Ignoring the fact that the battery loses some potential as it is drained and also varies
with temperature changes.

3Microcontrollers can set their pins high (H) or low (L), enabling or disabling a voltage
on the output, respectively.
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Figure 4.2: A sinusoid converted to a PWM signal.

done in Figure 4.2. The trick here is that if the period of the PWM is much
smaller then the smallest time constant of the load, the fast changes in the
PWM output will be blurred in the load. Thus the load will experience an
averaged signal from the PWM which, in the case in Figure 4.2, is a sinusoid
signal.

When using a magnetic coil as the load, it is desireable to have a small coil
time constant, which can be found as:

τ =
L

R
(4.32)

where L is the inductance and R the resistance of the coil. Time constant τ
can be described as τ = t− t0, where t0 is the time when voltage is applied
over the coil and t the time when the current through the coil reaches 64%
of the �nal current. Thus, the smaller the time constant, the less additional
dynamics are introduced to the system by the coil's charging and discharging
time.
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Simulations

This chapter presents results of numerical simulations performed in Mat-
lab. We start by simulating the two di�erent geomagnetic �eld models, the
dipole and the IGRF-11 model, in order to familiarize ourselves with these
and to investigate model accuracy. Later we move on to the system as a
whole. We use Matlab's ode45 function to numerically integrate the system

with the state vector
{
x =

[
(ωBIB)T η εT λ p

]T ∈ <1x9
}
, where λ is

the satellite's latitude and p its power consumption,
´

(Watt) dt. The last
state is not directly a physical state of the satellite and has no impact on
satellite's orientation or its control; it is merely a simple and accurate way of
integrating the power consumed by the satellite' control systems throughout
the simulations. This state is, as mentioned, the integrated power usage of
the system and relates to watt-hours as: W · h = p

3600
.

Picking di�erent suitable initial states with multiple three dimensional frames
for this satellite-earth system, was in our opinion tedious. We have therefore
used the same standard as Soglo. The initial orientation and rotational
velocity parameters are set as

[
ωBOB φ θ ψ

]
, where ωBOB is rotation of

the body frame with respect to the orbit frame, expressed in the body frame
coordinates, and

[
φ θ ψ

]
are the Euler angles of a XYZ-rotation of the

body frame relative to the orbit frame. These parameters are then, through
Matlab function eul2qua.m (see Appendix C) translated to [ωBIB, η, ε

T ] for an
arbitrary initial latitude λ0. Satellite's initial power consumption is always
set to zero: p0 = 0. All the �les used in the simulations can be found in
Appendix C.

39
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5.1 Geomagnetic Model Comparison

Use of a dipole magnetic �eld model aboard the satellite would be bene�cial
through its simplicity. It is easy to extract the magnetic �eld values from
the model and its derivative computation is just as trivial. This obviously
reduces computation time, which in turn reduces the major control time
constant and the system's power consumption. In Figure 5.1 we compare the
dipole and the IGRF-11 models for longitudes 0 and 90◦, to see if the system
really needs to use the IGRF-11 model or if the dipole model is su�ciently
accurate. The �gure shows that there is fair amount of irregularities in the
geomagnetic �eld, which are completely ignored by the dipole model - the
geomagnetic �eld is longitude dependant, as expected. It is thus immediately
obvious that the dipole model does not provide su�cient information, so that
IGRF11 computation should be virtually impossible before falling back to the
simple dipole model. Besides the irregularities, the fact that the dipole model
ignores the yo-axis components of the magnetic �eld is worrying as it may be
enough to bring the system to an ill conditioned state, as shown in Figure
3.3.

North East Vertical Total �eld
Lat=53◦ Lon=0◦

On-line 14676.5 -668.9 34826.3 37798.4
Matlab 14470.3 -675.9 34844.0 37735.3

Lat=80◦ Lon=169◦

On-line 3639.5 356.1 44711.8 44861.1
Matlab 3553.0 365.9 44463.1 44606.3

Lat=−40◦ Lon=−55◦

On-line 13954.7 -1521.6 -13935.7 19780.1
Matlab 13906.1 -1493.8 -14026.3 19807.7

Table 5.1: Comparison between internet IGRF-11 �eld calculator from
NOAA NGDC and the implemented IGRF-11 model. All values are given in
nanoteslas.
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Figure 5.1: Dipole �eld and IGRF-11 model comparison for two di�erent
longitudes.
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Errors Lat=53◦ Lon=0◦ Lat=80◦ Lon=169◦ Lat=−40◦ Lon=−55◦

Magnitude 0.17% 0.57% 0.14%
Direction 0.299◦ 0.086◦ 0.297◦

Table 5.2: Direction and magnitude errors.

Now that we have ruled out the use of the dipole model we wish to check
the accuracy of our IGRF model when compared with the most reliable
�eld data which is obtained from the National Oceanic and Atmospheric
Administration's (NOAA) National Geophysical Data Center's (NGDC) on-
line calculator [17]. In Table 5.1 we compare the values of our simulated IGRF
model and the on-line calculator for three di�erent arbitrary positions.
The di�erences in values seem to be negligibly small. However, for small
component values a small deviation may imply a large relative error, we
therefore need to check the magnitude and directionality of the vectors to
make sure we have a useable model. We compare the magnitude as a absolute
percentage di�erence of the Matlab model compared to the on-line one. The

angular deviation is found by using θ = cos−1
(
v1•v2
|v1||v2|

)
, where v1 and v2 are

the on-line and matlab found magnetic �eld values combined into vectors,
assuming to have their origin in origo1. From these results in Table 5.2, we
see that the error introduced by the our IGRF model really is negligible, and
the model is well suited for our mission.

5.2 Detumbling Controller

Here we simulate the system behavior when using the energy dissipative con-
troller to detumble the satellite. The moment from this controller, developed
in 4.22, is:

mB = − d

|BB|2
BB × ωBOB

generating the torque:

1E.g. v1 =
[
14676.5 −668.9 34826.3

]
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τBm = − d

|BB|2
(
BB × ωBOB

)
×BB.

The main objective of this section being to provide the reader with some
intuition of the satellite's dynamics during the detumbling phase, we pick a
very simple initial condition, as shown in Table 5.3.

ωBOB =
[

0 −0.2 0
]T

η = 1

ε =
[

0 0 0
]T

λ = 0

p = 0

d = 4 · 10−5

Satellite mass = 2 kg

Simulation time ≈ 2896 sec (1
2
orbit)

Table 5.3: Initial state and simulation parameters for the dissipative detum-
bling controller.

This gives us the following initial state vector:

x0 =
[

(ωBIB)T η εT λ p
]T

(5.1)

=
[

0 (−0.2− ωo) 0 1 0 0 0 0 0
]
.T (5.2)

Putting it in layman's terms, we start with the satellite's body frame perfectly
aligned with the orbit frame at zero latitude and zero longitude2. The satellite

starts out with 0.2radsec angular velocity about the negative yb axis, relative
to the orbit frame. Note that the simulations were done while the maximum
satellite weight was still uncertain and thus set to 2kg. Figure 5.2 shows

2Longitude is not a part of the initial condition because this parameter does not change
- in simulations we assume that we have a perfectly polar orbit.
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Figure 5.2: Satellite rotation, ωBOB with the detumbling controller engaged.

the values we primarily are interested in, namely the satellite's rotation with
respect to the orbit frame - this is the energy the controller is attempting to
dissipate. We observe how the detumbling controller elegantly dissipates the
energy from the yb axis without tempering with the two other axis. These
remain stable because the satellite is perfectly oriented with respect to the
orbit frame.

Figure 5.3 shows the Figure A.3 when we zoom in on the interesting dy-
namics. We immediately notice that the moments from the z+ and x+ faces
seem identical besides a small phase di�erence. This is perfectly reasonable,
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Figure 5.3: Moments generated by the controller. Enhancing interesting
dynamics from Figure A.3.
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Figure 5.4: The generated torque. Enhancing interesting dynamics from
Figure A.4.

expected, and is further explained in Appendix A. Besides their structure,
we can see how that the moments are saturated when the electrical current
of the desired, optimal moments exceeds the plausible current, available for
our given voltage.
The moments from Figure 5.4 all create a torque about the y axis to detumble
the satellite; this torque is shown in A.4 with the most interesting dynamics
enhanced here in Figure 5.4. The almost comb-�lter-like structure appears
because of the relatively small controller gain - with a larger gain we would
only have a straight line as the currents through the coils would constantly
be saturated.

Lastly we examine the systems power consumption properties. In Figure 5.5
we are able see the total power consumption of the coils. We observe that
the system uses just under 55 Joules = 0.0153 Watt

Hours
to dissipate the kinetic

energy from the satellite. The energy dissipation can be seen in Figure A.2.
The electrical energy consumed by the coils is rather low, especially when
taking into account that the detumbling phase is a one-time scenario. We
have to remember though, that these simulations were performed while the
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Figure 5.5: Controller's power consumption.

satellite's weight was assumed to be 2kg.

It is important to note that it is impossible to use the gain of this controller
to a�ect satellite's state after detumbling. The equilibrium state reached
at the end of detumbling phase can be seen as chaotic (changing the initial
parameters may result in a completely di�erent stable equilibrium state).
Increasing the gain, to a certain point3, does however decrease the detumbling
time at the cost of increasing power consumption.

3Before system starts to oscillate.
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5.3 Reference Controller

Here we simulate the system behavior in its full complexity; starting with
the detumbling and ending with reference control. Simulation presented here
was done using a 10th order IGRF model. The algorithm for the coil moment
for this controller developed in 4.30 is:

mB = − d

|BB|2
BB × ωBOB −

k

|BB|2
BB × ε

generating the torque:

τBm = − d

|BB|2
(
BB × ωBOB

)
×BB − k

|BB|2
(
BB × ε

)
×BB.

The initial parameters for the simulations are shown in Table 5.4, where
we chose the same initial tumbling as in the previous simulation of the de-
tumbling controller. Initial Euler parameters are those corresponding to an
XYZ-rotation of

[
80◦ 50◦ 170◦

]
which was randomly selected in couple

of tries, making sure the satellite does not reach RB
O = 1 using only the

detumbling controller. The gain d is same as for the detumbling controller,
while k = 5 ·10−8 > 8ω2

o(Iy−Iz) ≈ 4.7 ·10−8, which is the gain criterion from
Section 4.3.

ωBOB =
[

0 −0.2 0
]T

η ≈ −0.210

ε ≈
[

0.373 −0.552 0.715
]T

λ = 0

p = 0

d = 4 · 10−5

k = 5 · 10−8

Satellite mass = 2 kg

Simulation time ≈ 23170 sec (4 orbits)

Table 5.4: Initial state and simulation parameters for the reference controller.
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For the �rst 1.5 orbits, the satellite is controlled by the detumbling controller,
dissipating its kinetic energy. After this period the reference controller takes
over; it is these dynamics we are interested in here. In Figure 5.7 we depict
the Euler angles for the whole simulation, which are extracted from the
quaternions in Figure A.5. One might think from the �gure that the reference

controller drives the satellite to a wrong attitude, as Euler angles
[

0 0 0
]T

correspond to quaternions η = 1, ε =
[

0 0 0
]T
. It is not that trivial

though; the conversion from quaternions to Euler angles does not produce
unique angles4, rather unique attitude. What we are trying to say, is that the

Euler angles in Figure 5.7 represent the same attitude as angles
[

0 0 0
]T

do - rotating the satellite 180◦ about each of the three principal axes brings
the satellite back to its original position. We can also notice minor yaw-axis
oscillations towards the end of the simulation. These oscillations decay but
can also be reduced by allowing the detumbling controller to slow the satellite
even further, because, as we can see from Figure A.6, the satellite still has a
small angular velocity ωBOB after the initial 1.5 orbits.
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Figure 5.6: Power consumption for the full simulation.

4+180◦ = −180◦.
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Figure 5.7: Euler angles for the full simulation.

Figure 5.6 shows the power consumption during the reference control. We
can see that the satellite receives a �kick� when this controller is engaged.
The total energy consumed by the reference controller amounts to 2J, barely
having an e�ect on the battery. In Figure A.7 we can see the moments, which
generate the torques in Figure A.8 amounting to this power consumption.



Chapter 6

Prototype Design

This chapter explains our approach and reasoning while designing the �rst
prototype for the attitude control system. First we start o� by identifying the
hardware components necessary to build a fully functional control system.
Secondly we design a circuit schematic for the connections of the components
in the system. Thirdly we design a Printed Circuit Board (PCB) and mount
all the necessary components. Finally we put all of the components together
and program the microcontroller.

Throughout this whole chapter we try to point out the pitfalls when designing
such a system in order to make this process as simple as possible for anyone
attempting to recreate our results.

6.1 Hardware

Laid out in simple terms, we wish to run our control software on a micro-
controller which then runs a current through a coil, creating a magnetic �eld
used for control. We immediately realize that if we are to retain any con-
trollability, the current applied to the coil has to be able to �ow in both
directions; forward and reverse. An H-bridge is a relatively simple electronic
circuit designed for such a task.

Note that the attitude control module is a subsystem of the attitude determi-
nation and control system (ADCS). Attitude determination module was being
designed in parallel to the control module; thus some component choices are

51
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implicit, in order to create a fully functional ADCS.

Microcontroller choice

The satellite attitude control algorithms implemented are not very compu-
tationally demanding. The only slightly intensive task is the magnetic �eld
estimation from the IGRF-11 model, which changes slowly relative to its
computation time. Therefore the primary requirement for the microcon-
troller choice is to have a minimum of three Pulse Width Modulation (PWM)
channels, to be the inputs to the three coils. However, because the attitude
determination prototype design was ahead of the attitude control prototype,
we chose to use the same controller as it met all the control module require-
ments. The microcontroller used is thus a 64-pin Atmel ATMEGA2561v,
with the data sheet [2].

H-bridge choice

Our choice of H-bridge was mainly based on its operating voltage ranges and
its simplicity. Logic Supply Voltage (VCC) for the H-bridge is determined to
be 3.3V and its Load Supply Voltage (VBB) to be 5V, by the power man-
agement design group. We wish to keep the system as simple as possible to
avoid unnecessary weaknesses. We selected the 16-pin Allegro Microsystems
A3953SLB-T SOIC, H-bridge. From its data sheet in [1] we �nd its Logic
Supply Voltage Range: 3 - 5.5V and its maximum Load Supply Voltage: 50V.
These speci�cations meet our requirements. In Figure 6.1 we provide a sim-
ple illustration of a H-bridge functionality, which also explains its name. If
we de�ne forward motor operation as �opening� transistors T1 and T4 while
�closing� T2 and T3, it is easy to see that reverse operation can be obtained
by opening transistors T2 and T3 while closing T1 and T4. This opening
and closing is done through the H-bridge's PHASE pin, explained in Section
6.2. All of this is thoroughly described in the data sheet. For reference we
also present the physical layout of the component in Figure 6.2.

Unfortunately we have to mention that soon after ordering the H bridge we
were made aware that it was deemed Pre-End of Life, meaning that the prod-
uct was approaching end of life. This is a bit unfortunate for anyone trying
to recreate the exact results presented in this thesis. However the impact of
a di�erent H-bridge should be minimal.
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Figure 6.1: Basic H bridge structure.

Magnetic Coil

Three main factors primarily need to be considered when designing a coil for
an application of this sort. We assume a 5V power supply.

1. Power

2. Size

3. Weight

We based our design on the coil's1 maximum power consumption. We do
not want to short-circuit the battery by having a negligible resistance in the
coil, nor do we want to have an e�ect barely producing a magnetic �eld.
As very few satellite specs were worked out at this point we started with
an assumption that a 1

4
Watt maximum power consumption by the coil is

reasonable. Using Ohms law:

Vz = Rz · Iz (6.1)

1We designed the coil for the 10 × 10cm, z+-face only. The design procedure for the
other two is nearly identical, with only one parameter (length) being di�erent.
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Figure 6.2: H-bridge physical layout.

where V is voltage, R resistance and I current, together with power law:

P = Vz · Iz (6.2)

where P is power, we were able to directly extract the coil's resistance that
meets this requirement:

1

4
= Vz · Iz =

V 2
z

Rz

=
52

Rz

→ Rz = 100Ω. (6.3)

Because conductor resistance is circumference dependent, this problem does
not have a unique2 solution. The list of available wire diameters (circum-
ferences) can be found in the American Wire Gauge (AWG) standard. The
AWG standard can be found in many booklets and on the web, e.g. [18].
The most interesting values are for reference included in B.1, where our �nal
conductor choice is highlighted. In order to have space for the coil inside
the satellite, we constrain its size to 80× 80mm. We plot, in Figure 6.3 the
number of turns, maximum momentum and approximate3 weight for di�er-

2We have two variables: number of turns and wire circumference but only coil's maxi-
mum power consumption as a constraining equation.

3We �nd the weight of a coil with all turns the same size and without insulation - this
is an approximation in our case. Putting much e�ort into exact calculations at this stage



CHAPTER 6. PROTOTYPE DESIGN 55

ent conductor circumferences. We explain how these parameters were found
by using wire diameter of 0.227mm as an example; the same conductor diam-
eter as in our �nal prototype. This diameter was selected in order to obtain
the largest possible maximum momentum while retaining a feasible weight
of 0.084Kg.
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Figure 6.3: Turns, maximum momentum and approximate weight for di�er-
ent conductor circumferences.

Number of turns for the coil is identi�ed as the quotient of the following
division:

Floor

{
(100Ω)

(0.427 Ω
m) · [2(0.075 + 0.075)]m

}
= 780 (6.4)

is futile because none of the exact inner satellite dimensions are known.
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where 0.427 Ω
m
is extracted from B.1 and sides of 75mm are selected in order

to ensure that size of the coil stays within 80× 80mm. Inserting resistance,
voltage and the number of turns into 3.26 we �nd the maximum magnetic
moment to be:

780 · 0.0752m2 · 5V

100Ω
= 0.219Am2. (6.5)

We can also �nd the approximate weight of the coil:

780 · 2(0.075 + 0.075)m · 0.3577 · 10−3Kg

m
≈ 0.084Kg. (6.6)

An illustration with the parameters for the �nal coil design can be seen in
Figure 6.4. We calculate the coil's inductance using the formula for a square
loop coil from [22]:

L ≈
2N2µ0l

π

[
sinh−1

(
l

w

)
− 1

]
=

2 · 7802 · 4π · 10−7 · 0.075

π

[
sinh−1

(
0.075

0.1135 · 10−3

)
− 1

]
≈ 226mH

(6.7)

where N = 780 is the number of turns, µ0 = 4π · 10−7 is the vacuum perme-
ability, l the (average) length of coil's sides and w the wire radius. From this
we can also �nd the coil's time constant:

τ =
L

R
=

0.226

100
= 2.26ms. (6.8)

Additional components

The overall system requires a set of standard components to enable safe
and stable operation, in addition to the integrated circuits (ICs) mentioned.
These are summed up here, in Table 6.1 as part of the hardware section,
while the reasoning behind these is presented in the next section.
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Figure 6.4: Illustration of the designed coil.

Capacitors Resistors Misc

4x 100nF 1x 10kΩ 1x 16Mhz crystal oscillator
2x 12pF 1x 30kΩ 18 connector pins
1x 470pF 1x 0.5Ω4

1x 47µF

Table 6.1: Additional components.
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6.2 Circuit Schematic

The circuit schematic was created using the freeware version of EAGLE 5.11.0
from CadSoft. Attitude control module was appended to the already exist-
ing schematic for the attitude determination module, which included the mi-
crocontroller, sensor, their necessary capacitors and resistors, together with
JTAG and power supply connectors. The microcontroller in the schematic is
an ATMEGA128A, not the implemented ATMEGA2561V, due to late con-
troller changes. The pin functionality of the two controllers was for our pur-
poses identical and thus the original controller was retained in the schematic.
The microcontroller together with components from Table 6.1 was selected
from EAGLE component library, while the sensor and the H bridge were
designed manually and then added to the library as well as the schematic.
The dimensions of the H-bridge were extracted from the last page in its data
sheet [1].

In Figure 6.5 we can see the �nal setup. We observe the microcontroller on
the left (when seen from the side), H-bridge in the upper right and the sensor
in the lower right corner. Three of the 100nF capacitors are installed to
decouple the microcontroller's VCC from ground while the last one decouples
the reset pin. This is to done to stabilize the voltage supply. The external
clock and its connection setup is described in the �System Clock and Clock
Options� chapter in [2]. For sensor connection we refer to [10]. The H-bridge
is connected according to its typical application setup, as shown in Figure
4 in the data sheet [1]. Note that this scheme together with the prototype
in later sections, includes hardware for a single coil. This is done due to
economic reasons, and as nearly all parts of the control module can be tested
using a single coil.

Before any further explanation on H-bridge connection, we need to look at
its truth table5. We set BRAKE and MODE low (see [1] for better under-
standing) and present the relevant truth table data6 in Table 6.2. From this
table we see that PHASE de�nes the direction of the current by deciding
which of the outputs, OUTA or OUTB, is to be set high. ENABLE on
the other hand overrides PHASE and decides whether there should be any

5Truth table of a H bridge relates its output values to its input conditions. H - high/on,
L - low/o�.

6We have modi�ed the table to show actual inputs - ENABLE instead of ENABLE.
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Figure 6.5: Circuit schematic.
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ENABLE PHASE OUTA OUTB DESCRIPTION

L - O� O� Standby

H H H L Forward, Slow Current-Decay Mode

H L L H Reverse, Slow Current-Decay Mode

Table 6.2: H bridge Truth Table from [1].

output at all.

In Figure 6.6 we enhance the dashed rectangle region from Figure 6.5 to
comment further on how everything is brought together. Note that we use
Timer 1 and its respective compare registers for the PWM signals.

Let us now continue by explaining the two connections between the micro-
controller and the H-bridge. The �fth port B-pin of the microcontroller,
(OC1A)PB5, is the output for the �rst Timer 1 compare register. This is
trivially connected to the the ENABLE, creating the (OC1A)PB5 ←→
ENABLE connection. The second connection is (SS)PB0 ←→ PHASE,
where (SS)PB0 is an arbitrary7 microcontroller pin used to set the direction
of the current. Note lastly, besides the typical H-bridge application compo-
nents, that we apply the same supply power to both Logic and Load inputs
of the H-bridge. This is for prototype testing simplicity - supplying power to
the system from a single source (USB). The two connector pins in the �gure,
X2-1 and X2-2, are pulled out for easier coil connection.

6.3 Print Circuit Board (PCB)

Once the schematic design was completed we moved on to EAGLE's board
view in order to design the physical layout of our PCB. Circuit connections
are created in the circuit schematic as mentioned, but it is here (board view)
that the designer creates the physical paths of the conductors and places
all the components on the board. The designer creates the actual physical

7We avoid using PB6 and PB7 as these are suitable as ENABLE signals for the last
two coils
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Figure 6.6: Control module enhanced.

setup/look of the PCB. For the prototype we decided to use a two layer PCB,
which apparently gives us more then enough space to place all of the required
components and their paths. Figure 6.7 depicts the �nal board design for
the �rst ADCS prototype, with only one control coil. From the �gure we see
that this board measures approximately 87× 50mm. Although the board is
lackin two control modules, judging from the fact that there is still plenty of
space available on the current size board and that the �nal board dimensions
are v 90× 90mm, space on the ADCS module does not seem to be an issue.

Practicalities

As this was our �rst time designing and printing a PCB, we will try to shed
light on the problems we encountered so that possible pitfalls may be avoided
in future design and research. Some suggestions given here are not followed
in our design. This was because we learned during the process, and did not
feel the need to create a whole new prototype just to make minor changes
and enforce slightly safer operation when already operating in a controlled
environment.

• We urge the designer to create short paths from the unused component
pins on the board, and end them in a via8. This makes slight modi�-
cations of the prototype much simpler since one does not need to begin
anew if a slight change is required; one can only add a wire to create

8Vias are small vertical electrical connections between di�erent layers of conductors in
a PCB.



CHAPTER 6. PROTOTYPE DESIGN 62

Control Module

Accelerometer, Gyrometer and Magnetometer (Determination module)

JTAG

16Mhz crystal oscillator

Power supply

87mm

50mm

Figure 6.7: Board schematic.

the needed connection.

• Conductors connecting the microcontroller to the external clock in our
schematic are excessively long. They should be made shorter whenever
possible to reduce additive noise to the clock ticks.

• We placed three 100nF capacitors at the top of our board, between
the power supply and the JTAG connectors. These should ideally be
spread out all over the board to decouple VCC on the microcontroller
from the ground.

• When designing a PCB, connect connectors on the back side only. This
is because soldering has to be done on one side of the board and it is
unsual to place vias in the connector holes.

• After printing a PCB, pay attention when inserting vias, as they should
not be applied to connector holes, unless an extra large drill bit is used
for these holes.

• When soldering, solder the non-ground connection of a component �rst.
It is much easier to start with this end as it is separated from the rest of
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the board. Ground on the other hand is not9, making heat conduction
an issue for an inexperienced solderer.

6.4 Final Prototype Hardware

The prototype from the design in Figure 6.7, was printed using a LPKF
ProtoMat S62 circuit board plotter, available at the Engineering Cybernetics
lab located in the basement of the D-block, Elektrobygget, Gløshaugen. A
non-conductive substrate board covered in copper sheets, is placed inside
the circuit board plotter. Design schematics for the prototype are imported
into BoardMaster and CircuitCAM software on the computer controlling the
whole printing process, as described in [13] available at the lab. From here on
the printing process is largely automatic. After printing the circuit board, all
the required circuit components were soldered by hand. The soldering was
done using a thin tip soldering iron heated to 450C◦, using solder paste. The
prototype created, with labeled parts, can be seen in Figure 6.8. Note that
there is a connector missing on the power supply connector array. This is
because only a 5-pin connector was available at the time, and the last pin on
the power supply is totally disconnected from the system. Connecting this
pin would only lead to better mechanical stability, which was not an issue,
and was therefore omitted.

The �nal coil prototype can be seen in Figure 6.9. Immediately from the
�gure we can see that the coil size does not meet the design speci�cations nor
the system requirements, making it unsuitable for the satellite. This was a
slip-up on our part when designing the coil. First we made a miscalculation,
where we worked with the average instead of absolute dimensions of the
coil. The second error, and a possible pitfall, was not including conductor
insulation in our calculations. Insulation thickness, according to Oddvar
Landrø at the Department of Electric Power Engineering, is about 1

10
of the

conductor diameter, and must thus be taken into account when designing a
coil.

The coil was measured with a letter weight and was surprisingly found to be
exactly 0.084kg, identical to the theorethical value from our miscalculations.
Its resistance was measured to be v 100Ω. Measuring its inductance proved

9In our case. This is however design dependent.
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Figure 6.8: PCB prototype.
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Figure 6.9: Coil prototype.
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Figure 6.10: Measurement of coil's time constant.

to be a tougher task. We were unable to arrive at any consistant measurement
using an analog multimeter and had to �nd the inductance through its time
constant L

R
. The measurement of the time constant was set up in the following

manner: a square 1Hz wave from the signal generator, ISO-TECH GFG8219,
was applied to the coil, while a galvanically separated oscilloscope was used
to measure the current through the coil (more details on how the current is
measured are available in Section 7.3). The time constant was measured to
be 600µs which gives us an inductance of 600µs · 100Ω = 60mH. This is
approximately 1

4
of the theoretical inductance. The primary reason for such

a theoretical error is that the N2 approximation in 6.7 assumes that all the
turns of the coil occupy the physical space of a single turn. The oscilloscope
graph of the coil's time constant measurement is depicted in Figure 6.10.

6.5 Programming the Microcontroller

The software for the prototype was programmed using C programming lan-
guage, in Atmel's AVR Studio 4.18 integrated development environment
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(IDE). The program itself was transferred to the microcontroller using an
AVR Dragon Development board by Atmel, with the connection setup de-
picted in A.9, where the power supply for both cards was a 5V PC USB
connection.

All of code written for the microcontroller is a direct translation of the
Matlab-code, which was the �rst to be written. An important di�erence is
the non-existence of matricies and their operations in C. Thus all the n×m
matrices from Matlab are converted to 1× (n ·m) vectors in C. This requires
special care when doing matrix operations; especially in the IGRF model,
which is quite complex. All other computations, beside the IGRF model,
were expanded by hand and hard-coded to reduce program complexity and
avoid using any additional pseudo-matrix manipulating functions. The code
for the microcontroller is included in the Appendix C as AttitudeControl.c.
For easier reference, this code includes comments before all operations, pre-
senting their Matlab counterparts.

For the PWM we use a 16-bit Timer1 which gives us high resolution and
has three compare registers, meaning that one timer is enough to control all
three coils. The initiation of the PWM is done in PWM_init() function:

1 void PWM_init ( ) {
2 // Waveform genera t i on mode : PWM, Phase and Frequency Correct
3 TCCR1A |= (0<<WGM11) |(0<<WGM10) ;
4 TCCR1B |= (1<<WGM13) |(0<<WGM12) ;
5

6 // No p r e s c a l i n g
7 TCCR1B |= (0<CS12) |(0<<CS11) |(1<<CS10) ;
8

9 // Clear on compare match when up−count ing .
10 // Set on compare match when down−count ing .
11 TCCR1A |= (1<<COM1A1) |(1<<COM1A0) ;
12 TCCR1A |= (1<<COM1B1) |(1<<COM1B0) ;
13 TCCR1A |= (1<<COM1C1) |(1<<COM1C0) ;
14

15 // Reso lut ion
16 ICR1 = 0x0400 − 1 ;
17

18 // DDRB |= (1<<DDB0) |(1<<DDB4) ;
19 DDRB = 0xFF ;
20 }
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We identify all required register bits using the microcontroller's datasheet [2]
as reference. First we choose to use a Phase and Frequency Correct PWM
waveform generation, which is best explained in Figure 57 in the datasheet.
The PWM timer counts up and down, having a triangle function as opposed
to the seesaw in 4.2. Secondly, we choose not to use any prescaling on the
clock in order to retain high resolution and frequency of the PWM. Setting
this register starts the PWM timer. Thirdly, we choose to set the PWM
output low on compare match when up-counting, and high on compare match
when down-counting. This means that a compare register at 60% maximum
value will produce a 60% duty cycle as shown in Figure 6.11. Here the square
signal represents the PWM output, triangle the timer counting up and down,
and straight line represents the compare register. Lastly we select the PWM's
resolution and de�ne the B-ports as out-ports. The ICR register tells the
microcontroller how many steps it should make when counting up/down. By
setting this register to e.g. 10 we tell the microcontroller to divide its up- and
down-counting into 10 steps, meaning that we end up with bad resolution
where the controller cannot distinguish compare register values c that lie in
the set {(k < c < k + 0.1 | k = 0, 0.1, 0.2, ..., 0.9}. This would indicate that
the optimal resolution is 0×FFFF . However there is a downside; for a e.g.
10 step resolution, the Timer ticks 20 times altogether on one up-/ down-
count. This means that a 16Mhz microcontroller can maximally generate a
800khz PWM signal:

CPU Speed

2 ·Resolution
=

16 · 106

20
= 800000. (6.9)

Because the coil has an inductance, blocking a step change in current, and
thus a step change in magnetic �eld, this frequency/resolution relationship
has to be analyzed in order to have a coil that produces the desired magnetic
�eld.
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1

0.6

Figure 6.11: PWM compare register illustration.



Chapter 7

Prototype Simulations

7.1 Code Runtime

Here we analyze the runtime of the code implemented on the microcontroller.
Looking at the code in attitudeControl.c in Appendix C, it makes sense to
section the code in three parts: initialization done outside the main while
loop, the while loop computations excluding IGRF model computation, and
�nally the IGRF model computation. We compute their runtimes by count-
ing the number of clock cycle passing during each of the sections using one
of the microcontroller's timers. Converting clock cycles into elapsed time is
done by the following equation:

Cycles · Prescaling
CPU speed

. (7.1)

While the CPU speed of the microcontroller is 16Mhz we prescale it by 64
to avoid over�ow when counting clock cycles for IGRF computation.

Initialization of the code is completed in 104 clock cycles, which translates
to 6.5µs. The main loop computations are done in 4081 clock cycles, corre-
sponding to 255µs. IGRF computation time was analyzed for all 13 orders of
the model which are presented in Table 7.1. There is no reason, at this point,
to believe that its runtime, for any order, could deteriorate controller's in-
tegrity. However, processing power does drain the batteries, so we wish min-
imize the number of arithmetic operations. Due to time limitations we do
not pursue this problem all the way through. We only provide the runtimes,

69
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Order 1 2 3 4 5 6 7
Clock ticks (1/64 prescaling) 596 1504 2813 4521 6624 9134 12036

Time [ms] 2 6 11 18 26 36 48

Order 8 9 10 11 12 13
Clock ticks (1/64 prescaling) 15335 19036 23138 27637 32523 37808

Time [ms] 61 76 92 110 130 151

Table 7.1: IGRF runtime for orders 1 through 13.

so that in the future after some accuracy requirement analysis, conclusions
may be drawn on what order model should be used.

7.2 Coil Temperature Dependence

The resistance of electrical components is temperature dependent. When it
comes to the magnetic coil, especially, this dependence has to be mapped and
adjusted for. This is because the coil's resistance is inversely proportional to
its maximum current �ow and thus its maximum magnetic moment. For this
reason we perform an experiment where we vary the coil's temperature while
measuring its resistance. We use a Vötsch Industrietechnik VT 4011 tem-
perature test chamber for correct environment temperature manipulation.

Fourteen similarly1 spaced measurements from −40C◦ to +30C◦ were taken.
Plotting these in Matlab reveals a linear-looking relationship, which through
�rst order polynomial (linear regression) yields coe�cients {0.3668, 91.6063}
and the following approximating function:

R = 0.3668T · T + 91.6063 (7.2)

where R is the resistance and T the temperature of the coil. The measure-
ments and the approximating function are depicted in 7.1 It is highly likely
that the approximating function is even more accurate than it appears in the
�gure. This is because disturbances without a doubt did enter the system
as we operated with limited time frames. In other words, had we waited

1Temperature test chamber had problems settling at desired non-negative tempera-
tures. Therefore the jump at 0C◦ and slight step variations.
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longer at each temperature step for the temperature in the coil to stabilize,
we could have obtained more accurate measurements.
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Figure 7.1: Temperature-resistance relationship for the prototype coil.

7.3 Coil Output

For �nal testing of the prototype the system was connected as in Figure A.10.
The full setup consists of an oscilloscope needed to measure the signal from
the PWM through the coil, and a separating transformer used for Galvanic
separation (isolation) of the power supply form the PC and the oscilloscope.
The Galvanic separator is required because switching the PWM's direction,
while using an oscilloscope to measure voltage over the H-bridge's outputs
OUTA and OUTB, results in short-circuiting the whole system.

As it is rather easy to make a bad connection at one point or the other, we
urge anyone attempting to recreate these results to work in a quiet environ-
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ment, and if possible, to keep a �nger on the H-bridge and the microcontroller
when making a new connection while the system is running. This proved cru-
cial in our case, because the system often creates a low, high frequency noise
when a bad connection is made, and the components quickly start overheat-
ing. The user should in these cases immediately disconnect the power supply
to the system or the newly added connection and rethink his or her approach.

All of the oscilloscope graphs were captured to PC using the 3000 Series Scope
Connect Software v1.1.27 by Agilent Technologies found on the producers
web page, together with the necessary drivers. Our �rst simulation was done
to see if the prototype could output a correct duty cycle2 and correct PWM
frequency. In the C-code the duty cycle was set to 50% and resolution to
1024 bits. A 1024 bit resolution according to 6.9 should be:

16 · 106

2 · 1024
≈ 7812.5Hz. (7.3)

From the result in Figure 7.2 we see that the duty cycle and the frequency
generated almost identically match the desired ones.

The duty cycle produced as a result of the control algorithms and the IGRF
model has also been extensively tested. Empirical tests have been compared
to the Matlab model and found to be seemingly fully functional - all tests
have produced identical results to those from Matlab simulations. However
at this stage we cannot say this for certain that this always is the case, as
there may exist cases that produce erratic behavior such as register over�ow;
even though this never occurred in any of our tests. It is di�cult however, to
provide any illustrative static �gures of these dynamic simulation. The duty
cycle produced by the control algorithms in C may as well be 50%, as in the
hard-coded example case. This is the main reason why all the program code
is included in Appendix C.

Our next step was to measure the current running through the coil. Ideally,
in order to measure a current and its relation to time, we would connect a 1Ω
resistor in series with the coil and measure the voltage over it using an oscil-
loscope, which for 1Ω is the same as the current. Using any higher resistance

2The time (in per cent) that the PWM output is set to high as a fraction of the total
time under consideration.
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Figure 7.2: Prototype PWM test.

may alter the circuit enough to corrupt our measurements. This small resis-
tor does unfortunately pose a serious problem when attempting to retrieve
meaningful measurements. The maximum current in our coil loop being

5V
100Ω

= 50mA means we can maximally measure a voltage of < 50mV over
the resistor. Additionally to get any useful measurements, setting the PWM
duty cycle to 50% reduces the measured voltage even further, to < 25mV .
The oscilloscope used reaches its minimum vertical division at 20mV , at
which measurements are more or less inseparable from the additive noise;
meaning that it is relatively impossible to perform any useful measurements.

To bypass the described problem, we instead insert a 10Ω resistor in series
with the coil. Still using a 50% duty cycle and ignoring the coil's inductive
properties we should then expect an 1

2
5V

(100+10)Ω
= 22.7mA average current,

which when measured over the resistor corresponds to 227mV . The �rst
measurement however, done using a 1024 bit resolution, resulted in a 11mA
current through the coil. This indicates that the coil's inductance properties
are not as negligible as previously expected, and may point to a suboptimal
coil design. We observe a reduced current due to coil's time constant, which
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being

Figure 7.3: Current through the prototype coil.

at 600µs is too large relative to the PWM's period time (16·106

2·1024
)−1=128µs.

By reducing the coil's time constant we could attempt to match the shape
of the current with that of the voltage in Figure 7.2; unfortunately this
is impossible at this stage. The possible solution on the other hand is to
increase the PWM's frequency. We attempt the latter by slowly reducing
PWM's resolution and observing an increase in the average current, which
ultimately is the only value that matters. Finally, at a resolution of 16 bits,
which means that the controller can only distinguish between intervals larger
than 50mA

16
= 3.125mA of the desired applied current, we observe the graph

in Figure 7.3. We measure a current of 180mV
10Ω

= 18mV , which even at this
coarse resolution is unfortunately still 4.7mA o� the desired 22.7mA current.
We suggest, from this strong indicator that a new coil with fewer turns should
to be designed.

In order to make sure the system can run over longer time periods without
overheating, a simple test was performed where we allowed the prototype to
run for an hour with the PWM's duty cycle set to 100%. Under this test
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the prototype performed smoothly, as none of the components showed any
indicators of being overloaded.

7.4 Future Work

We have attempted to create a backbone for the attitude control module
design, such that those re�ning the module are made aware of the possible
pitfalls and critical design speci�cations. By doing this we hope to reduce
the problems this project meets in the future.

The thorn in our side throughout the whole design process has been the pro-
totype coil and its inductance properties. Correct coil design is of utmost
importance, and should be studied extensively. The coil's inductance, besides
its weight, is a primary issue which relative to our designed coil should be
reduced. A ferromagnetic core should also be considered once the permitted
coil weight is known. According to Johannes Skaar, this may introduce a
hysteresis e�ect that have to be accounted for.

Regarding the control algorithms, two main points remain. First is develop-
ment of an algorithm which is able to switch from the detumbling controller
to the reference controller at the correct time. The second second point is a
deduction of the best possible gains, which can only properly be done once
basic satellite parameters are established.

When it comes to the C-code implemented on the microcontroller, we �nd
another two points where improvement is possible. A more in-depth anal-
ysis of the IGRF model is required such that we can establish what order
approximation is needed. It is highly unlikely that the accuracy of a 13th
order model greatly surpasses that of an e.g. 10th order model, while its
runtime is 63% longer. An example of a comparison can be seen in Table
7.2. The second point is modifying the C-code to use integer variables only,
in order to reduce power consumption. This may be done by multiplying
all the variables and constants by e.g. 1000 thus introducing a three point
accuracy, once converted to integers.

The electrical components used on the satellite need to be selected so they
are suitable for operation in space; which means robustness with respect to
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xo yo zo
Order: 13, Lat: 50, Lon: 50 13592 -4516 -15117
Order: 10, Lat: 50, Lon: 50 13600 -4513 -15133

Table 7.2: IGRF accuracy.

temperature, vacuum and radiation. Finally once the orbital parameters of
the satellite are known, a function governing δ in the RO

E matrix needs to be
designed.

With these improvements in place, the only thing remaining, is to combine
the determination and control module's C-code and implement it on one con-
troller. This should be relatively straight-forward. The reason why we did
not do this ourselves is because it would not improve the understanding for
those continuing the project, and we ran out of time to perform any relevant
tests. We did however solder the sensor connectors, which are not included
in Figure A.9.

We wish good luck to those continuing this project.
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Additional Figures

This appendix provides additional �gures from simulations performed in
Chapter 5 together with some explanations and the prototype connection
setup illustrations.

North pole

z
b

-y
b

Geomagnetic !eld pointing

out of the paper

Initial rotation (-0.2)

m
z
 x B

First moment generated

x
b

Earth

Figure A.1: Coil generated moment illustration. Earth viewed from above
the north pole.
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A.1 Detumbling Simulation

We start by providing the reasoning for the moments generated by the coils
in Figure 5.3. Moments from the coils can be rather tedious to keep track
of in three dimensions, so in order to explain them we were forced to select
a simple initial condition. Figure A.1 illustrates the scenario from Section

5.2. The satellite is perfectly aligned with the orbit frame and has a 0.2rad
s

rotation about the negative y axis. The geomagnetic �eld illustrated by the
circles is coming out of the page. The controller dissipates the system's energy
by applying a current through the z+ face, generating a moment out of the
z+ face coil. This moment mz crossed by the geomagnetic B �eld creates a
torque in the opposite direction of the satellite's rotation, thus dissipating
its kinetic energy. The xb and zb axes are however not constant relative to
the orbit frame, while ωBOB 6= 0. This is why in Figure 5.3 the moments
from the z+ and x+ coils are identical apart from the phase shift. After the
satellite makes a π

2
rotation about the −y axis, the xb axis is where the zb

axis originally was. At this point the controller applies the same moment out
of the x+ face coil as it initially did out of the z+ coil.
Beneath follow the rest of the �gures from the detumbling controller simula-
tions.
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Figure A.2: Dissipation of satellite's kinetic energy.
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Figure A.3: Full �gure of the moments generated by the coils in the dissipa-
tive detumbling controller simulation.
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Figure A.4: Full �gure of the torques generated by the coils in the dissipative
detumbling controller simulation.
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A.2 Reference Simulation

This section includes the rest of the �gures from the reference controller
simulation.
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Figure A.5: Quaternions from the full detumbling and reference control sim-
ulation.
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Figure A.6: ωBOB from the full detumbling and reference control simulation.
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Figure A.7: Moments from the coils, enhanced to show dynamics from the
reference controller starting after 1.5 orbits.
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Figure A.8: Torques on the satellite, enhanced to show dynamics from the
reference controller starting after 1.5 orbits.

A.3 Prototype Connection

Connection setup for programming and running the prototype can be seen
in A.9. Note the orientation and placement of the JTAG and power supply
cables, especially the missing pin on the power supply which is connectionless.
Figure A.10 on the other hand, shows a full connection-measurement setup,
when simulating the system in its entirety. A resistor, in parallel with the
probe, should be added in series with the coil when measuring the current.
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Figure A.9: Prototype connection.
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Figure A.10: Full prototype connection for programming and taking mea-
surements.
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Standards, Tables and IGRF

Figure B.1 shows the American Wire Gauge chart used under coil design.

Weight

(Ω/km) (Ω/kFT)

(mΩ/m) (mΩ/ft)

27 0.0142 0.361 0.202 0.102 168.9 51.47 0.908

28 0.0126 0.321 0.16 0.081 212.9 64.9 0.72

29 0.0113 0.286 0.127 0.0642 268.5 81.84 0.571

30 0.01 0.255 0.101 0.0509 338.6 103.2 0.453

31 0.00893 0.227 0.0797 0.0404 426.9 130.1 0.358

32 0.00795 0.202 0.0632 0.032 538.3 164.1 0.285

33 0.00708 0.18 0.0501 0.0254 678.8 206.9 0.225

34 0.0063 0.16 0.0398 0.0201 856 260.9 0.179

35 0.00561 0.143 0.0315 0.016 1079 329 0.142

36 0.005 0.127 0.025 0.0127 1361 414.8 0.113

37 0.00445 0.113 0.0198 0.01 1716 523.1 0.089

38 0.00397 0.101 0.0157 0.00797 2164 659.6 0.071

(kg/km)

AWG

Diameter Area
Copper

Resistance

(inch) (mm) (mm
2
) (mm

2
)

Figure B.1: American Wire Gauge standard.

The IGRF-11 coe�cients used in this thesis are extracted from [16] and
presented in Table B.1. The online available coe�cients can be downloaded
as a text or an Excel �le. We recommend using an Excel �le as we have
created a simple Matlab script that extracts these coe�cients and creates a
header �le that can be used in the C-program to de�ne the coe�cients. This
script can be seen in Appendix C as IGRF11_load_data.m which takes
an Excel �le having a single pillar structure as in Table B.2; extracts the
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IGRF coe�cients and stores them as Matlab variables such that they can
be used for further simulations. Further on, it reads these Matlab variables
and stores their data into a IGRFcoeffs.h �le, ready to be used as a C-
header containing the IGRF coe�cients. We created this to avoid erranous
coe�cients and simplify future header coe�cient updates.

g/h n m IGRF SV g/h n m IGRF SV g/h n m IGRF g/h n m IGRF g/h n m IGRF

g 1 0 -29496.5 11.4 g 6 3 -141.4 1.9 g 9 0 5.4 g 11 0 3.0 g 12 9 -0.4

g 1 1 -1585.9 16.7 h 6 3 61.5 -0.4 g 9 1 9.4 g 11 1 -1.5 h 12 9 0.3

h 1 1 4945.1 -28.8 g 6 4 -22.9 -1.6 h 9 1 -20.5 h 11 1 0.1 g 12 10 0.2

g 2 0 -2396.6 -11.3 h 6 4 -66.3 -0.5 g 9 2 3.4 g 11 2 -2.1 h 12 10 -0.9

g 2 1 3026.0 -3.9 g 6 5 13.1 -0.2 h 9 2 11.6 h 11 2 1.7 g 12 11 -0.8

h 2 1 -2707.7 -23.0 h 6 5 3.1 0.8 g 9 3 -5.3 g 11 3 1.6 h 12 11 -0.2

g 2 2 1668.6 2.7 g 6 6 -77.9 1.8 h 9 3 12.8 h 11 3 -0.6 g 12 12 0.0

h 2 2 -575.4 -12.9 h 6 6 54.9 0.5 g 9 4 3.1 g 11 4 -0.5 h 12 12 0.8

g 3 0 1339.7 1.3 g 7 0 80.4 0.2 h 9 4 -7.2 h 11 4 -1.8 g 13 0 -0.2

g 3 1 -2326.3 -3.9 g 7 1 -75.0 -0.1 g 9 5 -12.4 g 11 5 0.5 g 13 1 -0.9

h 3 1 -160.5 8.6 h 7 1 -57.8 0.6 h 9 5 -7.4 h 11 5 0.9 h 13 1 -0.8

g 3 2 1231.7 -2.9 g 7 2 -4.7 -0.6 g 9 6 -0.8 g 11 6 -0.8 g 13 2 0.3

h 3 2 251.7 -2.9 h 7 2 -21.2 0.3 h 9 6 8.0 h 11 6 -0.4 h 13 2 0.3

g 3 3 634.2 -8.1 g 7 3 45.3 1.4 g 9 7 8.4 g 11 7 0.4 g 13 3 0.4

h 3 3 -536.8 -2.1 h 7 3 6.6 -0.2 h 9 7 2.2 h 11 7 -2.5 h 13 3 1.7

g 4 0 912.6 -1.4 g 7 4 14.0 0.3 g 9 8 -8.4 g 11 8 1.8 g 13 4 -0.4

g 4 1 809.0 2.0 h 7 4 24.9 -0.1 h 9 8 -6.1 h 11 8 -1.3 h 13 4 -0.6

h 4 1 286.4 0.4 g 7 5 10.4 0.1 g 9 9 -10.1 g 11 9 0.2 g 13 5 1.1

g 4 2 166.6 -8.9 h 7 5 7.0 -0.8 h 9 9 7.0 h 11 9 -2.1 h 13 5 -1.2

h 4 2 -211.2 3.2 g 7 6 1.6 -0.8 g 10 0 -2.0 g 11 10 0.8 g 13 6 -0.3

g 4 3 -357.1 4.4 h 7 6 -27.7 -0.3 g 10 1 -6.3 h 11 10 -1.9 h 13 6 -0.1

h 4 3 164.4 3.6 g 7 7 4.9 0.4 h 10 1 2.8 g 11 11 3.8 g 13 7 0.8

g 4 4 89.7 -2.3 h 7 7 -3.4 0.2 g 10 2 0.9 h 11 11 -1.8 h 13 7 0.5

h 4 4 -309.2 -0.8 g 8 0 24.3 -0.1 h 10 2 -0.1 g 12 0 -2.1 g 13 8 -0.2

g 5 0 -231.1 -0.5 g 8 1 8.2 0.1 g 10 3 -1.1 g 12 1 -0.2 h 13 8 0.1

g 5 1 357.2 0.5 h 8 1 10.9 0.0 h 10 3 4.7 h 12 1 -0.8 g 13 9 0.4

h 5 1 44.7 0.5 g 8 2 -14.5 -0.5 g 10 4 -0.2 g 12 2 0.3 h 13 9 0.5

g 5 2 200.3 -1.5 h 8 2 -20.0 0.2 h 10 4 4.4 h 12 2 0.3 g 13 10 0.0

h 5 2 188.9 1.5 g 8 3 -5.7 0.3 g 10 5 2.5 g 12 3 1.0 h 13 10 0.4

g 5 3 -141.2 -0.7 h 8 3 11.9 0.5 h 10 5 -7.2 h 12 3 2.2 g 13 11 0.4

h 5 3 -118.1 0.9 g 8 4 -19.3 -0.3 g 10 6 -0.3 g 12 4 -0.7 h 13 11 -0.2

g 5 4 -163.1 1.3 h 8 4 -17.4 0.4 h 10 6 -1.0 h 12 4 -2.5 g 13 12 -0.3

h 5 4 0.1 3.7 g 8 5 11.6 0.3 g 10 7 2.2 g 12 5 0.9 h 13 12 -0.5

g 5 5 -7.7 1.4 h 8 5 16.7 0.1 h 10 7 -4.0 h 12 5 0.5 g 13 13 -0.3

h 5 5 100.9 -0.6 g 8 6 10.9 0.2 g 10 8 3.1 g 12 6 -0.1 h 13 13 -0.8

g 6 0 72.8 -0.3 h 8 6 7.1 -0.1 h 10 8 -2.0 h 12 6 0.6

g 6 1 68.6 -0.3 g 8 7 -14.1 -0.5 g 10 9 -1.0 g 12 7 0.5

h 6 1 -20.8 -0.1 h 8 7 -10.8 0.4 h 10 9 -2.0 h 12 7 0.0

g 6 2 76.0 -0.3 g 8 8 -3.7 0.2 g 10 10 -2.8 g 12 8 -0.4

h 6 2 44.2 -2.1 h 8 8 1.7 0.4 h 10 10 -8.3 h 12 8 0.1

Table B.1: 11th Generation IGRF Schmidt semi-normalised spherical har-
monic coe�cients in nT. SV for all last three column sets is zero.

g 1 0 -29496.5 11.4

g 1 1 -1585.9 16.7

↓ ↓ ↓ ↓ ↓

Table B.2: Coe�cient Excel �le structure for C-header generation.



APPENDIX B. STANDARDS, TABLES AND IGRF 86

Figure B.2: Illustration of the 2005 IGRF model. Source: [19].



Appendix C

Source Code

Code �le description
main.m Main script, executed manually.

parameters.m
Function used to generate struct P containing all
the necessary simulation parameters. Executed by main.m.

nonLinearSatellite.m
The system with all its di�erential equations.
Executed through ODE45 by main.m.

IGRF.m
Solves the IGRF equations to generate the magnetic
�eld vector BO. Executed by nonlinearSatellite.m.

eul2qua.m
Converts ωBOB and Euler parameters to ωBIB and
quaternions. Executed by main.m to �nd initial conditions.

qua2eul.m
Inverse of eul2qua.m. To be excuted manually for
plotting purposes.

outFcn.m
ODE45 out function, used to store variables on
successfull ODE45 runs. Executed implicitly

IGRF11_load_data.m
Creates a matlab variable with IGRF coe�cients.
Can optionally create a C header �le. Executed manually

attitudeControl.c
Program with the main loop for attitude control.
To be implemented on the microcontroller.

IGRFcoeffs.h
Header �le with IGRF coe�cients and a few other
constant parameters needed by attitudeControl.c

Table C.1: Source code summary.

87
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C.1 Matlab Code

1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e main .m
3 % Main s c r i p t . S imula tes ( i n t e g r a t e s ) the systems .
4 %
5 % Written by Zdenko Tudor , 2011
6 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7

8 c l e a r a l l ; c l c ;
9 addpath ( 'myIGRF ' ) ;

10

11 % I n i t i a l i z e s t o rage v a r i a b l e s (For t e s t i n g and p l o t t i n g purposes on ly )
12 g l oba l VAR;
13

14 % Create parameters s t r u c t
15 P = parameters ( ) ;
16

17 % Load neccessary parameters
18 o rb i tPe r i od = P. o rb i tPe r i od ; % For d e f i n i n g s imu la t i on l en g t h
19 s c a l eP l o t = P. s c a l eP l o t ; % For x−axes s c a l i n g when p l o t t i n g
20

21 % I n i t i a l and s imu la t i on parameters
22 numOfOrbits = 4 ; % Simulat ion time in number o f o r b i t s
23 tSpan = [ 0 , o rb i tPe r i od ∗numOfOrbits ] ;% Time span f o r ODE45
24

25 w_B_OB = [ 0 ; − 0 . 2 ; 0 ] ; % I n i t i a l r o t a t i o n a l v e l o c i t y
26 eulAng = [ 8 0 ; 5 0 ; 1 7 0 ] ; % I n i t i a l o r i e n t a t i o n
27 [w_B_IB, qua ] = eul2qua (P,w_B_OB' , eulAng ' ) ;% Transform i n i t i a l parameters
28 i n i tLa t = 0 ; % I n i t i a l l a t i t u d e
29 i n i t J o u l e = 0 ; % Always to be s e t to zero
30

31 % Sta t e v ec t o r x = [ wx wy wz e ta eps1 eps2 eps3 l a t i t u d e t o t a l J o u l e ] ;
32 x In i t = [w_B_IB; qua ; i n i tLa t ; i n i t J o u l e ] ;
33

34 % ODE45 s imu la t i on s e t t i n g s f o r f a s t e r r e s u l t s
35 % opt ions = odese t ( 'MaxStep ' , 5 , ' OutputFcn ' , @outFcn , ' Refine ' , 1 ) ;
36 % ODE45 s imu la t i on s e t t i n g s f o r p r e c i c e r e s u l t s
37 opt ions = odeset ( 'MaxStep ' , 0 . 2 , 'OutputFcn ' ,@outFcn , ' RelTol ' ,1 e−12, '

AbsTol ' ,1 e−12, ' Re f ine ' , 1 ) ;
38

39 % Simulate system
40 [ tout , yout ] = ode45 (@( t , x ) n o n l i n e a r S a t e l l i t e ( t , x ,P) , tSpan , x In i t , opt ions )

;
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e parameters .m
3 %
4 % P = parameters ( )
5 %
6 % Creates a parameter s t r u c t P, which i s used to pass the parameters
7 % between d i f f e r e n t f unc t i on s .
8 %
9 % Written by Zdenko Tudor , 2011

10 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11

12 f unc t i on P = parameters ( )
13 % Coi l data
14 % Battery v o l t a g e
15 V = 5 ;
16

17 % Number o f c o i l windings ( turns )
18 Nx = 355 ;
19 Ny = 355 ;
20 Nz = 800 ;
21

22 % [m^2] Coi l area
23 Ax = 0 . 0 8 ∗ 0 . 1 8 ;
24 Ay = 0 . 0 8 ∗ 0 . 1 8 ;
25 Az = 0.08^2 ;
26

27 % [Ohm] Coi l r e s i s t a n c e
28 Rx = 110 ;
29 Ry = 110 ;
30 Rz = 110 ;
31

32 % [A] Maximum current through c o i l s
33 ix_max = V/Rx ;
34 iy_max = V/Ry ;
35 iz_max = V/Rz ;
36

37 % Define s a t e l i t e animation o b j e c t
38 satX=[0 1 1 0 ;0 1 1 0 ;0 0 0 0 ;0 1 1 0 ; 0 1 1 0 ;1 1 1 1 ] ;
39 satY=[0 0 1 1 ;0 0 0 0 ;0 1 1 0 ;0 0 1 1 ; 1 1 1 1 ;0 1 1 0 ] ;
40 satZ=[0 0 0 0 ;0 0 1 1 ;0 0 1 1 ;1 1 1 1 ; 0 0 1 1 ;0 0 1 1 ] ∗ 2 ;
41

42 % Move mass cen ter to r e f e r ence frame cen ter
43 satX = satX−ones (6 , 4 ) . / 2 ;
44 satY = satY−ones (6 , 4 ) . / 2 ;
45 satZ = satZ−ones (6 , 4 ) ;
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46

47 m = 2 ; % [ kg ] S a t e l l i t e mass
48 dx = 0 . 1 1 ; % X−ax i s l e n g t h
49 dy = 0 . 1 ; % Y−ax i s l e n g t h
50 dz = 0 . 2 ; % Z−ax i s l e n g t h
51 Re = 6371.2 e3 ; % [m] Earth rad ius
52 Rs = 600 e3 ; % [m] S a t e l l i t e a l t i t u d e
53 Rc = Re+Rs ; % [m] Distance from ear th cen ter to

s a t e l l i t e
54 Ix = (m/12) ∗( dy^2+dz^2) ; % X−ax i s i n e r t i a
55 Iy = (m/12) ∗( dx^2+dz^2) ; % Y−ax i s i n e r t i a
56 I z = (m/12) ∗( dx^2+dy^2) ; % Z−ax i s i n e r t i a
57

58 I = diag ( [ Ix Iy I z ] ) ; % Ine r t i a matrix
59

60 G = 6.67428 e−11; % Earth g r a v i t a t i o n a l cons tant
61 M = 5.972 e24 ; % Earth mass
62

63 w_o = sqr t (G∗M/Rc^3) ; % S a t e l l i t e angu lar v e l o c i t y r e l a t i v e Earth
64

65 o rb i tPe r i od = (2∗ pi ) /(w_o) ; % For d e f i n i n g s imu la t i on l en g t h
66 s c a l eP l o t = 1/ o rb i tPe r i od ; % For x−axes s c a l i n g when p l o t t i n g
67

68 % Store v a r i a b l e s
69 P. satX = satX ; P. satY = satY ; P. satZ = satZ ;
70 P.w_o = w_o;
71 P.V = V; P. I = I ;
72 P.Nx = Nx ; P.Ny = Ny ; P.Nz = Nz ;
73 P.Ax = Ax ; P.Ay = Ay ; P.Az = Az ;
74 P.Rx = Rx ; P.Ry = Ry ; P.Rz = Rz ;
75 P. ix_max = ix_max ; P. iy_max = iy_max ; P. iz_max = iz_max ;
76 P.Re = Re ; P.Rc = Rc ;
77 P. o rb i tPe r i od = orb i tPe r i od ; P. s c a l eP l o t = s c a l eP l o t ;
78 end
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e n o n l i n e a r S a t e l l i t e .m
3 %
4 % xDot = n o n l i n e a r S a t e l l i t e (T,X,P)
5 %
6 % Simula tes the earth−s a t e l l i t e system . To be used wi th an ordinary
7 % d i f f e r e n t i a l equat ion s o l v e r such as MATLAB' s Runge Kutta (4 ,5) method ,
8 % ODE45.
9 % The input :

10 % T − t ime vec to r ( im p l i c i t )
11 % X − s t a t e vec tor , i n i t i a l s t a t e has to be prov ided . The s t a t e v ec t o r

i s
12 % of the form X = [Ŵ B_IB' Q' LAMBDA JOULE] . Ŵ B_IB i s a 3x1 vec to r
13 % conta in ing the t h r ee r o t a t i o n a l v e l o c i t y components . Q i s the

quatern ion
14 % vec to r o f the form Q = [ e ta eps1 eps2 eps3 ] . LAMBDA i s the l a t i t u d e o f
15 % the s a t e l l i t e and JOULE i s on ly a t e s t i n g paramemter which w i l l r e turn
16 % the t o t a l Jou le consumption o f the s a t e l l i t e dur ing the s imu la t i on .
17 % I n i t i a l JOULE shou ld always be s e t to zero .
18 % P − s t r u c t conta ing necessary parameters (w_o, I , Rc , c o i l data ,

v o l t a g e
19 % and curren t r a t i n g s ) .
20 %
21 % Example :
22 % [TOUT,YOUT] = ode45 (@( t , x ) n o n l i n e a r S a t e l l i t e ( t , x ,P) , tSpan , x In i t ,

op t i ons )
23 % t h i s produces :
24 % TOUT − t ime vec to r f o r the i n t e g r a t i o n
25 % YOUT − In t e g r a t e d xDot vec t o r f o r each t imes t ep s i z e (YOUT)=l eng t h (TOUT

) x9
26 %
27 % Written by Zdenko Tudor , 2011
28 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29

30 f unc t i on xDot = n o n l i n e a r S a t e l l i t e ( t , x ,P)
31 g l oba l R_B_O;
32

33 % Load necessary parameters from P s t r u c t .
34 w_o = P.w_o;
35 I = P. I ;
36

37 % Normal izat ion o f quar ten ions
38 x ( 4 : 7 ) = x ( 4 : 7 ) . / norm(x ( 4 : 7 ) ) ;
39

40 % Sta t e v ec t o r x = [ ] ;
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41 w_B_IB = x ( 1 : 3 ) ; % Angular v e l o c i t y v e c t o r
42 eta = x (4) ; % Euler parameter e ta
43 eps = x ( 5 : 7 ) ; % Euler parameter e p s i l o n
44 l a t = x (8) % Lambda
45

46 % Epsi lon crossmatr ix , skew−symmetric
47 S_eps = [ 0 , −eps (3 ) , eps (2 ) ;
48 eps (3 ) , 0 , −eps (1 ) ;
49 −eps (2 ) , eps (1 ) , 0 ] ;
50

51 % Rotat ion matr ices
52 R_O_B = eye (3 ) + 2∗ eta ∗S_eps + 2∗S_eps^2;
53 R_B_O = R_O_B' ;
54

55 % Angular v e l o c i t i e s o f frames r e l a t i v e each o ther
56 w_O_IO = [0;−w_o ; 0 ] ;
57 w_B_OB = w_B_IB−R_B_O∗w_O_IO;
58

59 % Switch c o n t r o l l e r a f t e r t h i s many o r b i t s
60 orb i tSwi tch = 1 ;
61

62 % Torque from c o n t r o l l e r s . Logic ' i f ' i s f o r c o n t r o l l e r sw i t ch ing .
63 i f t<P. o rb i tPe r i od ∗ orb i tSwi tch
64 % Pick detumbl ing c o n t r o l l e r
65 [ tau_m, j ] = detumbl ingContro l l e r1 (P,w_B_OB, l a t ) ;
66 % [ tau_m , j ] = de tumb l ingCon t ro l l e r2 (P,w_B_OB, l a t ) ;
67 e l s e
68 [ tau_m, j ] = r e f e r e n c eCon t r o l l e r (P,w_B_OB, la t , eps ) ;
69 end
70

71 %−−−−−Stor ing v a r i a b l e s used f o r t e s t i n g purposes only−−−−−Star t−−−−−
72 g l oba l tmpVAR;
73 tmpVAR. torque = tau_m;
74 xDot (9 , 1 ) = j ;
75 %−−−−−Stor ing v a r i a b l e s used f o r t e s t i n g purposes only−−−−−−End−−−−−−
76

77 % Grav i t a t i ona l torque
78 c3 = R_B_O( : , 3 ) ;
79 tau_g = 3∗w_o^2∗ c r o s s ( c3 , I ∗ c3 ) ;
80

81 % Angular a c c e l e r a t i o n
82 wDot_B_IB=I \(tau_m+tau_g−c r o s s (w_B_IB, I ∗w_B_IB) ) ;
83

84 % Eta
85 etaDot = −0.5∗ eps '∗w_B_OB;
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86

87 % Epsi lon
88 epsDot = 0 . 5∗ ( eta ∗ eye (3 )+S_eps ) ∗w_B_OB;
89

90 % Variab l e assignment
91 xDot ( 1 : 3 , 1 ) = wDot_B_IB;
92 xDot (4 , 1 ) = etaDot ;
93 xDot ( 5 : 7 , 1 ) = epsDot ;
94 xDot (8 , 1 ) = w_o;
95 end
96

97 % Di s s i p a t i v e non−l i n e a r detumbl ing c o n t r o l l e r .
98 % Di s s i p a t e s the k i n e t i c energy from the s a t e l l i t e u n t i l w B̂_OB == [0 0

0 ] .
99 f unc t i on [ tau_m, j ] = detumbl ingContro l l e r1 (P,w_B_OB, l a t )

100 g l oba l R_B_O;
101 % Geomagnetic f i e l d in Orbi t frame and in Body frame , p i c k d i p l e or IGRF

.
102 % [B_O,~ ] = d i p o l eF i e l d (P, l a t ) ;
103 [B_O] = IGRF(10 ,10 , l a t , 0 ,P) ;
104 B_B = R_B_O∗B_O;
105

106 % Con t ro l l e r gain
107 d = 4e−5;
108

109 % Moment s e t up by c o i l s b e f o r e s c a l i n g ( s a t u r a t i n g current )
110 m_B = −(d/norm(B_B, 2 ) ^2)∗ c r o s s (B_B,w_B_OB) ;
111

112 % Moment s e t up by c o i l s a f t e r s c a l i n g
113 [m_B, j ] = cu r r en tSca l i ng (P,m_B) ;
114

115 % Torque s e t up by c o i l s
116 tau_m = cro s s (m_B,B_B) ;
117 end
118

119 % Bdot detumbl ing c o n t r o l l e r
120 % Contro l s the s a t e l l i t e to f o l l ow the geomagnetic f i e l d
121 f unc t i on [ tau_m, j ] = detumbl ingContro l l e r2 (P,w_B_OB, l a t )
122 g l oba l R_B_O;
123 % Geomagnetic f i e l d in Orbi t frame and in Body frame
124 [B_O,Bdot_O] = d ipo l eF i e l d (P, l a t ) ;
125 B_B = R_B_O∗B_O;
126 S_w = [0 −w_B_OB(3) w_B_OB(2) ;
127 w_B_OB(3) 0 −w_B_OB(1) ;
128 −w_B_OB(2) w_B_OB(1) 0 ] ;
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129 Bdot_B = −S_w∗R_B_O∗B_O+R_B_O∗Bdot_O;
130

131 % Con t ro l l e r gain
132 k = 4e−5;
133

134 % Moment s e t up by c o i l s b e f o r e s c a l i n g ( s a t u r a t i n g current )
135 m_B = (−k/norm(B_B, 2 ) ^2)∗Bdot_B ;
136

137 % Moment s e t up by c o i l s a f t e r s c a l i n g
138 [m_B, j ] = cu r r en tSca l i ng (P,m_B) ;
139

140 % Torque s e t up by c o i l s
141 tau_m = cro s s (m_B,B_B) ;
142 end
143

144 % S a t e l l i t e r e f e r ence c o n t r o l l e r f o r l a r g e d e v i a t i on s from R_B_O = eye
(3) .

145 f unc t i on [ tau_m, j ] = r e f e r e n c eCon t r o l l e r (P,w_B_OB, la t , eps )
146 g l oba l R_B_O;
147 % Geomagnetic f i e l d in Orbi t frame and in Body frame
148 % [B_O,~ ] = d i p o l eF i e l d (P, l a t ) ;
149 [B_O] = IGRF(10 ,10 , l a t , 0 ,P) ;
150 B_B = R_B_O∗B_O;
151

152 % Con t ro l l e r ga ins
153 d = 4e−5;
154 k = 5e−8;
155

156 % Moment s e t up by c o i l s b e f o r e s c a l i n g ( s a t u r a t i n g current )
157 m_B = (1/norm(B_B, 2 ) ^2)∗(−d∗ c r o s s (B_B,w_B_OB)−k∗ c r o s s (B_B, eps ) ) ;
158

159 % Moment s e t up by c o i l s a f t e r s c a l i n g
160 [m_B, j ] = cu r r en tSca l i ng (P,m_B) ;
161

162 % Torque s e t up by c o i l s
163 tau_m = cro s s (m_B,B_B) ;
164 end
165

166 % Sca l e s ( s a t u r a t e s ) the power consumption i f the maximum curren t s are
167 % exceeded
168 f unc t i on [m_B, j ] = cu r r en tSca l i ng (P,m_B)
169 % Load c o i l parameters from parameter s t r u c t
170 Nx = P.Nx ; Ny = P.Ny ; Nz = P.Nz ;
171 Ax = P.Ax ; Ay = P.Ay ; Az = P.Az ;
172 ix_max = P. ix_max ; iy_max = P. iy_max ; iz_max = P. iz_max ;
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173 V = P.V;
174

175

176 % Current s c a l i n g
177 % Creates r a t i o v a r i a b l e con ta in ing a co i l ' s : max curren t /wanted curren t

.
178 % The l owe s t va lue in r a t i o va r i a b l e , i f be low 1 i s the h i g h e s t current
179 % v i o l a t i o n , thus a l l the cur ren t s shou ld be s ca l e d by t h i s f a c t o r .
180 i x = m_B(1) /(Nx∗Ax) ; r a t i o (1 )=ix_max/abs ( ix ) ;
181 i y = m_B(2) /(Ny∗Ay) ; r a t i o (2 )=iy_max/abs ( iy ) ;
182 i z = m_B(3) /(Nz∗Az) ; r a t i o (3 )=iz_max/abs ( i z ) ;
183

184 i f min ( r a t i o )<1
185 m_B = m_B∗min( r a t i o ) ;
186 end
187

188 % Power consumption ( Jou l e s )
189 Wx = abs (V∗m_B(1) /(Nx∗Ax) ) ;
190 Wy = abs (V∗m_B(2) /(Ny∗Ay) ) ;
191 Wz = abs (V∗m_B(3) /(Nz∗Az) ) ;
192 j = Wx+Wy+Wz;
193

194 %−−−−−Stor ing v a r i a b l e s used f o r t e s t i n g purposes only−−−−−Star t−−−−−
195 g l oba l tmpVAR;
196 tmpVAR.moment=m_B;
197 tmpVAR.W = Wx+Wy+Wz;
198 %−−−−−Stor ing v a r i a b l e s used f o r t e s t i n g purposes only−−−−−−End−−−−−−
199 end
200

201 % Returns the d i p o l e model o f the geomagnetic f i e l d in Teslas ,
r epre sen t ed

202 % in the Orbi t frame . s
203 f unc t i on [B_O,Bdot_O] = d i po l eF i e l d (P, l a t )
204 w_o = P.w_o;
205 Rc = P.Rc ;
206

207 my_m = 1e17 /(4∗ pi ) ;
208 B0 = my_m/Rc^3;
209

210 Bn = B0∗ cos ( l a t ) ; % x−ax i s in o r b i t a l frame , p a r a l l e l to the
v e l o c i t y v e c t o r

211 Br = 2∗B0∗ s i n ( l a t ) ; % z−ax i s in o r b i t a l frame , toward Earth cen ter
212 B_O = [Bn ; 0 ; Br ] ;
213

214 BnDot = −w_o∗B0∗ s i n ( l a t ) ;
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215 BrDot = w_o∗2∗B0∗ cos ( l a t ) ;
216 Bdot_O = [BnDot ; 0 ; BrDot ] ;
217 end
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e IGRF.m
3 %
4 % Algorithm fo r f i n d i n g the magnetic f i e l d v e c t o r s from the IGRF−11
5 % model f o r a g iven l a t i t u d e LAT and l on g i t u d e LON in radians , wi th
6 % order n and degree m. The output i s the magnetic f i e l d v ec t o r
7 % repre sen t ed in the o r b i t frame .
8 %
9 % Created by Raymond Kris t iansen , 2000

10 % Edited by Zdenko Tudor , 2011
11 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 f unc t i on B = IGRF(n , m, la t , lon , P)
13

14 % Load IGRF11 c o e f f i c i e n t v a r i a b l e s
15 load ( ' IGRF11_data ' )
16

17 i = n ;
18 j = m;
19

20 % Fix l a t i t u d e in case o f p o s s i b l e s i n g u l a r i t y
21 mt = mod( la t , 2∗ pi ) ;
22 t o l = 1e−9;
23 i f (mt>(p i /2)−t o l && mt<(pi /2)+t o l )
24 l a t=(p i /2)+t o l ;
25 e l s e i f (mt>(3∗ pi /2)−t o l && mt<(3∗ pi /2)+t o l )
26 l a t =(3∗ pi /2)+t o l ;
27 end
28

29 % Def in ing cons tan t s
30 Re = P.Re ;
31 Rc = P.Rc ;
32

33 % Ca l cu l a t i n g c o l a t i t u d e and l on g i t u d e in rad ians
34 theta = ( p i /2)− l a t ;
35 phi = lon ;
36

37 % Zero o f f s e t
38 O = 1 ;
39

40 % Def in ing temporary v a r i a b l e s
41 Bt2 = 0 ; Bp2 = 0 ; Br2 = 0 ;
42

43 % Ca l cu l a t i n g Legendre po lynominals
44 [P, dP , S]=Pfunk (n , m, theta ) ;
45
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46 % Ca l cu l a t i n g f i e l d v e c t o r s
47 f o r n=1: i
48 Bt1 = 0 ;
49 Bp1 = 0 ;
50 Br1 = 0 ;
51 f o r m=0: j
52 Bt1 = Bt1 + (S(O+n ,O+m) ∗g_data (O+n ,O+m) ∗ cos (m∗phi )+S(O+n ,O+m)

∗ . . .
53 h_data (O+n , O+m) ∗ s i n (m∗phi ) ) ∗dP(O+n ,O+m) ;
54 Bp1 = Bp1 + (m∗S(O+n ,O+m) ∗h_data (O+n , O+m) ∗ cos (m∗phi )−m∗ . . .
55 S(O+n ,O+m) ∗g_data (O+n , O+m) ∗ s i n (m∗phi ) ) ∗P(O+n ,O+m) ;
56 Br1 = Br1 + (S(O+n ,O+m) ∗g_data (O+n ,O+m) ∗ cos (m∗phi )+S(O+n ,O+m)

∗ . . .
57 h_data (O+n , O+m) ∗ s i n (m∗phi ) ) ∗P(O+n ,O+m) ;
58 end
59 Bt2 = Bt2 + ( (Re/Rc) ^(n+2) ) ∗Bt1 ;
60 Bp2 = Bp2 + ( (Re/Rc) ^(n+2) ) ∗Bp1 ;
61 Br2 = Br2 + (n+1) ∗ ( (Re/Rc) ^(n+2) ) ∗Br1 ;
62 end
63

64 % In Cartes ian coord ina t e s
65 eps = 0 ;
66 X = Bt2∗ cos ( eps )−Br2∗ s i n ( eps ) ;
67 Y = −Bp2/( s i n ( theta ) ) ;
68 Z = −Bt2∗ s i n ( eps )−Br2∗ cos ( eps ) ;
69

70 B = [X;Y;Z ]∗1 e−9;
71 end
72

73 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

74 %
75 % Algorithm fo r c a l c u l a t i n g the a s s o c i a t e d Legendre po lynominals
76 % for the g iven order n , degree m and co− l a t i t u d e t h e t a . The output
77 % i s the Legendre polynominal P, i t s p a r t i a l d e r i v a t i v e dP and
78 % the Schmidt norma l i za t ion matrix S .
79 %
80 % Created by Raymond Kris t iansen , 2000
81 % Edited by Zdenko Tudor , 2011
82 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

83 f unc t i on [P, dP , S ] = Pfunk (n , m, theta )
84 O = 1 ; % Zero index o f f s e t
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85

86 % Def in ing zero matr ices
87 P = ones (n+O, m+O) ;
88 dP = ze ro s (n+O, m+O) ;
89 S = ones (n+O, m+O) ;
90 i = n ;
91 j = m;
92

93 % Ca l cu l a t i n g S matrix
94 f o r n = 0 : 1 : i
95 f o r m = 0 : 1 : j
96 i f n > 0
97 i f m == 0
98 S(O+n , O+m) = S(n−1+O, 0+O) ∗(2∗n−1)/n ;
99 e l s e

100 i f m == 1
101 deltaFun = 1 ;
102 e l s e
103 deltaFun = 0 ;
104 end
105 S(n+O, m+O) = S(n+O, m−1+O) ∗ s q r t ( ( ( n−m+1)∗( deltaFun+1) )

/(n+m) ) ;
106 end
107 end
108 end
109 end
110

111 % Ca l cu l a t e s the Legendre polynominal P and i t s p a r t i a l d e r i v a t i v e dP
112 f o r n = 0 : 1 : i
113 f o r m = 0 : 1 : j
114 i f n==1
115 dP(n+O, m+O) = cos ( theta ) ∗dP(n−1+O, m+O)−s i n ( theta ) ∗P(n−1+O,

m+O) ;
116 P(n+O, m+O) = cos ( theta ) ∗P(n−1+O, m+O) ;
117 e l s e i f n>1
118 K=((n−1)^2−m^2) /((2∗n−1)∗(2∗n−3) ) ;
119 dP(n+O, m+O) = cos ( theta ) ∗dP(n−1+O, m+O)−s i n ( theta ) ∗P(n−1+O,

m+O) − . . .
120 K∗dP(n−2+O, m+O) ;
121 P(n+O, m+O) = cos ( theta ) ∗P(n−1+O, m+O) − K∗P(n−2+O, m+O) ;
122 end
123 i f n==m && n>0
124 P(n+O, m+O) = s in ( theta ) ∗P(n−1+O, n−1+O) ;
125 dP(n+O, m+O) = s in ( theta ) ∗dP(n−1+O, n−1+O)+cos ( theta ) ∗P(n−1+

O, n−1+O) ;
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126 end
127 end
128 end
129 end
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e eu l2qua .m
3 %
4 % [W_B_IB,QUA] = eul2qua (P,W_B_OB,EUL)
5 %
6 % Function used f o r conver t ing Euler ang l e s to qua tern ions . This

f unc t i on
7 % a l s o c a l c u l a t e s the angu lar v e l o c i t y between B and I repre sen t ed in B.
8 %
9 % Input :

10 % P − s t r u c t conta ing necessary parameter ( s ) (w_o)
11 % W_B_OB − I s Ŵ B_OB, a vec to r con ta in ing the t h r ee r o t a t i o n a l v e l o c i t y
12 % components . S i z e 3x1
13 % EUL − Vector con ta in ing Euler ang l e s . S i z e 3x1 . Form : [ phi , the ta , p s i

] ' .
14 % Angles are in degrees .
15 %
16 % Output :
17 % W_B_IB − I s Ŵ B_IB, a vec t o r con ta in ing the t h r ee r o t a t i o n a l v e l o c i t y
18 % components . S i z e 3x1
19 % QUA − Vector con ta in ing qua tern ions . S i z e 4x1 .
20 % Form: [ e ta eps1 eps2 eps3 ] ' .
21 %
22 % Example :
23 % [w_B_OB, eu l ] = qua2eu l (P, yout ( : , 1 : 3 ) , yout ( : , 4 : 7 ) ) ;
24 %
25 % Written by Per Kolb jørn Soglo , 1994
26 % S l i g h t l y e d i t e d by Zdenko Tudor , 2011
27 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
28 f unc t i on [w_B_IB, qua ] = eul2qua (P,w_B_OB, eu l )
29 % Load neccessary parameter
30 w_o=P.w_o;
31

32 % Conversion from degrees to rad ians
33 eu l (1 ) = pi ∗ eu l (1 ) /180 ;
34 eu l (2 ) = pi ∗ eu l (2 ) /180 ;
35 eu l (3 ) = pi ∗ eu l (3 ) /180 ;
36

37 % Rotat ion matrix from O to B
38 c1 = cos ( eu l (1 ) ) ; c2 = cos ( eu l (2 ) ) ; c3 = cos ( eu l (3 ) ) ;
39 s1 = s i n ( eu l (1 ) ) ; s2 = s i n ( eu l (2 ) ) ; s3 = s i n ( eu l (3 ) ) ;
40

41 % XYZ−r o t a t i on
42 R11 = c2∗ c3 ;
43 R12 = −c2∗ s3 ;
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44 R13 = s2 ;
45 R21 = c1∗ s3+c3∗ s1 ∗ s2 ;
46 R22 = c1∗c3−s1 ∗ s2 ∗ s3 ;
47 R23 = −c2∗ s1 ;
48 R31 = s1 ∗ s3−c1∗ c3∗ s2 ;
49 R32 = c1∗ s2 ∗ s3+c3∗ s1 ;
50 R33 = c1∗ c2 ;
51 R_O_B = [R11 R12 R13
52 R21 R22 R23
53 R31 R32 R33 ] ;
54

55 % Ca l cu l a t i n g angu lar v e l o c i t y between O and I repre sen t ed in B
56 w_B_IO(1) = −w_o∗R21 ;
57 w_B_IO(2) = −w_o∗R22 ;
58 w_B_IO(3) = −w_o∗R23 ;
59

60 % Ca l cu l a t i n g angu lar v e l o c i t y between B and I repre sen t ed in B
61 w_B_IB(1) = w_B_OB(1) + w_B_IO(1) ;
62 w_B_IB(2) = w_B_OB(2) + w_B_IO(2) ;
63 w_B_IB(3) = w_B_OB(3) + w_B_IO(3) ;
64 w_B_IB = w_B_IB' ;
65

66 % Ca l cu l a t i n g Euler parameters
67 R44 = t ra c e (R_O_B) ;
68 maxVal = max ( [ R11 R22 R33 R44 ] ) ;
69 i f R11 == maxVal
70 p1 = sq r t (1 + 2∗R11−R44) ;
71 p2 = (R21 + R12) /p1 ;
72 p3 = (R13 + R31) /p1 ;
73 p4 = (R32 − R23) /p1 ;
74 e l s e i f R22 == maxVal
75 p2 = sq r t (1 + 2∗R22−R44) ;
76 p1 = (R21 + R12) /p2 ;
77 p3 = (R32 + R23) /p2 ;
78 p4 = (R13 − R31) /p2 ;
79 e l s e i f R33 == maxVal
80 p3 = sq r t (1 + 2∗R33−R44) ;
81 p1 = (R13 + R31) /p3 ;
82 p2 = (R32 + R23) /p3 ;
83 p4 = (R21 − R12) /p3 ;
84 e l s e
85 p4 = sq r t (1 + R44) ;
86 p1 = (R32 − R23) /p4 ;
87 p2 = (R13 − R31) /p4 ;
88 p3 = (R21 − R12) /p4 ;
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89 end
90

91 qua (1 ) = p4 /2 ;
92 qua (2 ) = p1 /2 ;
93 qua (3 ) = p2 /2 ;
94 qua (4 ) = p3 /2 ;
95 qua = qua ' ;
96 end
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e qua2eu l .m
3 %
4 % [W_B_OB,EUL] = qua2eu l (P,W_B_IB,QUA)
5 %
6 % Function used f o r conver t ing qua t e r i ons to Euler ang l e s . This f unc t i on
7 % a l s o c a l c u l a t e s the angu lar v e l o c i t y between B and O repre sen t ed in B.
8 %
9 % Input :

10 % P − s t r u c t conta ing necessary parameter ( s ) (w_o)
11 % W_B_IB − I s Ŵ B_IB, a matrix con ta in ing the t h r ee r o t a t i o n a l v e l o c i t y
12 % components f o r a l l s imu la t i on t imes t ep s . S i z e Nx3
13 % QUA − Matrix con ta in ing qua tern ions f o r a l l s im l a t i on t imes t ep s .
14 % Size Nx4 . Form : [ e ta eps1 eps2 eps3 ] .
15 %
16 % Output :
17 % W_B_OB − I s Ŵ B_OB, a matrix con ta in ing the t h r ee r o t a t i o n a l v e l o c i t y
18 % components f o r a l l s imu la t i on t imes t ep s . S i z e Nx3
19 % EUL − Matrix con ta in ing Euler ang l e s f o r a l l s imu la t i on t imes t ep s .
20 % Size Nx3 . Form : [ phi , the ta , p s i ] .
21 % Angles are in degrees .
22 %
23 % Example :
24 % [w_B_OB, eu l ] = qua2eu l (P, yout ( : , 1 : 3 ) , yout ( : , 4 : 7 ) ) ;
25 %
26 % Written by Per Kolb jørn Soglo , 1994
27 % S l i g h t l y e d i t e d by Zdenko Tudor , 2011
28 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29

30 f unc t i on [w_B_OB, eu l ] = qua2eul (P,w_B_IB, qua )
31 % Create angu lary v e l o c i t y v ec t o r
32 w_o=P.w_o;
33 w_O_IO = [0;−w_o ; 0 ] ;
34

35 % Ca l cu l a t i n g number o f v e c t o r s
36 n = s i z e ( qua , 1 ) ;
37

38 % Stor ing i n i t a l ang l e in rad ians
39 psi_gammel = 0∗ pi /180 ;
40

41 % I n i t i a t e s t o r i n g matr ices
42 w_B_OB = zero s (n , 3 ) ;
43 eu l = ze ro s (n , 3 ) ;
44 f o r i =1:n ,
45 % Rotat ion matrix from O to B
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46 eta = qua ( i , 1 ) ;
47 e1 = qua ( i , 2 ) ;
48 e2 = qua ( i , 3 ) ;
49 e3 = qua ( i , 4 ) ;
50 R11 = eta^2+e1^2−e2^2−e3 ^2;
51 R12 = 2∗( e1∗e2−eta ∗ e3 ) ;
52 R13 = 2∗( e1∗ e3+eta ∗ e2 ) ;
53 R21 = 2∗( e1∗ e2+eta ∗ e3 ) ;
54 R22 = eta^2−e1^2+e2^2−e3 ^2;
55 R23 = 2∗( e2∗e3−eta ∗ e1 ) ;
56 R31 = 2∗( e1∗e3−eta ∗ e2 ) ;
57 R32 = 2∗( e2∗ e3+eta ∗ e1 ) ;
58 R33 = eta^2−e1^2−e2^2+e3 ^2;
59 R_O_B = [R11 R12 R13
60 R21 R22 R23
61 R31 R32 R33 ] ;
62 R_B_O = R_O_B' ;
63

64 % Ca l cu l a t i n g angu lar v e l o c i t y between B and O repre sen t ed in B
65 w_B_OB( i , : ) = w_B_IB( i , : ) ' − R_B_O∗w_O_IO;
66

67 % Ca l cu l a t i n g Euler ang l e s
68 p s i = atan2 (R21 , R11) ;
69 i f p s i < 0
70 p s i = ps i+2∗pi ;
71 end
72 ps i_te s t = pi+ps i ;
73 i f p s i_te s t > 2∗ pi
74 ps i_te s t = ps i_test −2∗pi ;
75 end
76 % Checking f o r d i s c o n t i n u o i t i e s in p s i
77 d = min ( [ abs ( psi_gammel−p s i ) , abs ( psi_gammel−2∗pi−p s i ) , abs (

psi_gammel+2∗pi−p s i ) ] ) ;
78 d_test = min ( [ abs ( psi_gammel−ps i_te s t ) , abs ( psi_gammel−2∗pi−ps i_te s t

) , . . .
79 abs ( psi_gammel+2∗pi−ps i_te s t ) ] ) ;
80 i f d_test < d
81 p s i = ps i_te s t ;
82 end
83

84 theta = atan2(−R31 , cos ( p s i ) ∗R11 + s in ( p s i ) ∗R21) ;
85 phi = atan2 ( s i n ( p s i ) ∗R13 − cos ( p s i ) ∗R23 , −s i n ( p s i ) ∗R12 + cos ( p s i ) ∗

R22) ;
86 psi_gammel = ps i ;
87 i f p s i > pi
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88 p s i = ps i − 2∗ pi ;
89 end
90

91 eu l ( i , 1 ) = phi ∗180/ p i ;
92 eu l ( i , 2 ) = theta ∗180/ p i ;
93 eu l ( i , 3 ) = ps i ∗180/ p i ;
94 end
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e outFcn .m
3 %
4 % s t a t u s = outFcn ( t ,~ , f l a g )
5 %
6 % Is run when ODE45 s u c c e s s f u l l y comple tes a s t ep .
7 % This func t i on i s used im p l i c i t l y by ODE45, when ODE s e t t i n g s are
8 % proper l y s e t .
9 %

10 % Example :
11 % opt ions = odese t ( ' OutputFcn ' , @outFcn , ' Refine ' , 1 ) ;
12 % Refine s e t s how many s t e p s shou ld be crea t ed f o r each s u c c e s s f u l l s t e p

.
13 % With t h i s s e t to 1 l en g t h o f a l l v e c t o r s c rea t ed by the OutputFcn w i l l

be
14 % the same as the l en g t h o f ODE t imevec tor TOUT.
15 %
16 % Written by Zdenko Tudor , 2011
17 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18

19 f unc t i on s t a tu s = outFcn ( t ,~ , f l a g )
20 p e r s i s t e n t i t e ;
21 g l oba l tmpVAR VAR;
22 switch f l a g
23 case ' i n i t '
24 %i n i t i a l i z e arrays e t c .
25 i t e = 1 ;
26 VAR.moment = ze ro s (10000 ,3) ;
27 VAR. torque = ze ro s (10000 ,3) ;
28 VAR. J = ze ro s (10000 ,1) ;
29 VAR. t = ze ro s (10000 ,1) ;
30

31 s t a tu s = 0 ;
32 case ' done '
33 VAR.moment( i t e +1:end , : ) = [ ] ;
34 VAR. torque ( i t e +1:end , : ) = [ ] ;
35 VAR. J ( i t e +1:end , : ) = [ ] ;
36 VAR. t ( i t e +1:end , : ) = [ ] ;
37

38 s t a tu s = 0 ;
39 otherwi se
40 i t e = i t e +1;
41 VAR.moment( i t e , : )=tmpVAR.moment ' ;
42 VAR. torque ( i t e , : )=tmpVAR. torque ' ;
43 VAR.W( i t e , : )=tmpVAR.W;
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44 VAR. t ( i t e , 1 )=t ( end ) ;
45

46 s t a tu s = 0 ;
47 end
48 end
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 % Fi l e IGRF11_load_data .m
3 %
4 % Sect ion 1 :
5 % Create Matlab v a r i a b l e s g_data and h_data con ta in ing g and h
6 % c o e f f i c i e n t s f o r the IGRF model from an e x c e l f i l e found on l ine . The
7 % c o e f f i c i e n t s s t o r ed in matlab v a r i a b l e s are compensated wi th the

s e cu l a r
8 % var i a t i on .
9 %

10 % Sect ion 2 :
11 % Generate C header f i l e wi th the IGRF c o e f f i c i e n t s to be used on a
12 % mic ro con t r o l l e r .
13 %
14 % Written by Zdenko Tudor , 2011
15 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
16

17 [ data , txt ] = x l s r ead ( ' IGRF11_data_file . x l sx ' ) ;
18

19 % Input parameters
20 year = 2011 ;
21 day = 53 ; % Day o f year
22

23 O = 1 ;
24 f o r i =1: l ength ( data )
25 co l 1 = data ( i , 1 ) ;
26 co l 2 = data ( i , 2 ) ;
27 co l 3 = data ( i , 3 ) ;
28 co l 4 = data ( i , 4 ) ;
29 i f strcmp ( txt ( i ) , ' g ' )
30 g_data (O+col1 ,O+co l 2 ) = co l 3 ;
31 g_dataSV(O+col1 ,O+co l 2 ) = co l 4 ;
32 e l s e i f strcmp ( txt ( i ) , ' h ' )
33 h_data (O+col1 ,O+co l2 ) = co l 3 ;
34 h_dataSV(O+col1 ,O+co l 2 ) = co l 4 ;
35 end
36 end
37

38 g_data = g_data+(( year −2010)+day /365) ∗g_dataSV ;
39 h_data = h_data+(( year −2010)+day /365) ∗h_dataSV ;
40

41 save IGRF11_data g_data h_data
42

43 %% Generate C header f i l e f o r IGRF c o e f f i c i e n t s
44 f i l ename = ' IGRFcoeffs . h ' ;
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45

46 load ( ' IGRF11_data ' ) ;
47 f i d = fopen ( f i l ename , 'w ' ) ;
48

49 % Sta r t the header f i l e and inc l ude some o f the cons tan t s
50 f p r i n t f ( f i d , ' s t a t i c const double h_data [ 1 4∗14 ] = {+\n ' ) ;
51

52 L = s i z e (h_data , 1 ) ;
53 O = 1 ;
54 f o r i =0:L−1
55 f o r j =0:L−1
56 f p r i n t f ( f i d , ' %.3 f , ' , h_data ( i+O, j+O) ) ;
57 i f mod( i ∗L+j +1 ,10) == 0
58 f p r i n t f ( f i d , '+\n ' ) ;
59 end
60 end
61 end
62 f s e e k ( f i d ,−1 , ' e o f ' ) ; f p r i n t f ( f i d , ' ' ) ; % Remove l a s t comma charac t e r
63 f p r i n t f ( f i d , ' } ; \ n\n ' ) ;
64

65 f p r i n t f ( f i d , ' s t a t i c const double g_data [14∗14]={+\n ' ) ;
66 f o r i =0:L−1
67 f o r j =0:L−1
68 f p r i n t f ( f i d , ' %.3 f , ' , g_data ( i+O, j+O) ) ;
69 i f mod( i ∗L+j +1 ,10) == 0
70 f p r i n t f ( f i d , '+\n ' ) ;
71 end
72 end
73 end
74 f s e e k ( f i d ,−1 , ' e o f ' ) ; f p r i n t f ( f i d , ' ' ) ; % Remove l a s t comma charac t e r
75 f p r i n t f ( f i d , ' } ; \ n\n ' ) ;
76 f p r i n t f ( f i d , ' \n#end i f /∗_IGRFcoeffs_∗/\n ' ) ;
77

78 f c l o s e ( f i d ) ;

C.2 C Code

1 /∗ F i l e : a t t i t u d eCon t r o l . c ∗/
2

3 #inc lude <avr / i o . h>
4 #inc lude <s td i o . h>
5 #inc lude <math . h>
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6

7 #inc lude <u t i l / de lay . h>
8 #inc lude <s t d l i b . h>
9

10 #inc lude " p r o f i l i n g . h"
11 #inc lude " IGRFcoeffs . h"
12

13 #de f i n e BAUDRATE 9600 // s e t d e s i r ed baud ra t e
14 #de f i n e MYUBRR (F_CPU/8/BAUDRATE−1) // c a l c u l a t e UBRR va lue
15

16 void USART_Init( unsigned i n t ubrr ) {
17 UBRR0H = ( unsigned char ) ( ubrr>>8) ; // low by t e
18 UBRR0L = ( unsigned char ) ubrr ; // high by t e
19 UCSR0B |= (1<<RXEN0) |(1<<TXEN0) ; //Enable Transmitter and

Receiver
20 UCSR0A |= (1<<U2X0) ;
21 }
22

23 void USART_vSendByte_Pc( uint8_t u8Data , FILE ∗ stream ) {
24 whi le ( (UCSR0A &(1<<UDRE0) ) == 0) ; // Wait i f a by t e i s be ing

t ransmi t t ed
25 UDR0 = u8Data ; // Transmit data
26 }
27 s t a t i c FILE mystdout = FDEV_SETUP_STREAM(USART_vSendByte_Pc , NULL,

_FDEV_SETUP_WRITE) ;
28

29 // Orib t and math cons tan t s
30 s t a t i c const double pi , Re , Rc ;
31

32 // Coi l and power supp ly cons tan t s
33 s t a t i c const double V;
34 s t a t i c const double Rz , iz_max , Nz , Az ;
35

36

37 /∗ I n i t i a l i z e PWM to de s i r ed opear t ion by modi fy ing i t s r e g i s t e r s ∗/
38 void PWM_init ( ) {
39 // Waveform genera t ion mode : PWM, Phase and Frequency Correct
40 TCCR1A |= (0<<WGM11) |(0<<WGM10) ;
41 TCCR1B |= (1<<WGM13) |(0<<WGM12) ;
42

43 // No p r e s c a l i n g
44 TCCR1B |= (0<CS12) |(0<<CS11) |(1<<CS10) ;
45

46 // Clear on compare match when up−count ing . Set on compare match
when downcounting .
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47 TCCR1A |= (1<<COM1A1) |(1<<COM1A0) ;
48 TCCR1A |= (1<<COM1B1) |(1<<COM1B0) ;
49 TCCR1A |= (1<<COM1C1) |(1<<COM1C0) ;
50

51 // No f i l t e r i n g
52 TCCR1B |= (0<<ICNC1) |(0<<ICES1) ;
53

54 // Reso lu t ion : 100
55 ICR1 = 0x0064 ;
56

57 // DDRB |= (1<<DDB0) |(1<<DDB4) ;
58 DDRB = 0xFF ;
59 }
60

61

62 /∗ A func t i on re turn ing the l o c a l geomagnetic f i e l d ( us ing IGRF−11 model
) in o r b i t frame ∗/

63 void IGRF( double ∗out , unsigned shor t i n t n , unsigned shor t i n t m,
double la t , double lon ) {

64 unsigned shor t i n t i , j ;
65 double dP [ ( n+1)∗(m+1)+1] ;
66 double P [ ( n+1)∗(m+1)+1] ;
67 double S [ ( n+1)∗(m+1)+1] ;
68 double deltaFun , K;
69 double mt , t o l ;
70 double theta , phi ;
71 double Bt2 , Bp2 , Br2 ;
72 double Bt1 , Bp1 , Br1 ;
73

74 // These arrays need to be i n i t i a l i z e d as ones
75 f o r ( unsigned shor t i n t k=0;k<=(n+1)∗(m+1);++k)
76 P[ k ] = 1 ;
77 f o r ( unsigned shor t i n t k=0;k<=(n+1)∗(m+1);++k)
78 S [ k ] = 1 ;
79

80 Bt2 = 0 ; Bp2 = 0 ; Br2 = 0 ;
81

82 i = n ;
83 j = m;
84 t o l = pow(10 ,−9) ;
85

86 // Modulation i s done in degrees as C does not accep t f l o a t i n g po in t
modulation

87 // ( f l o a t i n g po in t does not HAVE a remainder )
88 mt = ( ( i n t ) ( l a t ∗180/ p i ) % (360) ) ;
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89 mt = mt∗ pi /180 ;
90

91 i f (mt>(( p i /2)−t o l ) && mt<(( p i /2)+t o l ) ) {
92 l a t = ( p i /2)+t o l ;
93 }
94 e l s e i f (mt>((3∗ pi /2)−t o l ) && mt<((3∗ pi /2)+t o l ) ) {
95 l a t = (3∗ pi /2)+t o l ;
96 }
97

98 theta = ( p i /2)− l a t ;
99 phi = lon ;

100

101 f o r (n=0;n<=i ;++n) { ;
102 f o r (m=0;m<=j ;++m){
103 i f (n>0) {
104 i f (m==0){
105 S [ n∗( j +1)+m] = S [ ( n−1)∗( j +1) ]∗ ( 2∗n−1)/n ;
106

107 }
108 e l s e {
109 i f (m==1)
110 deltaFun = 1 ;
111 e l s e
112 deltaFun = 0 ;
113 S [ n∗( j +1)+m] = S [ n∗( j +1)+(m−1) ]∗ s q r t ( ( ( n−m+1)∗(

deltaFun+1) ) /(n+m) ) ;
114 }
115 }
116 }
117 }
118

119 f o r (n=0;n<=i ;++n) {
120 f o r (m=0;m<=j ;++m){
121 i f (n==1){
122 dP [ n∗( j +1)+m] = cos ( theta ) ∗dP [ ( n−1)∗( j +1)+m]− s i n ( theta ) ∗

P[ ( n−1)∗( j +1)+m] ;
123 P[ n∗( j +1)+m] = cos ( theta ) ∗P[ ( n−1)∗( j +1)+m] ;
124

125 }
126 e l s e i f (n>1){
127 K = (pow(n−1 ,2)−pow(m, 2 ) ) /((2∗n−1)∗(2∗n−3) ) ;
128 dP [ n∗( j +1)+m] = cos ( theta ) ∗dP [ ( n−1)∗( j +1)+m]− s i n ( theta ) ∗

P[ ( n−1)∗( j +1)+m]−K∗dP [ ( n−2)∗( j +1)+m] ;
129 P[ n∗( j +1)+m] = cos ( theta ) ∗P[ ( n−1)∗( j +1)+m]−K∗P[ ( n−2)∗( j

+1)+m] ;
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130 }
131 i f ( ( n==m) && (n>0) ) {
132 P[ n∗( j +1)+m] = s i n ( theta ) ∗P[ ( n−1)∗( j +1)+(n−1) ] ;
133 dP [ n∗( j +1)+m] = s i n ( theta ) ∗dP [ ( n−1)∗( j +1)+(n−1)]+ cos (

theta ) ∗P[ ( n−1)∗( j +1)+(n−1) ] ;
134 }
135 }
136 }
137

138 f o r (n=1;n<=i ;++n) {
139 Bt1 = 0 ;
140 Bp1 = 0 ;
141 Br1 = 0 ;
142 f o r (m=0;m<=j ;++m){
143 Bt1 = Bt1 + (S [ n∗( j +1)+m]∗ g_data [ n∗(13+1)+m]∗ cos (m∗phi )+S [ n

∗( j +1)+m]∗ h_data [ n∗(13+1)+m]∗ s i n (m∗phi ) ) ∗dP [ n∗( j +1)+m] ;
144 Bp1 = Bp1 + (m∗S [ n∗( j +1)+m]∗ h_data [ n∗(13+1)+m]∗ cos (m∗phi )−m∗

S [ n∗( j +1)+m]∗ g_data [ n∗(13+1)+m]∗ s i n (m∗phi ) ) ∗P[ n∗( j +1)+m] ;
145 Br1 = Br1 + (S [ n∗( j +1)+m]∗ g_data [ n∗(13+1)+m]∗ cos (m∗phi )+S [ n

∗( j +1)+m]∗ h_data [ n∗(13+1)+m]∗ s i n (m∗phi ) ) ∗P[ n∗( j +1)+m] ;
146 }
147 Bt2 = Bt2 + (pow(Re/Rc , n+2)∗Bt1 ) ;
148 Bp2 = Bp2 + (pow(Re/Rc , n+2)∗Bp1) ;
149 Br2 = Br2 + (n+1)∗(pow(Re/Rc , n+2)∗Br1 ) ;
150 }
151

152 // In Orbi t frame , in Cartes ian coord ina t e s
153 double dummyEps ;
154 dummyEps = 0 ;
155 out [ 0 ] = (Bt2∗ cos (dummyEps)−Br2∗ s i n (dummyEps) ) ∗pow(10 ,−9) ;
156 out [ 1 ] = (−Bp2/ s i n ( theta ) ) ∗pow(10 ,−9) ;
157 out [ 2 ] = (−Bt2∗ s i n (dummyEps)−Br2∗ cos (dummyEps) ) ∗pow(10 ,−9) ;
158 }
159

160

161 /∗ The de s i r ed curren t from the con t r o l law may be l a r g e r then the
maximum current t ha t can run

162 through the c o i l . This f unc t i on s c a l e s the cur ren t s so t ha t none
exceed the maximum po s s i b l e

163 curren t . Note t ha t a l l the cur ren t s have to be s ca l e d e q u a l l y to
pre se rve the v e c t o r s d i r e c t i o n a l l i t y ∗/

164 double cu r r en tSca l i ng ( double ∗m_B){
165 // NEED: More complex s c a l i n g s t r u c t u r e needed f o r mu l t i p l e c o i l s ,

in order to pre se rve tau_m ' s d i r e c t i o n
166 // Check matlab code f o r the s c a l i n g l o g i c
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167 double i z ;
168

169 i z = m_B[ 2 ] / ( Nz∗Az) ;
170 i f ( abs ( i z ) > iz_max) {
171 i f ( i z > 0)
172 re turn iz_max ;
173 e l s e
174 re turn −iz_max ;
175 }
176 e l s e {
177 re turn i z ;
178 }
179 }
180

181 i n t main ( void ) {
182 PWM_init ( ) ;
183 USART_Init(MYUBRR) ;
184 stdout = &mystdout ;
185

186 // I n i t i a l i z e v a r i a b l e s v a r i a b l e s
187 double la t , lon , w_B_IB[ 3 ] , quatern ions [ 4 ] , eps [ 3 ] , e ta ;
188 double w_o, detumblingGain , r e f e r enceGa in ; ;
189 double R_B_O[ 9 ] , w_B_OB[ 3 ] ;
190 double B_O[ 3 ] , B_B[ 3 ] , B_B_normSq ;
191 double m_B[ 3 ] , i z ;
192

193 // Orbi t parameters
194 w_o = sqr t ( (6 . 67428∗pow(10 ,−11) ∗5.972∗pow(10 ,24) ) /pow(Rc , 3 ) ) ;
195

196 // MATLAB CMD: d = 4e−5;
197 detumblingGain = 4∗pow(10 ,−5) ;
198 // MATLAB CMD: k = 2e−8;
199 r e f e r enceGa in = 2∗pow(10 ,−8) ;
200

201 // Input v a r i a b l e s i n i t i a t e d wi th a r b i t r a r y t e s t va l u e s . In p r a c t i c e
t h e s e va l u e s

202 // w i l l be r e c e i v ed from other modules in the system , most ly
a t t i t u d e de terminat ion .

203 l a t = 0 ; lon = 0 ;
204 w_B_IB[ 0 ] = 0 ;
205 w_B_IB[ 1 ] = −w_o−0.2 ;
206 w_B_IB[ 2 ] = 0 ;
207 quatern ions [ 0 ] = 0 ;
208 quatern ions [ 1 ] = 0 ;
209 quatern ions [ 2 ] = 0 ;
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210 quatern ions [ 3 ] = 1 ;
211

212 // Stor ing input v a r i a b l e s . ( Eta i s the l a s t in the quatern ion
v a r i a b l e from a t t i t u d e determinat ion module )

213 eps [ 0 ] = quatern ions [ 0 ] ;
214 eps [ 1 ] = quatern ions [ 1 ] ;
215 eps [ 2 ] = quatern ions [ 2 ] ;
216 eta = quatern ions [ 3 ] ;
217

218 whi le (1 ) {
219 // MATLAB CMD: R_B_O = ( eye (3) + 2∗ e ta ∗S_eps + 2∗S_eps^2) ' ; − (

note the t ranspose )
220 R_B_O[ 0 ] = 1−2∗eps [ 1 ] ∗ eps [1]−2∗ eps [ 2 ] ∗ eps [ 2 ] ;
221 R_B_O[ 1 ] = 2∗ eta ∗ eps [2 ]+2∗ eps [ 0 ] ∗ eps [ 1 ] ;
222 R_B_O[ 2 ] = −2∗eta ∗ eps [1 ]+2∗ eps [ 0 ] ∗ eps [ 2 ] ;
223 R_B_O[ 3 ] = −2∗eta ∗ eps [2 ]+2∗ eps [ 0 ] ∗ eps [ 1 ] ;
224 R_B_O[ 4 ] = 1−2∗eps [ 0 ] ∗ eps [0]−2∗ eps [ 2 ] ∗ eps [ 2 ] ;
225 R_B_O[ 5 ] = 2∗ eta ∗ eps [0 ]+2∗ eps [ 1 ] ∗ eps [ 2 ] ;
226 R_B_O[ 6 ] = 2∗ eta ∗ eps [1 ]+2∗ eps [ 0 ] ∗ eps [ 2 ] ;
227 R_B_O[ 7 ] = −2∗eta ∗ eps [0 ]+2∗ eps [ 1 ] ∗ eps [ 2 ] ;
228 R_B_O[ 8 ] = 1−2∗eps [ 0 ] ∗ eps [0]−2∗ eps [ 1 ] ∗ eps [ 1 ] ;
229

230 // MATLAB CMD: w_B_OB = w_B_IB−R_B_O∗w_O_IO;
231 w_B_OB[ 0 ] = w_B_IB[0]+R_B_O[ 1 ] ∗w_o;
232 w_B_OB[ 1 ] = w_B_IB[1]+R_B_O[ 4 ] ∗w_o;
233 w_B_OB[ 2 ] = w_B_IB[2]+R_B_O[ 7 ] ∗w_o;
234

235 // Ca l cu l a t e geomagnetic f i e l d from IGRF model
236 IGRF(B_O,13 , 13 , l a t , lon ) ;
237

238 // MATLAB CMD: B_B = R_B_O∗B_O;
239 B_B[ 0 ] = R_B_O[ 0 ] ∗B_O[0]+R_B_O[ 1 ] ∗B_O[1]+R_B_O[ 2 ] ∗B_O[ 2 ] ;
240 B_B[ 1 ] = R_B_O[ 3 ] ∗B_O[0]+R_B_O[ 4 ] ∗B_O[1]+R_B_O[ 5 ] ∗B_O[ 2 ] ;
241 B_B[ 2 ] = R_B_O[ 6 ] ∗B_O[0]+R_B_O[ 7 ] ∗B_O[1]+R_B_O[ 8 ] ∗B_O[ 2 ] ;
242

243

244 // MATLAB CMD: norm(B_B,2 ) ^2;
245 B_B_normSq = B_B[ 0 ] ∗B_B[0]+B_B[ 1 ] ∗B_B[1]+B_B[ 2 ] ∗B_B[ 2 ] ;
246

247 // ##DISSIPATIVE DETUMBLING CONTROLLER##
248 // MATLAB CMD: m_B = −(d/norm(B_B,2 ) ^2)∗ cros s (B_B,w_B_OB) ;
249 m_B[ 0 ] = −(detumblingGain/B_B_normSq)∗(−B_B[ 2 ] ∗w_B_OB[1]+B_B[ 1 ] ∗

w_B_OB[ 2 ] ) ;
250 m_B[ 1 ] = −(detumblingGain/B_B_normSq) ∗(B_B[ 2 ] ∗w_B_OB[0]−B_B[ 0 ] ∗

w_B_OB[ 2 ] ) ;
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251 m_B[ 2 ] = −(detumblingGain/B_B_normSq)∗(−B_B[ 1 ] ∗w_B_OB[0]+B_B[ 0 ] ∗
w_B_OB[ 1 ] ) ;

252

253 // ##REFERENCE CONTROLLER##
254 // Mathemat ica l ly the r e f e r ence c o n t r o l l e r can be seen as a

g e n e r a l i z a t i o n o f the
255 // detumbl ing c on t r o l l e r , and can thus be appended to the

detumbl ing c o n t r o l l e r .
256 // Truth s ta tement needs to be cons t ruc t ed from some con t r o l l e r−

sw i t ch theory
257 i f (1==0){
258 m_B[ 0 ] = m_B[0]−( r e f e r enceGa in /B_B_normSq)∗(−B_B[ 2 ] ∗ eps [1 ]+

B_B[ 1 ] ∗ eps [ 2 ] ) ;
259 m_B[ 1 ] = m_B[1]−( r e f e r enceGa in /B_B_normSq) ∗(B_B[ 2 ] ∗ eps [0]−

B_B[ 0 ] ∗ eps [ 2 ] ) ;
260 m_B[ 2 ] = m_B[2]−( r e f e r enceGa in /B_B_normSq)∗(−B_B[ 1 ] ∗ eps [0 ]+

B_B[ 0 ] ∗ eps [ 1 ] ) ;
261 }
262

263 // MATLAB CMD: [m_B,w] = cur r en tSca l i n g (P,m_B) ;
264 i z = cu r r en tSca l i ng (m_B) ;
265

266 // The ac t ua l output s e t t i n g s
267 // Se t t i n g compare PWM r e g i s t e r by the r e l a t i o n o f d e s i r ed

curren t to the maximum current
268 OCR1A = (0 x0064 ) ∗ (0 .025/ iz_max) ;
269 i f ( i z > 0)
270 PORTB |= (1<<DDB0) ;
271 e l s e
272 PORTB |= (0<<DDB0) ;
273 }
274 }
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1 /∗ F i l e : IGRFcoeffs . h ∗/
2 #i f n d e f _IGRFcoeffs_
3 #de f i n e _IGRFcoeffs_
4

5 s t a t i c const double p i = 3 .1415926535 ;
6 s t a t i c const double Rc = 6971200;
7 s t a t i c const double Re = 6371200;
8

9 // Coi l and power supp ly cons tan t s
10 s t a t i c const double V = 5 ;
11 s t a t i c const double Rz = 100 ;
12 s t a t i c const double iz_max = 0 . 0 5 ;
13 s t a t i c const double Nz = 784 ;
14 s t a t i c const double Az = 0 . 0 8 ∗ 0 . 0 8 ;
15

16 /∗ These need to be added when a l l the c o i l s are inc luded
17 s t a t i c cons t doub le Rx = 100;
18 s t a t i c cons t doub le ix_max = 0 .05 ;
19 s t a t i c cons t doub le Nx = 784;
20 s t a t i c cons t doub le Ax = 0 .08∗0 .08 ;
21

22 s t a t i c cons t doub le Ry = 100;
23 s t a t i c cons t doub le iy_max = 0 .05 ;
24 s t a t i c cons t doub le Ny = 784;
25 s t a t i c cons t doub le Ay = 0 .08∗0 .08 ;
26 ∗/
27

28 s t a t i c const double h_data [ 1 4∗14 ] = {+
29 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0.000 ,+
30 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 4912 .118 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
31 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 ,

−2734.040 ,+
32 −590.173 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
33 0 .000 , 0 . 000 , 0 . 000 , −150.651 , 248 .379 , −539.205 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
34 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 286 .858 , −207.535 ,

168.523 ,+
35 −310.116 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
36 0 .000 , 45 .273 , 190 .618 , −117.069 , 4 . 337 , 100 .213 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
37 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , −20.915 , 41 .795 , 61 .042 , −66.873 ,

4.016 ,+
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38 55 .473 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 ,
−57.113 ,+

39 −20.856 , 6 . 371 , 24 .785 , 6 . 084 , −28.044 , −3.171 , 0 . 000 , 0 . 000 , 0 . 000 ,
0.000 ,+

40 0 .000 , 0 . 000 , 0 . 000 , 10 .900 , −19.771 , 12 .473 , −16.942 , 16 .815 , 6 . 985 ,
−10.342 ,+

41 2 .158 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , −20.500 , 11 .600 ,
12.800 ,+

42 −7.200 , −7.400 , 8 . 000 , 2 . 200 , −6.100 , 7 . 000 , 0 . 000 , 0 . 000 , 0 . 000 ,
0.000 ,+

43 0 .000 , 2 . 800 , −0.100 , 4 . 700 , 4 . 400 , −7.200 , −1.000 , −4.000 , −2.000 ,
−2.000 ,+

44 −8.300 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 100 , 1 . 700 , −0.600 , −1.800 ,
0.900 ,+

45 −0.400 , −2.500 , −1.300 , −2.100 , −1.900 , −1.800 , 0 . 000 , 0 . 000 , 0 . 000 ,
−0.800 ,+

46 0 .300 , 2 . 200 , −2.500 , 0 . 500 , 0 . 600 , 0 . 000 , 0 . 100 , 0 . 300 , −0.900 ,
−0.200 ,+

47 0 .800 , 0 . 000 , 0 . 000 , −0.800 , 0 . 300 , 1 . 700 , −0.600 , −1.200 , −0.100 ,
0.500 ,+

48 0 .100 , 0 . 500 , 0 . 400 , −0.200 , −0.500 , −0.800};
49

50 s t a t i c const double g_data [14∗14]={+
51 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0.000 ,+
52 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , −29483.445 , −1566.775 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
53 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , −2409.541 ,

3021.534 ,+
54 1671 .692 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
55 0 .000 , 0 . 000 , 1341 .189 , −2330.766 , 1228 .379 , 624 .924 , 0 . 000 , 0 . 000 ,

0 . 000 , 0.000 ,+
56 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 910 .997 , 811 .290 , 156 .408 ,

−352.061 ,+
57 87 .066 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0.000 ,+
58 −231.673 , 357 .773 , 198 .582 , −142.002 , −161.611 , −6.097 , 0 . 000 , 0 . 000 ,

0 . 000 , 0.000 ,+
59 0 .000 , 0 . 000 , 0 . 000 , 0 . 000 , 72 .456 , 68 .256 , 75 .656 , −139.224 , −24.732 ,

12.871 ,+
60 −75.839 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 80 .629 ,

−75.115 ,+
61 −5.387 , 46 .903 , 14 .344 , 10 .515 , 0 . 684 , 5 . 358 , 0 . 000 , 0 . 000 , 0 . 000 ,

0.000 ,+
62 0 .000 , 0 . 000 , 24 .185 , 8 . 315 , −15.073 , −5.356 , −19.644 , 11 .944 , 11 .129 ,

−14.673 ,+
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63 −3.471 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 0 . 000 , 5 . 400 , 9 . 400 , 3 . 400 ,
−5.300 ,+

64 3 .100 , −12.400 , −0.800 , 8 . 400 , −8.400 , −10.100 , 0 . 000 , 0 . 000 , 0 . 000 ,
0.000 ,+

65 −2.000 , −6.300 , 0 . 900 , −1.100 , −0.200 , 2 . 500 , −0.300 , 2 . 200 , 3 . 100 ,
−1.000 ,+

66 −2.800 , 0 . 000 , 0 . 000 , 0 . 000 , 3 . 000 , −1.500 , −2.100 , 1 . 600 , −0.500 ,
0.500 ,+

67 −0.800 , 0 . 400 , 1 . 800 , 0 . 200 , 0 . 800 , 3 . 800 , 0 . 000 , 0 . 000 , −2.100 ,
−0.200 ,+

68 0 .300 , 1 . 000 , −0.700 , 0 . 900 , −0.100 , 0 . 500 , −0.400 , −0.400 , 0 . 200 ,
−0.800 ,+

69 0 .000 , 0 . 000 , −0.200 , −0.900 , 0 . 300 , 0 . 400 , −0.400 , 1 . 100 , −0.300 ,
0.800 ,+

70 −0.200 , 0 . 400 , 0 . 000 , 0 . 400 , −0.300 , −0.300};
71

72 #end i f /∗_IGRFcoeffs_∗/
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