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Abstract

This thesis can be divided into two overall topics. The first concerns control design
for nanopositioning devices, and specifically an Atomic Force Microscope (AFM). The
second topic concerns the implementability issues involved with running a complex
controller in real-time especially for a stiff system with fast modes.

A robust H∞ multiple-input multiple-output (MIMO) controller is designed for the
lateral positioning stage of an AFM. This controller is compared to a H∞ single-
input single-output (SISO) controller based on independent axis design and a PID
controller. We consider especially how much benefit there is to a more complex MIMO
controller compared to independent axis controllers in terms of cross-coupling gains
between the lateral axes. This is important to consider in a scanning application
where any cross-coupling can be detrimental to the resulting image. Experiments are
performed for this purpose. The results show that the differences in terms of cross-
coupling reduction is negligible compared to noise and disturbances. This favors the
choice of independent axis controllers over MIMO controllers because of their simpler
design and increased implementability. In terms of dampening the resonant gain, the
two H∞ controllers are shown to perform considerably better than the PID controller.

A model-based controller such as the H∞ MIMO controller can quickly become com-
plex and may be difficult to run in real-time on hardware with limited computational
power. We show how to find the maximum step-size for numerical stability of a given
controller using an explicit Runge-Kutta (ERK) solver as is commonly used in real-
time applications. We also consider model reduction on the controller and how this
affects the required step-size and how much it reduces the computational complexity.
We have shown that the 18th order H∞ MIMO controller could be reduced to a 10th
order controller without any significant reduction in performance or stability, which
resulted in a 46.7% reduction in execution time partly because the order reduction
enabled us to use a simpler solver type.
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Sammendrag

Denne oppgaven er delt opp i to overordnede temaer. Det første temaet omhandler
kontrolldesign for nanoposisjoneringsenheter, spesifikt for atomkraftmikroskop. Det
andre temaet omhandler utfordringer rundt implementering av komplekse kontrollere
for et sanntids-system, spesielt der system er stivt med hurtige moduser.

En robust H∞ fler-inngang fler-utgang (MIMO) kontroller er designet for sideveis
bevegelse av en plattform for et atomkraftmikroskop. Denne kontrolleren er sammen-
lignet med en H∞ en-inngang en-utgang (SISO) kontroller, samt en PID kontroller.
Vi betrakter spesielt gevinsten ved å bruke en mer kompleks MIMO-kontroller sam-
menlignet med en SISO-kontroller i forhold til krysskoblings-forsterkningen mellom de
to sideveis aksene. Dette er spesielt viktig i skanne-applikasjoner hvor krysskoblingen
kan føre til ugunstige bilder. Eksperimenter er utført for å undersøke dette. Resul-
tatene viser at forskjellene i redusert krysskobling er neglisjerbar i forhold til støy
og forstyrrelser. Dette favoriserer valget av SISO-kontrollere over MIMO-kontrollere
da disse har et enklere design og høyere implementerbarhet. Imidlertid er de to H∞
kontrollerne mye bedre til å dempe ut resonans-forsterkningen.

En modellbasert kontroller slik som H∞ MIMO-kontrolleren kan fort bli kompleks,
noe som kan resultere i at den blir vanskelig å implementere på maskinvare med
begrenset regnekapasitet. Vi viser hvordan man kan finne den lengste skritt-lengden
for numerisk stabilitet av en gitt kontroller for en numerisk løser av typen eksplisitt
Runge-Kutta. Vi viser også hvordan modellreduksjon utført på kontrolleren endrer
ytelse og stabilitet. I tillegg undersøker vi hvordan dette endrer øvre grense på skritt-
lengden og hvor stor reduksjon vi får i form av regnekompleksitet. Vi har vist at
den 18. ordens orginale H∞ MIMO-kontrolleren kan bli redusert til en 10. ordens
kontroller uten nevneverdige forskjeller i ytelse og stabilitet. Dette resulterte i en
46,7% reduksjon i regnetiden delvis fordi modellreduksjonen tillot oss å bruke en
enklere numerisk løser.
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Chapter 1

Introduction

The broad field of nanotechnology involves manipulation of matter down to the atomic
scale. This topic is considered within a broad range of scientific fields such as organic
chemistry, molecular biology, and semiconductor physics. The applications range from
self-assembly of molecules, hard-disk drive systems, to development of new materi-
als. One of the fundamental technologies of the field is Scanning Probe Microscopy
(SPM). This is a branch of microscopy that involves using a physical probe which
scans over the topography of the sample in a raster pattern. The term SPM covers
many microscopy techniques such as Atomic Force Microscopy (AFM) and Scanning
Tunneling Microscopy (STM), both of which can achieve resolutions down to the
atomic scale. We will present AFM to more detail in this thesis.

The term nanopositioning refers to position control of devices down to atomic resolu-
tions. An important application in nanopositioning is control of AFMs. The control
problems of such microscopes are divided into two general domains in the literature.
One deals with lateral control, while the other deals with vertical control. Positioning
in the lateral (xy-) axes is commonly achieved by using piezoelectric actuators. Such
actuators have the ability to vary their length based on the applied voltage, and is
dominantly used in nanopositioning applications. They can be challenging to control
due to nonlinearities such as hysteresis and creep. Other challenges that are com-
mon within nanopositioning include lightly damped vibration modes giving rise to
high resonant gains, and large model uncertainties. Additionally, the cross-coupling
between axes may adversely affect performance and result in badly scanned images.

In this thesis we will present control design for the lateral axes of an AFM. We
will design three different feedback controllers and implement them on a commercial
AFM. Our primary goal is to investigate the differences in cross-coupling gain using
the respective controllers. In the literature on nanopositioning, assumptions are often
made that the cross-coupling gains are low enough such that a controller can be
designed for one axis at a time. We will carry out these experiments to investigate
how much the performance is affected by compensating for the cross-coupling gains by
using multiple-input multiple-output (MIMO) control. The most complex controller
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Chapter 1 Introduction

to be designed is a H∞ MIMO mixed sensitivity controller. The second is similarly a
H∞ mixed sensitivity controller, but is designed for one axis at a time and does not
take cross-coupling gains into account. Lastly, a simple PID controller is designed
for each axis. Every controller will be implemented and several experiments run to
investigate the differences between them.
The controllers just described can be represented by continuous-time state-space mod-
els. For a real-time implementation however, the model is solved at discrete time-steps
using a fixed step-size. Many popular solver types are based on the family of explicit
Runge-Kutta (ERK) methods. These solvers become unstable if the step-size is too
large. At the same time, the complexity of a controller running on hardware with
limited computational power puts a lower limit on the step-size the hardware needs
to perform the necessary calculations. This is important to consider especially for
stiff systems such as our nanopositioning application. We will discuss how to reduce
the lower limit and at the same the make sure the system is numerically stable such
that it becomes implementable.
A model-based H∞ controller has a tendency to become computationally complex. In
order to reduce the computational complexity such that it becomes easier to imple-
ment, we will perform model order reduction on the H∞ MIMO controller. We will
investigate how the stability and performance is affected at various reduced orders,
and estimate the resulting reduction in computational complexity. By reducing the
computational complexity the lower limit on the step-size is decreased.
Lastly we perform an analytical approach to gain some insight into the numerical
stability problems of a real-time implementation of a controller. We investigate the
stability properties of some ERK methods, and how to determine the maximum step-
size for a given controller. The effect of performing model order reduction on the
controller is also discussed in terms of affecting the upper limit of the step-size.

1.1. Outline

In chapter 2 we present the working principles of Atomic Force Microscopy (AFM),
including control in the vertical axis. Although we will not implement such a con-
troller, we present this matter for the sake of completeness such that the reader has
a better sense of understanding of AFM.
Next, in chapter 3, we present background theory necessary for designing and analyz-
ing the controllers in later chapters. The characteristics of a MIMO feedback system
are presented and the condition of robust stability in the presence of multiplicative
output uncertainty is given. Additionally, an introduction toH∞ controllers including
the mixed sensitivity method is presented.
In chapter 4 we give an overview of the current literature on lateral control within
the topic of nanopositioning.
Chapters 5–8 can be considered the main contributions of this thesis. In chapter 5
we investigate the differences on cross-coupling between a H∞ MIMO controller, H∞
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1.2 Notation

SISO controller, and PID controller. It gives details on the experimental setup, model
identification and controller design. Experimental results are provided and discussed.

In chapter 6 we examine the effect of reducing the model order of the H∞ MIMO
controller. Some background theory on model reduction is provided, then the stability
and performance at various reduced orders is discussed.

The effect of model order reduction on the computational complexity is investigated
in chapter 7 which is important to consider for implementability. Both simulation
and experimental results are provided.

An analysis of numerical stability for a selection of ERK methods applied to a con-
troller is presented in chapter 8. The trade-off between step-size, controller complex-
ity, solver complexity, eigenvalues of the controller, and hardware performance for a
real-time controller implementation is discussed.

Finally, chapter 9 provides some concluding remarks on the results of this thesis, with
some suggestions for future work.

1.2. Notation

Transfer functions are denoted by upper-case symbols, and often their dependency
on the Laplace-variable s is omitted for ease of notation. Frequency domain data
such as gathered from experimental data will be denoted by a hat, e.g. Ĝ(ω) or just
Ĝ for simplicity. Closed-loop transfer functions such as S and T is found using the
identified nominal plant G and some controller K. Their experimentally measured
analogues are again denoted by a hat, i.e. Ŝ and T̂ . Also see the nomenclature on
page xvi.

Sometimes we use the term “SISO controller” or “independent axis controller” where
we actually mean “controller based on independent axis design” for convenience. In-
dependent axis design means that the controller is designed for one axis at a time and
does not consider cross-couplings in a multidimensional plant.
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Chapter 2

Atomic Force Microscopy

Atomic Force Microscopy (AFM) is a tool for imaging, measuring, and manipulating
matter at high resolutions down to the nanometer scale. It is one of several techniques
within the category of Scanning Probe Microscopy (SPM). As the name suggests, SPM
uses a small probe which scans across the target surface. In many cases the probe
is controlled to follow a certain path in the xy-plane, while the z-axis position along
the probe is adjusted such that the tip follows the surface contour as illustrated in
Figure 2.1. The material presented in this chapter is primarily based on [1, 30, 31,
47, 50].

Scanning Tunneling Microscopy (STM) was the first type of SPM developed in 1981,
with the first results published by Binnig et al. [7]. It is based on the quantum
tunneling effect, which allows electrons to flow between the tip of the probe and the
sample material. The current resulting from the electron flow is a function of the
tip distance from the sample material. The current is kept at a constant value as
the probe scans over the sample. By keeping the current constant, the distance is
also constant, and then one can create a height map of the sample by recording the
xyz-position of the tip as it scans the surface. STM was the first device capable of
imaging individual atoms, and after its invention it quickly contributed to solving
several problems within surface science such as the structure of the Si(111)-(7x7)
surface, ultimately awarding the inventors with the Nobel Prize in Physics in 1986.
A drawback with STM is that the samples need to be conductive so only metals and
semiconductors can be investigated, additionally, most scans require an ultra-high
vacuum (UHV) environment to work sufficiently. Thus the inventors tried to find a
new method without these drawbacks, resulting in the Atomic Force Microscope.

AFM was first introduced in Binnig et al. [8], and builds on many of the principles of
STM. Instead of tunneling electrons across to the sample, the tip is placed so close to
the sample atoms that they are essentially in contact. This produces interaction forces
between the probe and sample material. The probe is mounted on a cantilever, which
is deflected when there is any interaction force, see Figure 2.2 for an illustration. This
small deflection is commonly measured by using a laser pointing at the cantilever,
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Chapter 2 Atomic Force Microscopy

which is reflected up to a photodetector. Other less used methods include optical
interferometry, and the capacitance method. The topography of the sample can be
determined by the deflection of the cantilever as the probe scans the surface.

AFM has the capability to image in vacuum, ambient air, or in liquids. Not only
can it find the topology of the surface, but it is also possible to measure other char-
acteristics such as magnetic properties, and electrostatic forces down to pN scales.
AFM has also been used to manipulate objects for lithography, nanomanipulation,
and nanoassembly. Like the STM, an AFM can achieve atomic resolutions, but this
has only been possible in UHV environments.

There are primarily two modes of operation in AFM, static and dynamic. In static
mode, the applied force on the sample is kept constant by varying the z-position of
the probe. As with STM, by scanning the probe in the xy-plane, and recording the
resulting z-position, a topographic map can be created of the sample. In dynamic
mode, the cantilever is actuated and oscillates up and down. This interaction will
change the amplitude and frequency of the cantilever vibration which can be measured
and used in a feedback loop for control of the vertical z-position. These operating
modes will be studied in more detail in the next section.

Contour

Sample Atoms

Tip

Front Atom

Figure 2.1: Principle of operation of both AFM and STM. In STM electrons are
tunneled between the tip and sample, and the resulting current is kept constant.
In AFM static mode, the tip-sample contact force is kept constant.
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2.1 Operating Modes

Piezoelectric 
Actuators

Sample

Photo detectorLaser

Inductive 
sensor

Cantilever
Probe

Figure 2.2: A typical AFM device setup

2.1. Operating Modes

In AFM, we are measuring the deflection of the cantilever, but ultimately we are
interested in finding information about the sample material such as topography. De-
termining the topography from the cantilever deflection depends on the operating
mode of the AFM, but usually involves some form of feedback loop. We will now
present two commonly used operating modes for AFM in more detail.

2.1.1. Static mode

Consider the case of stationary conditions such that no scanning is performed and
sample conditions is constant, then the cantilever deflection is proportional to the
force between the tip and sample. With a rectangular cantilever, the displacement d
at the end of the cantilever is [6]

d = kpF (r) (2.1)

where the constant kp depends on the dimensions and material of the cantilever and
F (r) is the tip-sample interaction force which depends on the distance between the
tip and sample r. The interaction force between the tip and sample is nonlinear, and
can be approximated by the Lennard-Jones potential [1]

F (r) = k1

[
−
(σ
r

)2
+ 1

30

(σ
r

)8
]

(2.2)
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Chapter 2 Atomic Force Microscopy

where σ is an interaction parameter, r is the distance between the tip and sample,
k1 is a constant which depends on the geometry and material of the tip and sample,
and F (r) represents the interaction force between a flat sample and spherical tip.
The equation is plotted in Figure 2.3a for some parameters. As can be seen, at larger
distances (relatively speaking), there is an attractive force between the tip and sample,
which results from van der Waals forces. As the distance is reduced, the repulsive
electrostatic force becomes dominant, and the net force becomes repulsive.

The cantilever displacement d can be measured so we could theoretically solve for r in
(2.1)-(2.2) to find the distance between tip and sample. However, the parameters of
the equations are to a large extent unknown. The problem of finding the topography
of the sample is instead solved by using a feedback loop from measurements of the
absolute position of the sample. By keeping the tip-sample force F (r) constant, the
distance is also kept constant. Now, the changes in absolute position of the sample
along the z-axis represents the topography. A simple P-controller could be used for
feedback. The reference setpoint for the force is commonly set to the beginning of
the attractive region.

We haven’t yet considered the impact of the force from the deflection of the cantilever
when it is pushed away from its resting position. Although the cantilever dynamics
can be quite complex, at stationary conditions we can approximate the cantilever
force Fc by Hooke’s Law

Fc = −kd (2.3)

where k is the spring constant and d is the deflection from rest position. The sum
of the tip-sample and spring force is plotted in Figure 2.3b for two different values of
k. Note that the softer spring has two stable points where the net force is zero. This
represent a problem because the tip may end up jumping between the two points if we
have disturbances, changing parameters, or quick changes in topography as we scan
the surface. In the literature, this is called the jump-to-contact phenomena [50]. This
can be solved by using a stiffer spring (cantilever) as evident from Figure 2.3b, since
we only have one stable point for the stiff spring. But using a stiffer spring requires
more sensitive deflection measurement equipment as the cantilever will deflect less for
a given tip-sample force, so there is a trade-off between stability and accuracy here.

These problems motivate the investigation into an oscillating cantilever. An oscillating
cantilever will virtually stiffen the spring at the point of largest force gradient, so we
can easily avoid the snap-to-contact phenomena.

2.1.2. Dynamic mode

The previous section motivates the investigation into the dynamic mode of operation
where the cantilever is oscillated at some frequency. There are two different methods
under the term dynamic mode. The first one performs oscillations with a small
amplitude in the attractive region of the tip-sample force and is often called the
true non-contact mode. This mode can be used to reduce the damage to the sample
material and tip due to the smaller interaction forces. Alternatively, in the tapping
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Figure 2.3: (a) Tip-sample interaction force, with k1 = 10−9, σ = 10−9. (b) Tip-
sample and cantilever net force with cantilever rest-position at the 4 nm mark for
two different spring constants. Positive values are repulsive, while negative values
attractive.

mode, the amplitude is much larger, and the tip swipes past the entire attractive
region and into the repulsive region of the surface. The rest of the discussion here
encompasses both of these schemes.

We can describe a cantilever that oscillates freely as a harmonic oscillator, where the
deflection at the end of the cantilever is

d(t) = A cos (2πft+ φ) (2.4)

where A is the amplitude, f is the resonant frequency, and φ is the phase. In tapping
mode, the cantilever will be excited by forces every time the tip comes close to the
sample (once each period). Because the force is nonlinear, the oscillation of the
cantilever becomes anharmonic, and it can no longer be described by a single sine.
Trying to interpret the response on d(t) to the interaction force is non-trivial. Again,
as with the static mode, our only option is to use a feedback controller to control the
z-axis position such that we have a constant interaction force.

There are primarily two different feedback schemes in use, the amplitude modulated
(AM) and frequency modulated (FM) modes. These work by oscillating the cantilever
around its resonant frequency using an actuator. When the tip interacts with the
sample, the amplitude, phase and frequency will change depending on which side the
resonant peak the oscillations are occurring. In AM mode, the amplitude is used as
a feedback signal to the vertical z-actuator of the AFM as illustrated in Figure 2.4.
By keeping the amplitude constant in a feedback loop, the tip-sample interactions are
also constant and thus the height over the surface is maintained. By recording the
xyz-position over time, we can then generate an image of the topography.

FM mode is somewhat more complicated as it requires another feedback circuit for
driving the cantilever with constant amplitude. If the amplitude is kept constant, the
changes in frequency can be used as the feedback signal to the z-actuator. This mode
requires very accurate instrumentation to detect such small changes to the frequency,
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Chapter 2 Atomic Force Microscopy

and is therefore for the most part only used in vacuum operating conditions where
this is easier.

The phase can also be used as a feedback signal, but it is more complicated than using
the amplitude. There has also been research into exploiting the higher-orders of the
Fourier expansion of the anharmonic oscillations to plot more information about the
sample such as in [34].

Figure 2.4: AFM Amplitude Modulated mode. The cantilever is oscillated near its
resonant frequency. These oscillations will be detected by the photo detector, and
the lock-in amplifier demodulates the signal to provide the signal amplitude and
phase. The amplitude is used for feedback by a PID controller. Based on [50].

2.2. Piezoelectric Actuator

AFM is almost exclusively controlled by piezoelectric actuators. These actuators
have very high resolution only limited by the instrumentation used. Additionally,
they provide high force and frictionless motion. When a voltage is applied to the
piezoelectric element, it will expand or contract along the poling axis. This is called
the converse piezoelectric effect illustrated in Figure 2.5a.

As reported by [1], the most common actuator in AFM is a three degree-of-freedom
piezo tube as shown in Figure 2.5b. It is actuated in the x and y directions by
four electrodes placed around the cylinder, while the z direction is actuated by inner
electrodes. A problem with the tube scanner is that the z-height varies when applying
a voltage in the x- and y-direction since the axes are coupled.

Another approach is to use piezo stack actuators which only have one axis of contrac-
tion and expansion. By placing one such actuator for each axis, the lateral xy-axes
and vertical z-axis becomes completely decoupled. The lateral axes are usually still
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2.2 Piezoelectric Actuator

slightly coupled through a flexure setup, but far less than by using a piezo tube.
Additionally, one can achieve a larger scan area with this setup.

Issues in control of piezoelectric actuators include phenomena such as creep and hys-
teresis nonlinearities. Additionally, they exhibit a lightly damped response to vibra-
tions. This is a problem because it limits the bandwidth of the positioning device.
High frequency reference signals will excite the vibration modes, which makes con-
trol difficult. Hysteresis and creep can be effectively compensated for if we have an
accurate model of their behavior.

(a) Converse piezoelectric effect

z

-x xy

-y

(b) Piezo tube

Figure 2.5: (a) Converse piezoelectric effect on a stack actuator shown by applying
a voltage V . (b) Piezo tube actuator.

2.2.1. Hysteresis and Creep

Hysteresis and creep is important to consider in nanopositioning applications, as it
is possibly the most dominant non-linear effect of a piezo-actuated system. We will
describe these effects and some common models for them here.

Creep in piezoelectric transducers can lead to significant loss of precision in open-loop
control. It is a rate-dependent phenomenon that stems from the remnant polarization
changes after a voltage has been applied on the piezo element. This results in a slow
creep with a time constant often in the order of minutes as seen in Figure 2.6a. There
are two common models in the literature [17]. The first model gives the displacement
w(t) as

w(t) = wo

(
1 + γ log t

t0

)
(2.5)

where t0 is the time at which the effect is apparent, w0 is the actuator displacement at
time t0, and the creep rate γ is a fixed constant which can be found from experimental
data. Another model uses a superposition of low-pass filters with a feedthrough term,
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Figure 2.6: The effect of creep (a) can be seen in the step-response as a slowly
increasing value after the initial step. The effect of hysteresis (b) can be seen when
plotting the output against the input signal, in a linear system we would get a
straight line, but instead we get an ellipse. Data has been gathered experimentally
on one of the lateral axes of the Park Systems XE-70 AFM.

which can be written as

Gc(s) = 1
k0

+
m∑

i=1

1
dis+ ki

(2.6)

where k0, ki are the spring constants and di are the damping constants. The advantage
of the latter model is the ease of obtaining an inverted linear model, i.e. G−1

c (s), which
can be used in the control design.

Hysteresis compensation is a more complex topic, but very well researched. Hysteresis
is a nonlinear effect which means to “lag behind”, but must not be confused with
phase lag which is a linear effect. It is often defined as a rate-independent effect as
opposed to creep. Rate-independent means that it is not affected by the rate of input
variations. In many ways it looks like creep, and they are not independent of each
other, variations to the creep model can affect the hysteresis response and vice versa.
When plotting the resulting displacement over an applied voltage, the hysteresis will
show itself as an ellipse as seen in Figure 2.6b. Hysteresis depends not only on the
current value of the input, but also on the history of previous input values, as such
it is said have internal memory. The most commonly used model of hysteresis is the
classical Preisach hysteresis model [17].
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2.3 Challenges with AFM

2.3. Challenges with AFM

Although AFM has seen a wide variety of applications and been widely adopted, some
of the operating challenges involved can be discouraging for some users.

Slow scan-rates The time it takes a commercial AFM to perform an image scan is
often in the order of minutes. The slow scan-rates primarily come from the con-
trol challenges involved such as from the vibrations dynamics and nonlinearities
in the piezo-elements.

Non-repeatability Even when using the same parameters, results can vary from scan
to scan. This may be due to damage to the probe tip, variations in temperature,
or other disturbances. Additionally, changing cantilever or sample will produce
different results if not properly calibrated.

Ease of use There are a lot of things that can go wrong when operating an AFM,
such as when damaging the probe tip which produces artifacts on the image.
Also, it tends to involve tweaking with control parameters to make it work
correctly. Thus AFM imaging often requires a highly skilled operator.

High maintenance Because of limited durability of the probes, AFM requires higher
maintenance than traditional microscopes.

2.4. Sample Scan

We performed an image scan on the AFM we have used throughout this thesis shown
in Figure 2.7. This image was gathered using stock software and control on a sample
material with small grooves. We can see that the grooves are around 200 nm deep,
and around 1 µm wide. We can also see some small dust particles that have gathered
on the surface (white).
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Chapter 2 Atomic Force Microscopy

Figure 2.7: Scan image using a Park Systems XE-70 AFM
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Chapter 3

Robust Control Theory

Later in this thesis we will design several control laws and implement these for lateral
control of an Atomic Force Microscope (AFM). This chapter will provide some back-
ground theory for the control laws we will employ, as well as theory needed to study
the performance and stability of the system.

Control of AFM can be challenging because the operating conditions varies strongly
over time, from interactions with sample material and other unmodeled disturbances.
It is necessary that a controller is stable and performs well in all conceivable con-
ditions. This is the primary task of robustness theory and will be presented here.
Additionally, because of the importance of cross-coupling between the lateral axes of
an AFM, we will base our theory on multiple-input multiple-output (MIMO) systems.
A MIMO controller is able to compensate for such cross-coupling gains.

We start by introducing notation and a description of a feedback system. This allows
us to properly define the conditions under which we have robust stability for a given
controller. Then we will continue with presenting a variety of controllers starting with
the traditional PID controller and then more modern control strategies based on H∞
control.

The theory in this chapter is based on [21, 55, 59].

3.1. MIMO Feedback System

This section will present notation and several important characteristics for a MIMO
feedback system. Closed-loop characteristics such as the sensitivity and complemen-
tary sensitivity functions are introduced, later on we will discuss how these functions
relate to tracking performance and stability of the closed loop system. Additionally,
we will compare this to classical measurements of stability such as gain margin and
phase margin. We will introduce the concept of singular values, a useful tool for
analysis of MIMO systems.
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Chapter 3 Robust Control Theory

Figure 3.1: Feedback control system

Closed Loop System Consider the block diagram in Figure 3.1 of the feedback con-
trol system we will be studying with symbols as described in Table 3.1. We will
describe and make some observations on the closed-loop properties of this system.
The plant can be written as

y = Gu+Gdd (3.1)
as can be seen from the block diagram, and the plant input is given by

u = K (r − y − n) (3.2)

Inserting this into (3.1), we can find the closed loop system description

y = GK (r − y − n) +Gdd

(I + L) y = Lr − Ln+Gdd

y = (1 + L)−1
Lr − (1 + L)−1

Ln+ (1 + L)−1
Gdd (3.3)

where we have used the definition L , GK, called the loop function. Note that
the order of the matrices is important as matrix multiplication in general is not
commutative. Let us introduce some additional definitions for the closed-loop system

S , (I + L)−1 (3.4)
T , (I + L)−1

L (3.5)

where S is the sensitivity function, and T the complementary sensitivity function.
Notice that the property

S + T = I (3.6)
always holds. This can immediately be seen from the definitions. The closed loop
system (3.3) can now be written as

y = Tr + SGdd− Tn (3.7)

This equation is important to consider when designing a controller K whose task it
is to make y track r as close as possible. It gives us some hints on the desired shapes
of S and T as will be discussed in section 3.3.
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3.1 MIMO Feedback System

Stability One of the fundamental tasks of control theory is to design a controller
which provides stability to the closed-loop system. For a single-input single-output
(SISO) loop function L(s), stability is often determined using one of the following
statements [55].

• The system is stable if and only if the poles of the closed-loop system, i.e. the
roots of 1 + L(s) = 0, all lie in the open left half plane (LHP).

• The Nyquist stability criterion states that the Nyquist plot of L(s) needs to
make as many counter-clockwise encirclements of the critical point -1 as there
are number of poles in the right-half plane (RHP) of L(s).

Similar conditions exist for MIMO systems. In classical control theory, stability is
often specified in terms of gain margin and phase margin on L. These measurements
give some indication of the closeness of L(jω) to the critical point -1, which is a good
indication of robustness considering the Nyquist criterion. The actual closeness to
the critical point can be found by using the H∞ norm of S, specifically [55]

minimum distance from L(jω) to -1 = ‖S‖−1
∞ (3.8)

where the notation ‖·‖∞ refers to the H∞ norm as defined in appendix A.1. We
can also find a bound on the gain and phase margin by considering the peak of σ̄(S)
(defined next), so the flatness of this function is sometimes used as a measurement of
robustness.

Singular Values For single-input single-output (SISO) systems, the gain from input
to output is independent of the input magnitude since we have for a sine input with
angular frequency ω

|y(ω)|
|u(ω)| = |G(jω)u(ω)|

|u(ω)| = |G(jω)| (3.9)

This does not easily generalize to the MIMO case. One reasonable approach is to
use the 2-norm on the input and output signal, but it turns out unlike the gain in
the SISO case that this is not a constant value at a given frequency ω. There is an
additional degree of freedom in the input direction, by this we refer to the normalized
vector with unit length, i.e. û , u/ ‖u‖2. A variety of measures have been proposed to
represent something equivalently to gain, but for the MIMO case. The most important
is possibly the maximum and minimum singular value which takes the 2-norm of the
input and output signals and the worst-case and best-case directions,

σ̄(G) , max
u6=0

‖Gu‖2
‖u‖2

= max
‖u‖2=1

‖Gu‖2 (3.10)

σ(G) , min
u6=0

‖Gu‖2
‖u‖2

= min
‖u‖2=1

‖Gu‖2 (3.11)

which is constant for a given frequency ω. When plotting MIMO transfer functions
in the frequency domain we will plot both of these values in the same plot using
the notation σ(G) to signify this. There are several other norms that serve a similar
purpose, such as the Frobenium norm, sum norm, and maximum row/column norm.
For more details, we refer to Skogestad and Postlethwaite [55].
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Table 3.1: Feedback control notation

Symbol Dimension Description

G n×m nominal plant model
Gd n× nd disturbance model
K m× n controller
r n reference signal
u m plant input
y n plant output
d nd disturbances
n nn measurement noise

3.2. MIMO Robust Stability

The primary concern of robustness is to provide stability not only for the nominal
plant G, but also in the presence of uncertainties. A simplistic approach to robustness
is to only consider properties such as gain margin, phase margin, and maximum mag-
nitude of the sensitivity function. From these properties, we can get a sense of how
large deviation from the model the system can handle before instability occurs. A
more rigorous approach to robustness is to make a complete specification of possible
uncertainties. There are several ways to specify this, such as parameter uncertainty
and plant model structure uncertainties. The set of plant models with such uncer-
tainty is denoted Gp, and called the perturbed plant. After the uncertainty is specified
we can investigate the stability for all model perturbations.

The goal of robust stability (RS) can be formulated as

RS def⇔ System stable ∀Lp

where the perturbed loop function is defined as Lp , GpK.

3.2.1. Robust Stability Condition

The uncertainty perturbations are represented by a block-diagonal matrix ∆ where
each element ∆i is a specific source of uncertainty such as parametric uncertainty,
multiplicative output uncertainty etc. We define the uncertainties such that

‖∆‖∞ ≤ 1 (3.12)

Note that we do not allow any ∆ that satisfies (3.12), because it must satisfy the
structure that we have defined upon it, such as a block-diagonal matrix. If we have
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3.2 MIMO Robust Stability

Figure 3.2: M∆-structure used for robust stability analysis

no structure on ∆, that is all elements can take any value, it is called unstructured.
For analysis of robust stability (RS) the system must be transformed into the M∆
structure Figure 3.2 such that the uncertainty is “pulled out” of the closed-loop sys-
tem.

For robust stability analysis we introduce a new value called the structured singular
value, denoted µ. The definition is

µ(M)−1 , min
∆
{σ̄(∆)|det (I −M∆) = 0 for structured ∆} (3.13)

which in short can be described as finding the smallest structured ∆ that makes the
matrix I − M∆ singular. We can now state the robust stability condition taken
verbatim from Skogestad and Postlethwaite [55] who also provides a proof.

Robust stability for block-diagonal perturbations

Assume that the nominal system M and the perturbations ∆ are stable. Then
theM∆-system in Figure 3.2 is stable for all allowed perturbations with σ̄(∆) ≤
1, ∀ω, if and only if

µ (M(jω)) < 1, ∀ω (3.14)

Note that in the case of an unstructured ∆, we have µ(M) = σ̄(M). In fact, it is
shown in Skogestad and Postlethwaite [55] that if we have an unstructured ∆ the
necessary and sufficient condition for robust stability (3.14) is reduced to

RS ⇔ ‖M‖∞ < 1 (3.15)

with otherwise equivalent assumptions.

3.2.2. Multiplicative Output Uncertainty

There are many classes of structured uncertainties, and we will focus on one of them
called multiplicative output uncertainty. This can be seen in Figure 3.3, mathemati-
cally we have

Gp = (I + ∆W )G (3.16)
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Figure 3.3: Feedback system with multiplicative output uncertainty

where W is the weighting, a fixed stable scalar transfer function. We assume that ∆
is unstructured which simplifies our calculations. Now that we have properly specified
a set of perturbed plants in a mathematically convenient way (3.16), we want to find
the conditions for which the system is stable for all perturbations.

We begin by transforming the feedback system with multiplicative output uncertainty
in Figure 3.3 into the M∆-formulation to see when (3.15) is satisfied. This is done
by finding the closed-loop transfer function between the input and output of ∆. We
have

y = y∆ −GKy
(I +GK) y = y∆

y = (I +GK)−1
y∆ (3.17)

where u∆ is the input signal to ∆ and y∆ is the output signal from ∆. Furthermore

u∆ = -WGKy

u∆ = -WGK (I +GK)−1
y∆ (3.18)

u∆ = My∆ (3.19)

where the last two equations give us

M = -WGK (I +GK)−1

= -WT (3.20)

Inserting (3.20) into (3.15) gives us necessary and sufficient condition for robust sta-
bility,

RS ⇔ ‖WT‖∞ < 1 (3.21)

Next we will describe how to find W given a plant model G and a specified set
of expected perturbations assuming they can be described as multiplicative output
uncertainty.
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3.3 Control Design Objectives

3.2.3. Specifying the Weight W

Let us consider that we have a specification of all the possible perturbed plants that
we would like to show robustness against, denoted by the set Π. We would like to
find a weighting function W such that Gp in (3.16) complies with all the models in
Π. Some algebra is needed to find a solution to this problem,

Gp = (I + ∆W )G
∆W = (Gp −G)G−1

|W (jω)| ≥ σ̄
(
(Gp(jω)−G(jω))G−1(jω)

)
∀ω, Gp ∈ Π (3.22)

where the last inequality comes from considering that ‖∆‖∞ < 1. For convenience
we introduce the notation

Ŵ (ω) , max
Gp∈Π

σ̄
(
(Gp(jω)−G(jω))G−1(jω)

)
(3.23)

Now the weighting function W (s) can be found as any transfer function that satisfies

|W (jω)| ≥ Ŵ (ω) , ∀ω (3.24)

which is easily seen by considering (3.22) and (3.23).
In summary, we start by selecting a nominal model G(s). The physical plant will
never behave exactly like this model, so specify a set Π of possible plants that the
real plant may behave like. This can be specified either from experiments, or from
other knowledge of the system. Then, let Gp take on all of these possible plants and
solve for Ŵ in (3.23). Finally specify a transfer function W (s) such that (3.24) is
satisfied. If additionally (3.21) is satisfied for some controller being considered, it
means our system is robustly stable for all Gp ∈ Π.

3.3. Control Design Objectives

The overall objective in control theory can be stated as providing inputs to a system
such that the outputs behave with desired response. There are several considerations
to take into account as we will see here. Let us restate the closed loop system (3.7)
for convenience,

y = Tr + SGdd− Tn (3.25)
Let us also define the tracking error as

e , y − r (3.26)

By studying Figure 3.1 we can find the transfer function from r to e to be

e = Sr (3.27)

There are a few things to note by considering (3.25) and (3.27). Since we want y
to track r, we can see that this is accomplished by having T = I. To reduce the
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Chapter 3 Robust Control Theory

tracking error we would like S = 0, which is convenient considering the constraint
S + T = I. However, to attenuate the measurement noise n we would like T to be
as small as possible. These conflicting goals can be handled by observing that each
goal dominate in some frequency domain, while is negligible in other domains. The
measurement noise is usually most prominent at high frequencies, while the tracking
goal and disturbances are usually given at lower frequencies.

This discussion provides some insight into the desired shapes of S and T . The mag-
nitude of T should start at 0 dB for good tracking performance, but above some
frequency point we want T � 0 dB to attenuate measurement noise. Since S+T = I,
the shape of S must start such that S � 0 dB and increase until it flattens out at
around the same frequency point.

The goals can be summarized as follows when also considering control effort and mul-
tiplicative output uncertainty. The list is restated from Skogestad and Postlethwaite
[55, p.342].

1. For disturbance rejection, make σ̄(S) small

2. For noise attenuation make σ̄(T ) small

3. For reference tracking make σ̄(T ) ≈ σ(T ) ≈ 1

4. For input usage (control energy) reduction make σ̄(KS) small

5. For robust stability in the presence of multiplicative output perturbation, make
σ̄(T ) small

A useful measurement of the closed-loop characteristics is bandwidth which in short
tells us the frequency range the controller is able to track sufficiently well. We will
introduce two different methods of measuring bandwidth on a closed-loop system, one
depends on S while the other depends on T .

Definition: Closed-loop bandwidth

The bandwidth of S, stated as ωbS , is the lowest frequency where σ̄(S) crosses
the -3 dB mark from below.

The bandwidth of T , stated as ωbT , is the lowest frequency where σ(T ) crosses
the -3 dB mark from above.

A lot of information about the system can thus be gathered by considering the plots
of σ(S) and σ(T ). As well as the point at which S and T rises and falls, the flatness
of these functions are also considered to be good measurements of the performance
and robustness of the system. For these reasons, plots are provided of σ(S) and σ(T )
in several cases throughout the thesis.
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3.4 PID Controller

3.4. PID Controller

Thus far we have concerned ourselves with providing a framework such that we can
specify a controller and plant, and analyze for stability and performance. The rest of
the chapter will present control laws both from traditional and modern control design.
We start by introducing the classical PID controller.

A PID controller can be written on the form

KP ID = Kp + 1
s
Ki +Kds (3.28)

where Kp, Ki, and Kd are the proportional (P), integral (I), and derivative (D)
constant parameters respectively.

A PID controller considers only one axis at a time. For MIMO systems, we can use
one such controller for each axis if the cross-coupling gains are sufficiently small. For
a 2-by-2 plant, such a controller can be written in matrix form as

K =
[
KP ID,1 0

0 KP ID,2

]
(3.29)

where KP ID,1 and KP ID,2 are of the form (3.28) possibly with different parameters.

3.4.1. Tuning PID Controller

A PID controller is made up of three constants that need to be properly tuned for
the closed-loop system to behave well in terms of stability and performance. The
most common approach of tuning the PID controller is possibly the Ziegler-Nichols
method. This is an experimental method where no previous knowledge about the
model has to be known. We will provide a quick summary of the method here.

Ziegler-Nichols method

Consider the controller in (3.28). Set Ki = Kd = 0, then increase Kp from
zero until the system oscillates with a constant amplitude. This value of Kp

is called the ultimate gain Ku, and the oscillation period is Tu. Set the PID
parameters such that

Kp = 0.6Ku, Ki = 2Kp

Tu
, Kd = 0.125KpTu (3.30)

Variations to these parameters are available for different performance characteristics,
see e.g. McCormack and Godfrey [40].

For a lightly damped system, such as the nanopositioning stage, the system becomes
unstable with even small proportional gains. This makes the use of Ziegler-Nichols
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Chapter 3 Robust Control Theory

method impractical. Instead we will tune the controller by shaping the loop transfer
function L = GK of the system as well as the closed-loop transfer functions S and T .
This requires a model of the system, but the advantage is that we can immediately
determine the nominal stability properties. In general, for good closed-loop perfor-
mance, we want the loop to have high gain at low frequencies and small gains at high
frequencies. For a lightly damped system, we emphasize the use of the integral part
of the PID controller to dampen the resonant peak of the plant.

3.5. H∞ Control

Figure 3.4: General control configuration

Traditional control strategies are mainly concerned with shaping the loop L of the
feedback system by optimizing properties such as gain margin and phase margin.
The term H∞ control is used for a variety of control strategies, but they all have in
common that they try to optimize for some H∞ norm as is defined in appendix A.1.
Consider the control configuration in Figure 3.4, and let N be the transfer function
from w to z, then the general H∞ optimal control problem is to find all stabilizing
controllers K which minimize

‖N‖∞ (3.31)
An optimal solution can be challenging to find, but iterating on suboptimal solutions
can be solved efficiently e.g. by the algorithm presented by Doyle et al. [20]. In order
to use this approach, we need to find a suitable P to describe our objective. This
problem formulation is very general and many problems can be reduced to it, we will
now present one such formulation called mixed sensitivity H∞ control.

Mixed sensitivity H∞ control problem

Given a plant G, find the controllers K which solves

min
K

N(K) =

∥∥∥∥∥∥∥∥
WSS

WTT

WKSKS

∥∥∥∥∥∥∥∥
∞

(3.32)

where WS ,WT , and WKS are user-defined scalar transfer functions for weight-
ing the respective closed-loop functions.
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3.5 H∞ Control

The function KS is the closed-loop transfer function from r to u, thus minimizing
this can be seen as reducing the control effort or input energy. We would like the
various closed-loop functions to be small or large in different frequency ranges, which
is the reason for having frequency dependent weighting functions. The discussion in
section 3.3 can be used as a reference for designing these functions. The absolute
value of each of the weightings does not matter as long as they are scaled similarly,
i.e. multiplying all of them by a constant does not change the optimization problem.
Often one of the elements of the problem are omitted, that is either S, T , or KS.
This can be convenient to avoid having too many options to tune.

To solve the mixed sensitivity problem, the problem must be converted to the general
H∞ optimization problem. The block diagram of the resulting structure can be seen
in Figure 3.5 which is adapted from [56].

Figure 3.5: General control configuration of the mixed sensitivity H∞ problem.

3.5.1. Procedure for Mixed Sensitivity H∞ Control

The procedure for obtaining a robustly stable H∞ mixed sensitivity controller can be
summarized as follows, assuming the uncertainty can be well described by multiplica-
tive output uncertainty. Assume we already have a plant model G identified using
experimental data Ĝ(ω).

1. Calculate Ŵ (ω) in (3.23), and find a W (s) satisfying the condition (3.24)

2. Construct the weightings in the mixed sensitivity optimization problem (3.32)

3. Solve the optimization problem using a tool such as Matlab with the command
mixsyn

4. Verify that the robust stability condition (3.21) is satisfied and that the closed-
loop characteristics are reasonable by considering the discussion in section 3.3
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3.5.2. Other H∞ Control Approaches

The mixed sensitivity control strategy is a powerful tool for obtaining a robustly
stable controller. However, because of the various weightings each with their own
parameters, it can sometimes be difficult to tune.

For more flexibility in the control design, a method based on Glover and McFarlane
[32] often called H∞ loop-shaping design or the Glover-McFarlane method can be
utilized. It is based on classical loop shaping, and can possibly employ an existing
controller designed for a given system from traditional control theory. This method
then shapes the loop using an algorithm to make it more robustly stable by taking
into account multiplicative perturbation to the nominal plant model. One advantage
to this method is that it requires no tuning, and the algorithm is relatively simple.
One could for example start by designing a PID controller using standard methods,
and then run this algorithm to make the system more robust.

Another method is signal based H∞ control. The goal here is to find a controller
which optimizes for some signal such as the 2-norm of the error signal. By consider-
ing stochastic disturbance and noise signals, we acquire in its simplest form a more
traditional Linear Quadratic Gaussian (LQG) controller. We can additionally put
frequency dependent weightings on the various signals and a description of the un-
certainty model. This is not a standard H∞ optimization problem, but can be solved
using µ-synthesis [55]. However, this has not been solved for the general case, and
when a solution does exist, it often results in a high-order controller. Additionally, the
problem often does not always converge and the problem can be difficult to formulate.
For these reasons this method has not been widely employed.
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Chapter 4

Control Strategies for Lateral
Motion

In the topic of nanopositioning a distinction is often made between control in the
lateral direction (along x- and y-axis) and vertical direction (along z-axis). We can
see that this is useful for instance in the case of Atomic Force Microscopy (AFM).
Here the sample is moved in the lateral direction, while the probe is moved up and
down in the vertical axis using very different control schemes. In this chapter we will
present some of the literature on the topic of control in the lateral directions. We will
give a brief introduction on the various types of controllers utilized in the literature
on nanopositioning, from very simple ones to more complex.

The performance of a controller is usually measured in terms of resolution, tracking
performance, and bandwidth. Resolution is important for being able to image down
to the smallest scales, possibly down to atomic scales. Good tracking performance is
also important as the probe scans over the surface so the resulting image does not
become corrupted. The bandwidth provides a limit to how fast the probe can scan
a given area and is important for capturing the state of a sample with fast changing
conditions, as well as the patience and time consumption of the operator.

Usually linear control strategies are employed since the system is dominantly linear.
Nonlinear effects such as creep and hysteresis are often associated with the use of
piezoelectric actuators, and some control schemes compensate specifically for this.

Traditional nanopositioning control has to account for (1) hysteresis, (2) creep, and
(3) vibration. The vibration dynamics results in large magnitude resonance peaks,
which tends to give low gain margin because of the rapid phase-drop at around the
peak. The difficulty is amplified by large model uncertainties. Uncertainties can
originate both from the mechanical system itself and also the varying conditions of a
Scanning Probe Microscopy (SPM) application. The system response usually varies
with different setpoints and with wear over time. Additionally, the sample will affect
the mass of the system, and the interaction between the probe and sample will also

27



Chapter 4 Control Strategies for Lateral Motion

affect the response. Cross-coupling between the axes needs also to be taken into
account, even when employing different positioners for different axes because they
will ultimately all be connected through the sample.
We will divide the presentation of control strategies into the two schemes, feedforward
control, and feedback control. In general the feedforward scheme can achieve high
resolution and high bandwidth, while the feedback scheme can give good tracking.
The feedback controller is limited in its bandwidth because it needs to guarantee
robust stability, and additionally the controller increases the noise level in the system.
The feedforward controller on the other hand does not need to worry about stability
and is not affected by sensor noise, but will not give good tracking performance
because of unmodeled system characteristics and disturbances. By combining the two
types as shown in Figure 4.1, we can get the performance of a feedforward controller
and accuracy of the feedback controller. It is however useful to separate them when
investigating their individual properties. A survey of control issues in the field of
nanopositioning can be found in [17].

(a) (b)

Figure 4.1: Combined feedforward and feedback controller schemes. In (a) the input
u is augmented with a feedforward signal, in (b) the reference trajectory is filtered.
If the reference trajectory is known in advance F can possibly be an acausal filter.

4.1. Feedforward Control

The simplest form of controller is a feedforward signal where the reference signal
is multiplied with the DC-gain of system from input to output. This scheme is very
limited in terms of accuracy and bandwidth, because higher harmonics of the reference
signal will excite the resonance peaks of the system. Additionally effects such as creep
and hysteresis are ignored. This motivates the usage of more complex control schemes.
A review of feedforward control in nanopositioning can be found in [13].

4.1.1. Creep and Hysteresis Compensation

Creep and Hysteresis is important to consider when using piezoelectric actuators
as is used in most AFM applications. There are several models of hysteresis and
creep proposed in the literature as seen in section 2.2. Once a model is established,
an adaptive method can be used to estimate the parameters. Then a feedforward
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compensation can be made by inverting the estimated models, see some examples on
this in [16, 23, 42]. For a more thorough review of hysteresis compensation, see [17].

4.1.2. Inversion Techniques

Inversion techniques can be employed to reduce mechanical vibrations of the system.
If the mechanical system can be approximated by a minimum-phase transfer function
G(s) a feedforward signal can easily employ the inverted model G−1(s) ideally for
perfect tracking. In practice however, there will be model and parameter uncertain-
ties, as well as other disturbances which will affect the tracking performance. Usage
of these inversion techniques can be found in [14, 15]. Some methods also modifies the
trajectory to avoid input saturation and excitation of undesirable frequencies such as
[27, 39, 53], which can be viewed as an acausal filter on the reference signal. A chal-
lenge with the acausal filter is that the reference trajectory will need to be specified
before-hand. Dealing with this issue, where the trajectory is only partially known,
is done by [60]. This paper also discusses dealing with non-minimum-phase systems
which is challenging because we can’t invert the model directly as this will lead to
unstable internal modes in the controller. This issue is also dealt with in [51].

4.2. Feedback Control

Although feedforward control can achieve high resolution and high bandwidth, many
applications also require good tracking performance. A feedback controller is neces-
sary to achieve this. We usually distinguish between model-based and fixed-order,
fixed-structure control. We will start by presenting controllers in the latter category,
such as a PID controller. Then we will present model-based H∞ control.

4.2.1. PID

The simplicity of a PID controller has made it the default choice in feedback control.
For lateral control in nanopositioning, we can find this controller employed in [1, 52].
A PID controller is very limited in bandwidth because of the lightly damped nature
of the positioner, which makes it quickly become unstable at higher gains. Secondly,
the integrator part of the controller is prone to wind-up due to saturation. There
are however methods to overcome this, such as presented in [25]. One possible way
to increase bandwidth of a PID controller, is to augment it with notch-filters to
reduce the sharp resonant peaks [43, 44]. Other control schemes can also be used to
dampen the resonant peak of the system, before applying a more traditional control
law [28, 41, 45].
In scanning applications with a triangle reference signal, the controller is often aug-
mented with an additional integrator making what is often designated as a PIID
controller. This is used to be able to asymptotically track ramp signals, i.e. the
flanks of the triangle signal often used in raster scan applications.

29



Chapter 4 Control Strategies for Lateral Motion

4.2.2. H∞ Loop Shaping

Because of the changing nature of the nanopositioning stage, a feedback controller
will need to ensure that it is stable for all variations to the system. A PID controller
does not give very good robustness properties, but it is possible to robustify the
controller using the H∞ loop shaping technique. Traditional loop-shaping methods
or simple controllers such as PID can be used at first, and then by applying the
method a controller will be generated which stabilizes the system for a given family
of perturbed plants. This method has been applied to nanopositioning devices by
[36, 54]. The robustness may come at some cost to the performance.

4.2.3. H∞ Mixed Sensitivity

H∞ control has the advantage that it shapes the closed-loop characteristics of the
system, thus we don’t have to deal with finding a reasonable loop function manually as
in traditional loop-shaping methods. Additionally, it is formulated in such a way that
it is convenient to adjust the weightings such that we can guarantee robust stability.
This control scheme has been used extensively in the topic of nanopositioning [36, 48,
49, 51, 52, 54, 58].

4.3. Other Control Approaches

Many applications of nanopositioning use a repetitive reference signal such as the
raster pattern in imaging. This is very well suited for a repetitive control approach
which has been implemented by [3, 23]. It works by embedding a model of the periodic
signal in the control loop. Such an approach can be combined with another feedback
scheme and does not affect the closed-loop stability.

Iterative Learning Control is a more computationally expensive method, but can be
efficient against repeating disturbances and/or repeating reference trajectories [9, 10,
33, 37].

Adaptive control theory such as model reference adaptive control (MRAC) has also
been studied such as in [23, 24]. Lyapunov based robust adaptive control has been
studied in [5].

Nanopositioning can be considered a good test-case for a large part of control theory
because of the difficulties due to the nonlinearities, vibration dynamics, uncertainties,
and varying conditions involved. As we have seen, this has made nanopositioning
a well-studied field with a vast amount of control strategies, and this chapter only
touches on some of the available literature on the subject.
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Chapter 5

Comparison of Control Laws
on Cross-Coupling Effects

Many nanopositioning applications has a coupling between the axes especially in the
lateral directions, but sometimes also in the vertical axis. This cross-coupling can be
of high importance in applications such as scanning probe microscopy (SPM). This
can be understood by considering the scanning motion of the microscope which has
one fast direction and one slow direction, as illustrated in Figure 5.1. It is important
that the fast scanning direction does not move the probe in the slow direction as
this could position the probe over the wrong scan-line in the y-direction and produce
artifacts in the resulting image. Thus any cross-coupling between x and y should be
as small as possible, especially considering that the fast scan direction speed can be
of several orders of magnitude larger than the slow direction.
In the literature, control laws are often designed based on independent axis design
where control laws are designed for one axis at a time such as in [54, 58]. In this
approach the cross-coupling gains are considered to be small compared to the same-
axis coupling and just treated as a disturbance. The advantages of using independent
axis design is that the control design becomes simpler and enables more traditional
control laws. Additionally, a MIMO controller tends to become more computationally
complex such that it is more difficult to implement for real-time control. The primary
concern of this chapter will be to investigate how much there is to gain by using
a MIMO approach for a typical nanopositioning application even when the cross-
coupling gain is small, and whether independent axis design can be justified.
We will design a H∞ MIMO controller for the lateral positioning of an Atomic Force
Microscope (AFM). An equivalent H∞ SISO controller is also designed based on
independent axis design. By comparing these two control laws, we can determine
how large the differences are particularly in terms of cross-coupling. The two H∞
controllers are also compared to a simple PID controller. The three controllers are
experimentally tested on a commercial AFM, and the results are discussed both in
terms of cross-coupling reduction and same-axis performance with emphasis on the
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former. The purpose is to be able to give better insight to the question of whether
the extra complexity both in terms of control design and computational complexity
of a MIMO based controller is worth the performance benefits.

Figure 5.1: A common scanning motion in SPM. The x-axis must move at a much
faster rate than the y-axis. Any cross-coupling from the x-axis to the y-axis may
adversely affect the resulting image.

5.1. Experimental Setup

All experiments are done using a commercial AFM of the type Park Systems XE-70,
pictured in Figure 5.2. In this device, the sample is placed on a parallel kinematic
2d flexure scanner for motion in the horizontal xy-plane. Motion along the vertical
z-axis is done by moving the cantilever itself using a flexure guided setup. In such a
setup the coupling between the vertical axis and the lateral axes is none at all, except
for small forces via the sample. However, the two lateral axes will be slightly coupled
due to the flexure setup.

The signals from the AFM are routed to an electronic processing and controller box
that is available for the microscope. As well as having its own controller circuits, it
provides access to analog measurements from the sensors. It can also receive external
signals for manual control of the AFM’s actuators which we will use to control the
piezoelectric elements.

See a schematic overview of the setup in Figure 5.3. The controllers are implemented
in a Simulink model, which is compiled and transferred to a dedicated computer,
an xPC, which runs a real-time operating system. The xPC performs the numerical
calculations, and is externally connected to a digital-to-analog converter (DAC) and
an analog-to-digital converter (ADC). These input-output signals are run through
anti-aliasing and reconstruction filters, which are constructed as low-pass filters with
a bandwidth of less than half the sample frequency.
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5.1 Experimental Setup

For our purpose, we have overridden control of the piezo-actuators in the x- and y-
axes. This is connected to a PiezoDrive PDL200, a linear voltage amplifier. The input
into this amplifier is considered as the input to the system. The voltage output from
the distance sensors in the x- and y-axes located on the AFM is used as the output
of the system.

5.1.1. Frequency Domain Response

Several of the measurements gather frequency response data of the system, both in
open-loop and closed-loop with the controllers. These are done using a Stanford
Research Systems SR780 frequency analyzer. For the open-loop case, it is connected
directly to the inputs and outputs of the system. In the closed-loop case, the device
is connected to the xPC which uses the output signal from the SR780 as the reference
signal.
The SR780 was set up to provide a white noise source signal. The device then performs
a fast Fourier transform of the output signal from the system to obtain the frequency
response. This approach was chosen over other methods such as a swept sine signal,
which is a single sine that increases its frequency over time. Such a signal may cause
damage because of the lightly damped poles of the system which will generate very
high gains around the resonance frequencies. Additionally, one avoids the transient
effects from the frequency-changing sine signal.

Figure 5.2: Park Systems XE-70
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Figure 5.3: Experimental Setup Overview

5.2. System Identification

When designing the controllers, especially for the H∞ controller, we need a model
of the system. Such a model is represented by the transfer function matrix G(s),
a 2-by-2 matrix, one dimension for each axis of the platform. The purpose of this
section is to identify such a model of the system.
In order to obtain a system model, we will start by getting a frequency response using
the SR780 device. This gives us Ĝ(ω), the experimental analogue to G(s). Each ele-
ment of the 2-by-2 matrix Ĝ(ω) contains a set of 〈frequency, complex response〉 pairs.
The complex response value can be converted to magnitude and phase, and plotted
in a bode plot. Using tools available in Matlab, a transfer function approximation to
the experimental data can be obtained using any desired degree, to obtain a nominal
plant G(s). Keep in mind that any such function will only be an approximation of
the linear response of the real system.
We gathered a total of three different sets of frequency responses at different set-
points, amplitudes and at different times. These additional responses are used to
make sure the system is robustly stable for all expected variations to the system
response.

5.2.1. Frequency Response Ĝ(ω) and Fitted Model G(s)

One of the frequency responses is plotted in Figure 5.4 together with the fitted models.
The transfer functions were fitted using the Matlab function tfest on the experimen-
tal data. The diagonal elements of G(s) were approximated by a third-degree transfer
function, while the off-diagonal elements were approximated by a second-degree func-
tion. We tried to keep the order as low as possible to reduce the complexity of the
resulting controller. The nominal plant model was found as

G(s) = e−4.58e-04s

 −5924s2−1.709e07s−9.878e10
s3+4703s2+1.82e07s+7.806e10

−0.04567s2+69.72s−6.043e04
s2+104.5s+2.29e07

−0.04705s2+89.17s−1.253e05
s2+134.1s+2.288e07

−8708s2+2.618e07s−9.214e11
s3+3.865e04s2+4.379e07s+9.44e11
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where the exponential term represents the time delay between input and output,
see next section on how this was identified. We can see that the phase starts at
180◦ which means that the system has an inverse response, i.e. positive inputs give
negative outputs and vice versa. This is just the sign convention of our raw data, and
we decided not to change it for simplicity.
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Figure 5.4: Experimental frequency response of the system Ĝ(ω) for both axes in-
cluding cross-terms, and the corresponding fitted models G(s)

5.2.2. Time Delay

We experienced that there was a notable time-delay between input and output of the
plant. A possible source of this time delay may be due to the displacement sensor on
the AFM’s xy-scanner. It is convenient to know the time delay as this is important
for stability, and our general understanding of the system. Additionally, it can let us
correct the phase of a system because the time-delay affects the phase plot.
A time delay will present itself as a linear reduction of the phase as a function of
frequency. Thus, we may find the time delay of the system between input and output
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by taking a look at the phase plot of the elements of Ĝ. By assuming that the change
in phase at lower frequencies is dominated by the time delay and other sources of
phase change is close to zero, we find that the time delay is proportional to the slope
at the start of the phase plot. This can be justified by considering the phase plot
of a system with a high resonant peak where the phase starts dropping rapidly at
around the resonance frequency, while only slowly decreases up until this point. See
Figure 5.5 where we have used linear regression to find the slope of the line. The time
delay is found to be

Td = 4.58× 10−4 s
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Figure 5.5: Identification of time delay. We are assuming that the linear reduction
of the phase at the beginning is purely caused by the time delay. The slope of the
fitted line (red) is then proportional to the time delay. Only data points up to
636Hz (blue) are used for the linear regression.

5.2.3. Uncertainty weight

We want to make sure that the system is robustly stable for variations in the system
responses and inaccuracies in the model fits. To do this, we must first calculate Ŵ (ω)
as in (3.23) for our experimentally gathered frequency responses, i.e.

Ŵ (ω) = max
Ĝ∈Π

σ̄
((
Ĝ(ω)−G(jω)

)
G−1(jω)

)
(5.1)

using all three of the gathered frequency responses Ĝ(ω) ∈ Π. Then we will fit the
output uncertainty weightingW (s) such that |W (jω)| > Ŵ (ω) for all ω in accordance
with (3.24).

The weighting was fitted by the transfer function

W (s) = 3.8254 (s+ 210)(s+ 1850)
(s+ 2400)(s+ 3200) (5.2)
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which is plotted together with Ŵ in Figure 5.6. We can see that Ŵ has some spikes,
e.g. one at around 300-400Hz. This is because the low-order model fit does not
pick up the changes in gain around this frequency range, as evident in Figure 5.4.
A higher-order model fit could possible pick up these changes and reduce the peaks
of Ŵ , and thus allow us to more accurately fit W around Ŵ . This will of course
cost more in terms of complexity, so ultimately it comes down to a trade-off between
complexity and accuracy. Both of these will in the end affect the performance of the
final controller. When the controllers are designed in the next section, we can prove
robust stability of the closed-loop system by showing that ‖WT‖∞ < 1 as explained
in section 3.2 where T is the closed-loop complementary sensitivity function.
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Figure 5.6: Robustness fit, W (s) and Ŵ (ω)

5.3. Controller Design

This section will present the design of the PID- and the two H∞ controllers. We
will explain the reasoning behind how they were designed and present the closed-loop
characteristics resulting from the controllers based on the identified model G.

5.3.1. PID controller

Two PID controllers were designed, one for the x-axis, and one for the y-axis. They
were designed by looking at the frequency response of the open-loop and closed-loop
transfer functions, as well as some experimentation. The constants for the two axes
are set to:

x-axis: Kp = -5× 10−3, Ki = -370, Kd = -2.5× 10−5

y-axis: Kp = -5× 10−3, Ki = -450, Kd = -2.5× 10−5
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We can see that the system is dominated by the integral term, this is because the
resonant peak of the system needs to be dampened out sufficiently. In fact, the
proportional and derivative term could have been eliminated completely which would
result in only small changes to the closed-loop performance.
Additionally, a low-pass filter was added to the derivative term to make the controller
proper, with a time constant equal to the sample time. The resulting controller
transfer function K can then be written as

K(s) =

 −0.555s2 − 495s− 9.25e06
s2 + 2.5e04s 0

0 −0.555s2 − 575s− 1.125e07
s2 + 2.5e04s

 (5.3)

The closed-loop sensitivity and complementary sensitivity function is shown in Figure 5.7a.

5.3.2. H∞ Mixed Sensitivity Controllers

We will design two H∞ controllers, one MIMO version and one SISO version. We
will use the same weighting functions for both of them so that they are more easily
comparable. We will also design the weighting functions such that the controllers are
similar to the PID controller in terms of bandwidth.
In section 3.5 the H∞ mixed sensitivity problem is formulated as

min
K

N(K) =

∥∥∥∥∥∥∥∥
WSS

WTT

WKSKS

∥∥∥∥∥∥∥∥
∞

(5.4)

where WS , WT , and WKS are user-defined weightings, we will now explain how these
were chosen for our control design. We have chosen WS to be a first-order transfer
function of the form

WS =
1

MS
s+ ωb

s+Aωb
(5.5)

where ωb is a desired bandwidth, the scalar MS is the inverse gain, and A is a small
constant which exists to avoid an integrator which makes the mixed sensitivity prob-
lem ill-conditioned. Increasing MS will allow large values of S at high frequencies
more. It can be thought of as the relative weighting on S from those on T and KS,
allowing a more undesirable S while making the other closed-loop functions more
desirable.
We have chosen WT to be equal to W in (5.2). The reasoning behind this is to make
the controller more easily robustly stable. From (3.21) we have that the system is
robustly stable iff ‖WT‖∞ < 1. Selecting WT = W shapes the controller to more
easily comply with this criteria.
Finally, the weighting WKS is chosen as a first order high-pass filter of the form

WKS = 1
MKS

s

s+ ωb
(5.6)
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where MKS is the inverse gain, and ωb again is the desired bandwidth, possibly the
same as in WS . This will punish very fast input variations applied to the actuators.
A commonly used physical interpretation of this is the reduction of energy usage by
the controller.

After some experimentation, we ended up with the values ωb = 2π · 70, A = 10−4,
Ms = 1.2, and MKS = 1.2. The resulting weighting functions are summarized in
Table 5.1.

The H∞ mixed sensitivity problem was solved using the Matlab function mixsyn,
the complete code can be seen in appendix C.1. For the MIMO controller we used
the nominal model matrix G as input to the function, which resulted in a state-space
model controller with 18 states. For the SISO controller we designed two controllers,
each of them only calculated using the corresponding axis model, i.e. Gxx for the x-
axis controller and Gyy for the y-axis controller. Each of them resulted in a controller
with 7 states, and they were combined for a total number of 14 states.

The resulting sensitivity and complementary sensitivity functions S, and T for all
three controllers are plotted in Figure 5.7. We can observe that the PID controller
has two notches in both S and T at around 665Hz and 770Hz. The first corresponds
with the frequency of the peak magnitude of Gxx while the seconds corresponds with
the peaks of Gxy, Gyx, and Gyy. The PID controller does not take these peaks of
the model into account and instead it simply dampens everything over its bandwidth.
The H∞ SISO controller has that same second notch at 770Hz. This is probably
from the fact that it doesn’t take into account the peak in the cross-coupling axis,
but is effective at damping out the resonant peak of the same axis, which it has a
model of. The H∞ MIMO controller has none of these notches, which indicates that
it effectively takes the cross-coupling effects into account since it contains a model of
the cross-coupling as well.

The bandwidth of all three controllers, measured on both S and T , is given in
Table 5.2. We have used the definition of bandwidth as defined in section 3.3. The
table shows us that the closed-loop system is robustly stable because ‖WT‖∞ < 1 for
both of the H∞ controllers. This is not the case for the PID controller, so in fact we
can not guarantee that this controller is stable for all perturbations of the system.

Table 5.1: Summary of weighting transfer functions

WS(s) 0.8333s+ 439.8
s+ 0.04398

WT (s) 3.8254 (s+ 210)(s+ 1850)
(s+ 2400)(s+ 3200)

WKS(s) 0.8333 s

s+ 439.8
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Chapter 5 Comparison of Control Laws on Cross-Coupling Effects

Table 5.2: Bandwidth, robustness, and implementation comparison between the
three controllers. TF = transfer function, SS = state space.

ωbS ωbT ‖WT‖∞ Implementation
[Hz] [Hz]

PID 58.0 93.1 1.073 4th order TF
H∞ SISO 75.6 96.4 0.9938 14th order SS
H∞ MIMO 69.8 98.6 0.6717 18th order SS
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Figure 5.7: Sensitivity σ(S) and complementary sensitivity σ(T ) for the three con-
trollers. The identified plant G(s) with time-delay has been used in the calculations.
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5.4. Implementation Details and Issues
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Figure 5.8: Simulink diagram of the controller implementation. The bottom gain
enables external reference signal, such as from the SR780. The source blocks on
the left provides an optional raster pattern reference signal.

Three different controllers were designed in the previous section, and we will now
explain some of the details and associated issues experienced with implementing and
running these on the experimental equipment.
The controllers were added as either state-space or transfer function models to a
Simulink diagram as seen in Figure 5.8. This model was compiled and transferred to
the xPC where it was executed.
The H∞ controllers gave us some issues. The controller wouldn’t run in the first
implementations because the xPC issued “CPU overload”-errors. The controller was
too complex to be solved in real-time at the specified step-size. We reduced the step-
size until we didn’t get the error anymore, but this resulted in an unstable controller
because of the large steps. We found that by reducing the bandwidth of the controller
(by changing the mixed sensitivity weightings), and increasing the solver complexity
we could finally get a working and stable controller. The PID controller did not give
us the same amount of problems.
At first we had some issues with noise, but this was reduced by introducing an anti-
aliasing and reconstruction filter in the loop.
Since the displacement sensor gives us a value in voltage, we would like to convert
this to distance. The relationship between sensor voltage output and distance was
found by running the AFM at some specified amplitude using the included software
and measuring the resulting voltage from the sensor. The relationship was found to
be linear, so the problem was reduced to a simple linear regression between distance
and voltage output.
See a summary of the implementation details in Table 5.3.
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Table 5.3: Controller implementation details

Step-size 4× 10−5 s
Solver type ode8 (Dormand-Prince)

Anti-aliasing filter type 2nd order Butterworth (low-pass)
Anti-aliasing filter bandwidth 10 kHz

Reconstruction filter type 2nd order Butterworth (low-pass)
Reconstruction filter bandwidth 10 kHz

Displacement/sensor voltage-ratio 4.66 µm/V

5.5. Results

We measured the closed-loop frequency responses T̂xx, T̂xy, T̂yx, and T̂yy for each of
the controllers using the SR780 device. The results from these is plotted in Figure 5.9.
We have plotted σ(T̂ ) together with σ(T ) for each controller so we can easily compare
the expected response with the actual response in Figure 5.10.

Finally, we ran the positioner in a raster pattern typically used in imaging applications
with all three controllers. We scanned over an area of 2 × 2 µm at various different
frequencies. We have plotted the results for 10Hz and 100Hz in Figure 5.11 and
Figure 5.12 respectively. Here we can see the movement along the x-axis, y-axis, as
well as an xy-plot of the scan.

The standard deviation in the error signal from all scans are given in Table 5.4. Stan-
dard deviation was chosen instead of real mean square because this would be dom-
inated by the stationary error, which is less interesting for our purposes. Only the
middle 60% of the scanning range is considered when measuring the standard devia-
tion, and only samples when moving in the positive direction of the x-axis.
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Figure 5.9: Comparison of experimental closed loop frequency response, T̂ , for both
controllers and along both axes.
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Figure 5.10: Comparison of σ(T̂ ) versus σ(T ) for each controller.
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Figure 5.11: Scanning motion output at 10Hz. Left column PID-controller, middle
column H∞ SISO, right column H∞ MIMO. First row gives the displacement along
the x-axis, the second row the displacement along the y-axis, and the last row the
xy-postion.
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Figure 5.12: Scanning motion output at 100Hz. Left column PID controller, middle
column H∞ SISO, right column H∞ MIMO. First row gives the displacement along
the x-axis, the second row the displacement along the y-axis, and the last row the
xy-position.
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Table 5.4: Performance comparison of the three controllers, with a triangle reference
signal on the x-axis and a constant forward speed on the y-axis. The values in the
std(x) columns are colored gray for readability.

PID H∞ SISO H∞ MIMO

Rate std(x) std(y) std(x) std(y) std(x) std(y)
[Hz] [nm] [nm] [nm] [nm] [nm] [nm]

10 7.283 5.870 6.574 5.248 7.098 5.360

20 8.121 5.606 10.36 5.723 10.75 5.832

50 102.9 6.885 93.95 3.704 96.68 5.900

100 288.3 8.729 224.4 7.913 243.5 3.607

200 424.6 14.16 363.6 13.12 404.0 11.70

400 422.3 59.58 468.0 53.54 475.5 53.53

662 412.0 122.1 429.3 99.92 405.9 101.3

760 434.1 165.3 447.9 117.7 412.4 122.6
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5.6. Observations

We introduced this chapter with the primary goal of investigating the differences in
cross-coupling performance of a SISO controller and a MIMO controller, and whether
we could justify independent axis design. In addition to discussing this, we will also
make some observations on the more general differences between the PID controller
and H∞ controllers.

Same-axis performance For the same-axis couplings, it is clear from T̂xx and T̂yy

in Figure 5.9 that although it has roughly the same bandwidth, the PID controller
is inferior to the H∞ controllers. Especially along the y-axis, it has a very large
gain at around the resonance frequency. This was even higher than expected when
the PID controller was designed, and is probably because of varying conditions of
the characteristics of the system. The H∞ controllers tackle these changes more
gracefully, and have a much flatter response along the entire frequency range.

Cross-coupling performance We can see that the open-loop gain of Ĝxy peaks at
over 6 dB in Figure 5.4. This is pretty substantial compared to the low-frequency
gain of Ĝxx at ~1 dB. If we ran a triangle reference signal using a simple feedforward
controller, this could result in a large error on the perpendicular axis due to the
cross-coupling gain being activated by the higher harmonics of the triangle signal.

The closed-loop cross-coupling gains T̂xy and T̂yx however have been damped signif-
icantly for all the controllers as seen in Figure 5.9 staying below -10 dB at around
the resonant peak. At lower frequencies on the other hand, the closed-loop gains
has some significant peaks which are larger than the open-loop gains at the same
frequency. These were unexpected and from some other runs, it seems that the gains
of these peaks varied a lot with different set-points and at different times. So these
differences are thought to be due to varying conditions from when the experiments
were run.

In Table 5.4 we can see the standard deviation in the error on the x- and y-axis
signals for various reference frequencies. We will mostly pay attention to the y-axis
(slow axis) because the reference signal along this axis is linear, so any cross-coupling
from the x-axis should be easily noticeable. We can see that the controllers are close
to identical at the 10Hz triangle reference, perhaps with a slight disadvantage to
the PID controller. This trend continues roughly through all the frequencies. The
two H∞controllers perform identical for all practical purposes. The small differences
that are seen are so small that they could be from the different noise suppression
characteristics. Especially for the PID controller, we can see that it has some large
spikes in T̂ at higher frequencies which mean it will be worse at suppressing sensor
noise at these frequencies compared to the H∞ controllers.

It is clear from the closed-loop cross-coupling performance that all controllers, in-
cluding the ones based on independent axis design, dampens the cross-coupling gains
very effectively. We can see that the cross-coupling resonant peaks are located at
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high frequencies, whereas at low frequencies the cross-coupling is nearly zero. Since
our controllers don’t operate at such high frequencies they don’t seem to excite the
high gain cross-coupling frequencies, which results in the SISO controllers operating
as well as the MIMO controller. This shows that the usage of independent axis design
is justified, and perhaps even advantageous because of the complexities involved with
MIMO control.

Experimental data vs. nominal model The notches found on the analytical σ(S)
and σ(T ) in Figure 5.7 indicates that the H∞ MIMO controller might perform slightly
better with its flatter response. But this performance is not noticeable in the exper-
iments. This is possibly because the variations and noise in the response of the
physical plant is larger than these notches anyway. Additionally, the inaccuracies
from the model fit are also more significant than these notches.

When looking at σ(T̂ ) in Figure 5.10 we can see that all the controllers roughly follow
their respective model σ(T ) especially at lower frequencies. At higher frequencies,
the PID controller has the largest error which is expected. But the H∞ controllers
also have some errors with rises and falls, some of which can be attributed to the
simplified model fit. For instance in Figure 5.4 at around 300 - 500Hz, we can see that
Gyy diverges pretty significantly from Ĝyy with a fast rise and fall. This rise and fall
is also found in T̂yy, but not seen in T because we did not model it in. If our goal was
to have a controller with high bandwidth as possible, this could become significant as
the rise and fall would ruin the flatness of T̂ at these frequencies. Thus in general a
controller with higher bandwidth will need to be more complex.

Closing remarks Part of the question we set out to answer was whether or not we
can ignore the cross-coupling properties of the system. In the open-loop response,
cross-coupling is over 6 dB at the largest, which is substantial. Although this occurs
at higher frequencies, higher-order harmonics of the reference signal could possibly
excite this frequency range. Additionally, we have to consider the commonly applied
scanning motion where the x-axis has a much higher amplitude than the y-axis, so
even small cross-coupling gains may produce high levels of noise in the y-axis. So in
feedforward control, one should be careful about ignoring cross-coupling effects.

The nanopositioner platform we have used in these experiments is for a commercial
AFM, and is marketed to have very low cross-coupling. There are certainly plat-
forms with much worse characteristics in terms of cross-coupling, so these will have a
stronger case for the choice of a MIMO controller.

From the scanning motion in Figure 5.11 we can clearly see that there is a stationary
error. Our goal was not to create a best performing controller, so this was beyond our
scope to deal with. But we will mention that this is usually solved in one of two ways.
For the PID controller, it is common to add another integral term, resulting in a PIID
controller or just PII. Such an integrator could also be added to the H∞ controllers,
but this does not fit naturally into the design flow of it. The second method is to
augment the feedback controller with a feedforward signal.
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Some high-frequency components are clearly visible in the error on x and y for all
the controllers as seen in Figure 5.11 and Figure 5.12. Some simulations with white
noise added to the feedback signal seem to replicate this error. This indicates that it
is caused by sensor noise which gets integrated by the controller possibly reinforced
by the time delay, although feedback stops it from drifting far.

5.7. Conclusion

For the same-axis performance the H∞ controllers are both superior to the PID
controller as expected. They compensate for the resonant peaks of the system much
better. However, there are no significant differences between the two H∞ controllers.

In terms of cross-coupling reduction, the H∞ MIMO controller seemed to give a slight
advantage over the H∞ SISO controller for our system in the analytical results. This
small advantage however was negligible compared to noise and disturbances as shown
by the experimental results. Even the simple PID controller seems to dampen out
the dominant cross-coupling effects from the open-loop response just as well as the
other two. Thus, our experiments show that the added complexity from a MIMO
controller, both in terms of the control design and computational complexity, does
not provide adequate benefits compared to an independent axis design.

We may still expect different results under one of the following two conditions:

1. Using a controller with higher bandwidth. The errors in our model (T vs T̂ )
was to a large extent due to the inaccuracies in the low-order model fit. In a
controller with higher bandwidth, these inaccuracies will become more decisive
for the performance since they will not be dampened out as much. This can be
dealt with by using a higher-order controller and taking into account the cross-
coupling effects. Although, at some point the variations in the model response
and nonlinearities will dominate the model fit accuracy.

2. With a system that has worse cross-coupling characteristics. The system we
used has a particularly low cross-coupling gain, this will not be the case for all
devices.
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Chapter 6

Control Order Reduction

In the previous chapter we designed three different control laws for real-time imple-
mentation on the experimental setup. The most complex controller, the H∞ MIMO
approach, resulted in a controller with 18 states. Some issues were experienced while
implementing this controller as the computational complexity was very demanding
for our hardware. The selection of solver type and step-size was crucial for being able
to run such a complex controller without overloading the hardware and at the same
time providing a step-size small enough for numerical stability.
In this chapter we will investigate the possibilities of reducing the complexity of the
controller such that it becomes easier to implement. In the literature on nanoposition-
ing, model order reduction is extensively used to simplify the controller [18, 35, 38, 51].
Details on how this is performed and the implications for performance and stability is
often omitted in the literature. We will show how to perform such reduction and the
effects of this on stability and performance at various reduced orders, starting with
presenting theory on model order reduction. In the next chapter we will extend this
analysis by also investigating the effect on computational complexity. We will use
the H∞ MIMO controller from the previous chapter and base our discussion around
the results of reducing this controller. Both simulation and experimental results are
provided for this purpose.
Essentially, there are three paths to a low-order controller if we start with a higher-
order model of the plant using model-based control laws such as H∞ control. The first
method is to reduce the plant model first, and then design a controller. The second
method is to design a high-order controller first and then perform model reduction
on the controller at the end. The third method is to use some other direct method
from plant model to controller. It is argued by Anderson [2] that the first method
should not be employed as the approximations you do as a first step gets carried
through all the calculations. We will start with the high-order H∞ MIMO controller
and reduce this directly, although it could be argued that we should have provided
an even higher-order model fit when first designing our controllers.
A few words about notation. The closed-loop characteristics S and T uses the iden-

51



Chapter 6 Control Order Reduction

tified G and the H∞ MIMO controller K as found in the previous chapter. The term
Kr may be used as a collective term for all the reduced controllers, or a controller
of a specific order. The usage should be obvious from the context. The closed-loop
characteristics for the reduced order controller Kr are denoted Sr and Tr, and uses
the same identified plant model G. Throughout the chapter we use the term (model)
order, which is the number of states in a minimal realization, sometimes called the
McMillan degree.

6.1. Background Theory

We will present two different approaches to model order reduction based on material
by Skogestad and Postlethwaite [55] and Zhou et al. [59]. Our primary purpose is to
provide background material in order to reduce the order of the controller from the
previous chapter. The theory presented here can be used for any transfer function
whether it is a plant or a controller. But when reducing a controller it is important
to also consider the changes made to the closed-loop characteristics, not just the
controller itself.

We will start by explaining what a balanced realization means and how we can trans-
form a transfer function into such a form. Once we have a balanced realization of the
model, we will show two different methods of model order reduction, namely model
truncation and model residualization. We will explain the differences between them
and briefly mention other methods which exist in the literature. Later in this chap-
ter, we will apply this theory on one of the controllers from the previous chapter to
investigate how performance and stability is affected after model reduction.

6.1.1. Balanced Realization

A realization is the process of transforming a transfer function G(s) into state-space
form, i.e. the set of equations

ẋ = Ax+Bu (6.1)
y = Cx+D (6.2)

which will be denoted by (A,B,C,D). A realization is minimal if it has the minimal
number of states with the same input-output behavior as the transfer function. The
process of realization is non-unique and can take many forms, one of which is the
balanced realization. We will quote the definition from Skogestad and Postlethwaite
[55].
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Definition: Balanced realization

Let (A,B,C,D) be a minimal realization of a stable, rational transfer func-
tion G(s), then (A,B,C,D) is called balanced if the solutions to the following
Lyapunov equations

AP + PAT +BBT = 0 (6.3)
ATQ+QA+ CTC = 0 (6.4)

are P = Q = diag(σ1, σ2, . . . , σn) , Σ, where σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

The P and Q matrices are often called the controllability and observability Gramians
respectively. Since they are equal, a balanced system can be said to be as controllable
as it is observable. The σi’s are called the ordered Hankel singular values of G(s) as
defined in appendix A.2. The Hankel singular values are closely related to the H∞
norm with the relationship [55]

max
i
σi ≤ ‖G(s)‖∞ ≤ 2

n∑
i=1

σi (6.5)

In Matlab this can be performed using the command balreal which requires the
control systems toolbox. This returns both the new balanced realization as well as
the Hankel singular values.

6.1.2. Reduction Problem Formulation

Given a model G(s), the overall goal of model reduction is to find a new lower order
model Gr(s) such that the two models are close in some regard. There are several
ways to formulate this closeness, one reasonable objective is to use the H∞ norm of
the error such that

‖G(s)−Gr(s)‖∞ (6.6)

becomes as small as possible. For reduction of controllers, it is also reasonable to
consider the closed-loop error

‖T (s)− Tr(s)‖∞ (6.7)

Both model truncation and model residualization methods work by removing states
from the balanced realization of the model G(s). Thus it is convenient to formulate
the state-space equations for the original model and resulting reduced model which
we will do next.

Consider the balanced realization (A,B,C,D) of G(s) partitioned such that the n-

dimensional state vector x is parted into
[
x1

x2

]
where x2 is the state vector which we
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would like to remove, of dimension n−k. Let the state-space equations for the system
be given as [

ẋ1

ẋ2

]
=
[
A11 A12

A21 A22

][
x1

x2

]
+
[
B1

B2

]
u (6.8)

y =
[
C1 C2

] [ x1

x2

]
+D (6.9)

Our objective is to reduce this model to the state-space model of order k given as

ẋ1 = Arx1 +Bru (6.10)
y = Crx1 +Dr (6.11)

while keeping the input-output relationship as close as possible to the original model.
With this formulation, we only need to find reasonable candidates for the Ar, Br, Cr,
and Dr matrices while keeping the objective (6.6) and/or (6.7) in mind. The model
truncation and model residualization method each provides their own solution to this.

6.1.3. Method 1: Model Truncation

The model truncation method solves the model reduction problem simply by removing
the x2 states and all terms related to this vector from (6.8)-(6.9). The resulting
reduced state-space model (Ar, Br, Cr, Dr) of order k is given by the matrices

Ar = A11

Br = B1

Cr = C1

Dr = D

which can be inserted into the state-space equations (6.10)-(6.11).

We need to know how well the reduced model approximates the original. Using the
properties of the Hankel singular values, we can find an upper bound on the H∞ error
norm (6.6) given by [55]

‖G(s)−Gr(s)‖∞ ≤ 2
n∑

i=k+1
σi (6.12)

where Gr(s) is the reduced model of order k. This tells us that the H∞ error norm
will be less than twice the sum of the discarded Hankel singular values.

One problem with the model truncation method is that it can change the steady-state
solution of the system, or the so-called DC-gain. This leads us to the next method
which tries to deal with this problem.
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6.1.4. Method 2: Model Residualization

The second reduction method we will present tries to deal with the DC-gain offset
that comes from performing model truncation. In model residualization we focus on
making the steady-state solution unchanged. This is done by setting ẋ2 ≡ 0 and then
performing some algebraic substitutions to remove the x2 state vector from (6.8)-(6.9).
It can be shown that this gives the reduced model [55]

Ar = A11 −A12A
−1
22 A21

Br = B1 −A21A
−1
22 B2

Cr = C1 − C2A
−1
22 A21

Dr = D − C2A
−1
22 B2

This model will have the same solution as the original model for ẋ = 0, and it also
has the same upper bound on the H∞ error norm as the model truncation method as
given in (6.12). However, it will perform worse than the model truncation method at
high-frequencies. In general, the choice between the two methods thus mainly depends
on whether it is more important to maintain accuracy at high or low frequencies.

6.1.5. Other Methods

We have presented two methods which are fairly easy to implement. However, modi-
fications to these methods as well as other schemes exist as well. The most notable is
possibly the optimal Hankel norm approximation, which attempts at minimizing the
Hankel norm of the error. The Hankel norm is defined in appendix A.2. It can be
shown that this method provides an upper bound on the H∞ norm [59]

‖G(s)−Gr(s)‖∞ ≤
n∑

i=k+1
σi (6.13)

that is, half the upper bound of the model truncation and residualization method.

Consider the case where the the state-space representation is given in a diagonal
canonical form instead of the balanced form, such that the eigenvalues of the model is
given by the diagonal elements of the A-matrix. Using the model truncation method
on this realization will effectively remove the desired eigenvalues from the model.
This can be useful if large eigenvalues are unwanted, but may more easily result in
an unstable model.

We have only considered stable transfer functions, if we have unstable transfer func-
tions we need different approaches, some methods are given in [55]. Another method
is a modification to the model truncation method by providing weighting in the fre-
quency domain [26].
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6.2. Reduction of Controller

In the previous section we presented theory on model order reduction. Now we will
make use of this theory by performing model reduction on the H∞ MIMO controller
from chapter 5. We will show how this is done using Matlab.

First, we find the balanced realization of the controller K(s) using the command
balreal which returns the Hankel singular values as well as the balanced realization
model. Next the model reduction is performed using the modred command. This
command supports both the model truncation and residualization method, we chose
to use the latter to maintain accuracy in the low-frequency region.

The model reduction process using Matlab is summarized with the following code
which requires the control system toolbox, and is performed for each desired order
from 2 to 17:

% Given original controller K, and desired order new_order
[K_b,sigma] = balreal(K);
elim = [ zeros(new_order,1); ones(size(sigma,1)−new_order,1) ];
K_r = modred(K_b,logical(elim));

The Hankel singular values σi for each state in Kb as returned by balreal(K) is
given in Table 6.1.

Table 6.1: Hankel singular values of the balanced realization of the controller, σi

1) 5.436e+03 7) 6.799e-02 13) 1.324e-02
2) 4.227e+03 8) 6.049e-02 14) 4.091e-03
3) 3.307e-01 9) 3.885e-02 15) 4.073e-03
4) 2.775e-01 10) 1.977e-02 16) 1.400e-03
5) 1.246e-01 11) 1.514e-02 17) 1.044e-03
6) 7.628e-02 12) 1.430e-02 18) 5.722e-05

6.3. Simulation Results

The first tests were done in simulations because we did not want to damage the phys-
ical equipment which may happen if some of the controllers turn out to be unstable.
We used the Simulink model shown in Figure 6.1.

We generated reduced order controllers Kr of order 2 to 17, and simulated step-
responses using the Simulink model shown in Figure 6.1. The step was made on the
x-axis while the y-axis was kept at zero, and we measured the output on both axes.
The results from order 7, 8, 9, 10 are plotted in Figure 6.4. Results from order larger
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than 10 were nearly indistinguishable from the 10th order results, and results from
order lower than 7 were unstable, thus we omitted these plots.

We found the closed-loop H∞ error norm between the reduced and original controllers
‖T − Tr‖∞, and plotted it in a bar-plot seen in Figure 6.2a. Additionally, the robust
stability measure ‖WTr‖∞ is given in Figure 6.2b which must be less than one for
robust stability per (3.21). The frequency response of the closed-loop functions Sr,
Tr have been plotted in Figure 6.3 against S, T for the 9th and 10th order controllers.
These two controllers were chosen because of the notably large differences between
them.

K_r

LTI System

G

LTI System1

Band-Limited White Noise

1

y

0

Constant

Step

Figure 6.1: Simulink model for simulation of step-response.
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Figure 6.2: Reduced controller order properties. (a) Closed-loop error ‖T − Tr‖∞.
(b) Robustness ‖WTr‖∞, must be < 1 for robust stability (marked by red).
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Figure 6.3: Closed-loop frequency response σ(S), σ(T ) versus σ(Sr), σ(Tr) for (a)
9th order controller and (b) 10th order controller.
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Figure 6.4: Simulated step-response in reference signal on the x-axis, reduced vs
original controller. Shows output from both x-axis and y-axis. The caption number
states the order of the controller employed.
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6.3.1. Observations

On the logarithmic error norm plot in Figure 6.2a, we can clearly see see that there
are significant drops between a few of the orders, such as from 4→5, 9→10 and
16→17. The error changes relatively little in-between these drops. Since we would
like a controller with as low order as possible while maintaining the performance
characteristics, we are inclined to select one of the orders after such a drop, i.e. 5,
10, or 17. We can see the effect of the drops on the closed-loop frequency response
between the controllers of order 9 and 10 as plotted in Figure 6.3. Where the order
10 controller has only some small errors at around the resonance frequency, the order
9 controller has huge spikes which would lead to noise amplification at this frequency,
tracking errors, as well as possibly instability.

From Figure 6.2b we can see that only controller order 10 and higher are robustly
stable with ‖WTr‖∞ < 1. Lower orders can not guarantee robust stability, so in a
practical implementation we should avoid using these.

The previous discussion clearly favors choosing the 10th order controller as it provides
robust stability with little error. This choice is further reinforced by considering the
step responses as shown in Figure 6.4. The 10th order controller gives nearly indis-
tinguishable results to the original controller, while the 8th and 9th order controllers
shows some oscillatory behavior. The 7th order model is unstable, so we clearly want
to avoid it.

6.4. Experimental Results

In the previous section we ran simulations of the various reduced controllers. The
primary reason for this was to avoid running unstable controllers on the experimental
equipment as well as the ease of setup. However, experimental tests are important
to determine real-world results which may be different due to unmodeled dynamics,
noise, and other disturbances.

We used the same setup as described in section 5.1. The 8th order and 10th order
controllers were implemented and compared to the original controller. We ran the
same step-response as in the previous section, and recorded the closed-loop frequency
response T̂r using the SR780 device. The frequency response is plotted in Figure 6.5,
and the step-response is plotted in Figure 6.6. A new closed-loop frequency response
of the original controller was gathered, such that the conditions were similar for when
the original and reduced controllers were run. Because of the large uncertainties
inherent in the nanopositioning platform the closed-loop response from chapter 5 will
look slightly different.
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Figure 6.5: Experimental complementary sensitivity σ(T̂r) for the reduced order
controllers versus the original controller σ(T̂ ). (a) 8th order, and (b) 10th order.
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Figure 6.6: Experimental step-response in reference signal on the x-axis, reduced vs
original controller. Shows output from both x-axis and y-axis. (a) 8th order, and
(b) 10th order.
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6.4.1. Observations

We can see that the frequency response from the 10th order controller is nearly in-
distinguishable from the original controller in Figure 6.5. The 8th order controller
has some larger spikes rising up to -2.76 dB at 808Hz, but is not as bad as in the
simulations.

The step-response plotted in Figure 6.6 shows that the 10th order model performs
just as well as the original controller. The 8th order model shows some differences
compared to the original, although the differences are smaller than in the simulations
and it is not clear from this plot whether the original or reduced performs better. We
can see that the reduced 8th order has slightly worse cross-coupling oscillations at the
start of the step.

Considering the previous discussion, we can conclude that the 10th order controller
performs nearly as good as the original controller and the 8th order model performs
slightly worse, but better than in the simulations.

6.5. Conclusion

The purpose of this chapter was to investigate feasibility of performing model order
reduction to reduce the complexity of a controller. We based our discussion around the
results of reducing the 18th order H∞ MIMO controller from chapter 5. We showed
that the controller could be reduced to a 10th order model with negligible impact
on performance and still maintain robust stability. The 8th and 9th order controllers
resulted in noticeably slightly worse performance, and did not achieve robust stability,
although they were nominally stable in our simulations and experiments. The 7th
order controller and lower models were nominally unstable.

As we have seen, the order of the controller can be significantly reduced with only
small changes in performance and stability. In the next chapter we will investigate
how much this order reduction means in terms of computational complexity and
ultimately for the implementability of the controller.
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Chapter 7

Computational Complexity
after Control Reduction

In the previous chapter we showed the performance and stability impact of reducing
the model order of the controller to various orders. In this chapter we will inves-
tigate what the reduction of the controller order means in terms of computational
complexity. In a practical implementation this is important to consider because the
experimental setup is limited in terms of hardware performance and needs to perform
in real-time. This puts a lower limit on the step-size we can implement a certain
controller with on a given device, any lower than this and the hardware can’t keep up
with the required calculations. At the same time, a step-size needs to be small enough
such that the system is stable and performs as desired. This gives an upper limit on
the step-size. If the two limits don’t intersect we can not implement the controller.
We will measure computational complexity in two distinct ways, first in the desktop
environment and then in the experimental environment. By first simulating different
modes in the desktop environment, we can find which of them are unstable so we can
avoid implementing them on the experimental model. Additionally, we will be able
to test stability at a wider range of step-sizes that the real-time setup can’t handle.

7.1. Simulation Results

There is no simple method to measure computational complexity because the actual
performance will vary with different hardware setups, and does not necessarily scale
linearly with clock frequency. Different operations may take different number of clock
cycles on different architectures. Even so, by comparing similar models we can get
an indication of the complexity. We will do this by measuring the time it takes to
perform a simulation while changing one variable at a time. Simulation time was
recorded by running the Simulink model in Figure 6.1 with different controller order,
solver type, and step-size. We recorded the time it took to simulate 1 s, the results are
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given in Table 7.1 and Table 7.2. The different solvers are explicit Runge-Kutta (ERK)
methods of various orders, denoted erk[1-8] where the number represents the solver
order. Additionally, we have performed the simulations on the only fixed-step implicit
Runge-Kutta method available in Simulink which is denoted ode14x. The outputs
from a simulation using this solver and the full-order original controller is plotted in
Figure 7.1 to demonstrate how the solutions sometimes explode using this implicit
method. All solvers are performed with a fixed step-size because this is necessary
for a real-time implementation, and will thus better represent the computational
complexity for such an application.

Some notable comments about the data. The simulations were run on a desktop
computer and may be affected by various background tasks and operative system
conditions. The simulation runs both the controller Kr and the model of the plant G,
therefore reducing the order of Kr will not be as effective as if we only implemented
the controller like we would in a practical implementation. Also remember that this
test does not take accuracy and performance into account, only stability. Ultimately
we would like to choose the combination with the lowest computational complexity
(i.e. lowest simulation time) while maintaining acceptable accuracy and stability.

7.1.1. Observations

In general, the data in Table 7.1 and Table 7.2 reveals that shorter step-size and more
complex solver types increases both numerical stability and computational complexity
as should be expected. Controllers of order 7 and lower were nominally unstable, so
there is no data for these modes.

An interesting observation from the data is that the lower-order controllers are stable
with less complex solver types than higher-order controllers. This means that by
reducing the order of the controller, not only do we gain a computationally easier
problem from fewer states, but also from reducing the solver complexity. We speculate
that this may be because the model reduction tends to reduce the fastest modes,
i.e. the most negative eigenvalues of the controller. These eigenvalues will result in
numerical instability with simpler solver type if we reduce the step-size sufficiently,
while more complex solver types are stable for larger regions in general.

Simulation time increases about linearly with step-size, which is expected since the
same calculations needs to be performed each step. The primary purpose of perform-
ing the calculations at various step-sizes is to see at which step-size a certain mode
becomes unstable. This will also be valuable in the analysis in the next chapter.

With increasing controller order, the simulation time tends to increase steadily. There
are some exceptions however which may be due to statistical variances, or small nu-
merical differences. The effect of increased controller order on the simulation time
doesn’t seem to be very large compared to the solver complexity. But we are also
simulating the plant model which does not have any benefit from the controller re-
duction. Thus there is a high constant overhead to the simulation time which is not
reduced by varying the controller order. On the other hand, this overhead is reduced
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7.1 Simulation Results

when changing to a simpler solver type because this also simplifies the calculations of
the plant model.

The reasons for providing the plot of a simulation using the implicit Runge-Kutta
(IRK) solver in Figure 7.1 is to demonstrate the numerical explosions that we observed
with this method. We will not further investigate the reasons for these explosions, but
we mention it as a precaution to using this method for a real-time implementation.
These effects were not observed using the explicit Runge-Kutta methods.
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Figure 7.1: Outputs from a simulation using the implicit Runge-Kutta method
ode14x, showing how the outputs explodes at certain intervals. Reference signal is
set to one.

65



Chapter 7 Computational Complexity after Control Reduction

Table 7.1: Simulation time and stability with different controller model order, solver
types and step times (part 1/2). The 18th order model is the original non-reduced
controller. All values are in seconds. Dash (-) represents instability.

Order h = 100 µs
erk1 erk2 erk3 erk5 erk8 ode14x

≤ 7 - - - - - -
8 - - - - 0.448 1.949
9 - - - - - 2.094
10 - - - - - 2.071
11 - - - - - 2.249
12 - - - - - 2.334
13 - - - - - 2.423
14 - - - - - 2.344
15 - - - - - 2.563
16 - - - - - 2.589
17 - - - - - 2.767
18 - - - - - 2.671

Order h = 40 µs
erk1 erk2 erk3 erk5 erk8 ode14x

≤ 7 - - - - - -
8 - 0.281 0.345 0.543 0.995 4.681
9 - - 0.346 0.549 1.036 5.245
10 - - 0.349 0.542 1.038 5.146
11 - - 0.350 0.552 1.029 5.622
12 - - 0.350 0.549 1.078 5.572
13 - - - - 1.093 5.952
14 - - - - 1.100 5.879
15 - - - - 1.116 6.265
16 - - - - 1.114 6.314
17 - - - - 1.123 6.819
18 - - - - 1.075 6.504
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7.1 Simulation Results

Table 7.2: Simulation time and stability with different controller model order, solver
types and step times (part 2/2)

Order h = 10 µs
erk1 erk2 erk3 erk5 erk8 ode14x

≤ 7 - - - - - -
8 - 0.897 1.140 1.905 3.800 18.754
9 - 0.892 1.170 1.995 3.824 20.653
10 - 0.900 1.199 2.014 3.930 20.470
11 - 0.920 1.191 2.019 3.967 22.360
12 - 0.922 1.202 2.068 4.002 22.252
13 - 0.918 1.220 2.037 4.172 23.240
14 - 0.921 1.218 2.041 4.130 22.719
15 - 0.940 1.217 2.069 4.170 24.869
16 - 0.923 1.225 2.125 4.305 25.524
17 - 0.953 1.255 2.131 4.364 27.339
18 - 0.935 1.197 2.070 4.158 25.919

Order h = 1 µs
erk1 erk2 erk3 erk5 erk8 ode14x

≤ 7 - - - - - -
8 5.713 8.185 10.870 18.839 37.730 184.648
9 5.739 8.337 10.886 19.060 38.869 205.038
10 5.705 8.572 11.129 19.421 39.233 206.224
11 5.560 8.446 11.230 19.692 38.209 220.674
12 5.753 8.550 11.262 19.827 39.899 222.089
13 5.716 8.488 11.335 20.209 39.543 233.898
14 5.861 8.605 11.320 19.655 40.000 228.107
15 5.857 8.556 11.239 19.892 42.131 255.043
16 5.768 8.879 11.521 20.254 41.245 252.640
17 6.010 8.751 11.781 21.251 41.637 267.837
18 5.799 8.513 11.326 19.699 40.628 255.363

67



Chapter 7 Computational Complexity after Control Reduction

7.2. Experimental Results

The simulation time presented in the previous section provides an indication of the
complexity of the model, but it has several shortcomings as discussed. In this section
we will implement the stable modes from the previous section on the experimental
setup and measure the average task execution time (TET). This value is provided by
the xPC operative system and is described as follows by the xPC User’s Guide [57]

“[Average task execution time] is an average of the measured CPU
times, in seconds, to run the model equations and post outputs dur-
ing each sample interval. Task execution time is nearly constant,
with minor deviations due to cache, memory access, interrupt la-
tency, and multirate model execution. ”TET should not depend on step-size, but will depend on the controller order and

complexity of the solver. If the TET takes longer than the step-size, the operative
system will stop all execution and report a “CPU overload” error. To be able to
run the model we would then have to increase the step-size, but at some point the
controller will become unstable as can been seen from the data in the previous section.

We used the experimental setup as described in section 5.1. A very simple Simulink
model was used with only the controller Kr and necessary input-output connections.
All simulations were run with a step-size of 40 µs as this was about the limit the xPC
hardware could handle most of the modes without overloading. The exception is the
modes using the ode14x solver, which was too demanding performance-wise to be
implementable on our hardware except for the 8th order controller. The results are
given in Table 7.3.

7.2.1. Observations

Compared to the simulations, we can see that reducing the controller order is more
effective in the experimental setup in terms of execution time. This can possibly to
a large extent be attributed to that we are only running the controller in this setup
and not the plant model, so we have a lower constant overhead.

We can see that by reducing the controller to 8th order, we achieve a reduction in
TET by 49.0% from 20.11 to 10.25 µs, partly because of the reduced solver complexity.
For the 10th order model we have a reduction of 46.7%, from 20.11 to 10.71 µs with
the ode3 solver.

The PID controller has a lower TET than any of the other controllers. However, it is
not robustly stable. The controller with the lowest value of TET with robust stability
is the 10th order reduced controller using the ode3 solver. The H∞ SISO controller
executes slightly faster than the 10th order reduced with the same solver, but this
advantage is lost because it needs a more complex solver type for stability.
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7.3 Conclusion

Table 7.3: Average task execution time (TET) with different controller model order
and solver types. Dash (-) not tested. (x) CPU overload.

Order Average TET [µs]
erk1 erk2 erk3 erk5 erk8 ode14x

≤ 7 - - - - - -
8 - 10.25 10.43 11.10 13.64 26.72
9 - - 10.55 11.43 14.26 x
10 - - 10.71 11.64 14.99 x
11 - - 10.89 11.91 15.79 x
12 - - 11.07 12.36 16.79 x
13 - - - - 17.68 x
14 - - - - 18.82 x
15 - - - - 19.61 x
16 - - - - 20.91 x
17 - - - - 22.61 x
18 - - - - 20.11 x
PID - 9.95 9.98 10.13 11.12 14.91

H∞ SISO - - - - 14.58 x

We can also see that there seems to be a significant constant overhead also on these
experimental results. We would expect the PID controller to be even faster compared
to the H∞ controllers if there was no overhead, so some time seems to be spent on
other tasks. This can possibly be attributed to the input-output signaling to and
from the DAC/ADC.

It is also interesting to note that the execution time does not strictly decrease with
increased controller order, e.g. the 17th to 18th order controller. By inspecting the
state-space model of each of these controllers, we notice that the 18th order controller
has a lot more zero-valued elements. We speculate that the compiler simplifies the
arithmetic on these elements.

7.3. Conclusion

In this chapter we have estimated the reduction in computational complexity of re-
ducing the model order of the H∞ MIMO controller from chapter 5. This has been
done both in a simulated environment and in an experimental environment.

By reducing the controller from 18th order to 10th order, not only is the model
computationally simpler itself, but we also achieved numerical stability with a less
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complex solver type at the same step-size. With the combined benefit of a less complex
controller, and less complex solver, we achieved a 46.7% reduction in task execution
time on the experimental equipment. This comes at almost no cost on the performance
of the controller, and the number would possibly have been even better if there was
no constant overhead to the calculations.

The 14th order H∞ SISO controller is similar to the 10th order reduced controller in
terms of performance, and is slightly faster computationally using the same solver.
But the 10th order reduced controller can achieve stability with a less complex solver
type, which in the end makes it execute faster.
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Chapter 8

Numerical Stability of Controller

The previous two chapters investigated the feasibility of performing model order re-
duction on a controller, and showed how much this means in terms of computational
complexity. This was done in order to make the controller more easily implementable
on a real-time system. We could see that the controller became unstable at certain
step-sizes for a given controller and solver type. This chapter will perform a more
analytical approach when it comes to the stability of numerical methods such that we
can possibly predict which modes are stable for a given controller a priori.
Controllers can be described using continuous-time state-space models. For a real-
time implementation however, the model is solved at discrete time-steps using a fixed
step-size. Many popular solver types are based on the family of explicit Runge-Kutta
(ERK) methods, which can become unstable if the step-size is too large. At the same
time, the complexity of the controller running on hardware is limited in terms of
computational power so we can’t set an arbitrary small step-size.
These problems are especially significant for stiff systems with fast modes. Stiffness is
not a rigidly defined property, but is often understood as a large spread of eigenvalues.
Another characteristic is that the stability of the numerical solutions can become an
issue and is generally more important to consider than the accuracy of the solution
[11]. For a system with mechanically high bandwidth, we need a controller with
fast modes to perform control at large frequencies, which means that the step-size
also needs to be small enough to perform control at these high frequencies. The
nanopositioning device used in this thesis could be considered stiff, as is shown by
the large spread of eigenvalues in Table 8.2. There is also a physical interpretation of
this, because the lateral platform of the AFM is a lightly damped system with high
resonant frequencies. The controller dampens out the resonant peak which requires
it to operate at a frequency at least equivalent to this peak. Thus our complex
H∞ controller has fast modes which give large negative eigenvalues. Additionally
there are small eigenvalues to give an integral-like effect which in summary means
that the controller has a large spread of eigenvalues. Note that by the expression
“eigenvalues of the controller” we mean the eigenvalues of the A-matrix in the state-
space representation of the controller.
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We start this chapter by defining the family of explicit Runge-Kutta methods. Then
we will show how the stability of the numerical solution for a given solver type depends
on the step-size and eigenvalues of the controller. Finally we present how to find the
maximum step-size for a given controller and solver type, and present these results
for several of the controllers presented earlier in this thesis.

8.1. Explicit Runge-Kutta Methods

Let us consider the ordinary differential equation (ODE)

ẏ = f(t, y) (8.1)

where t is the time variable. A numerical solver estimates the solution to this equation
at discrete time-steps. For a fixed-step solver we denote the step-size by h. Controllers
such as presented in the previous chapters can be represented by a system of ODEs,
as evident from the state-space equations (6.1)-(6.2). The literature on numerical
methods is vast, and we will consider the commonly used explicit Runge-Kutta (ERK)
methods as used in our experiments.

Definition: Explicit Runge-Kutta methods

The family of explicit Runge-Kutta (ERK) methods can be written as [22]

yn+1 = yn +
s∑

i=1
biki (8.2)

where s describes the number of stages of the Runge-Kutta method and

k1 = hf(tn, yn)
k2 = hf(tn + c2h, yn + a21k1)
k3 = hf(tn + c3h, yn + a31k1 + a32k2)

...
ks = hf(tn + csh, yn + as1k1 + as2k2 + · · ·+ as,s−1ks−1)

where the coefficients aij , bi, and ci are specified for a given ERK method.

Note that there are certain constraints on the coefficients for it to be a valid Runge-
Kutta method, e.g. the sum of bi must equal 1. The coefficients are often arranged
in a Butcher tableau
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0
c2 a21

c3 a31 a32
...

... . . .
cs as1 as2 as,s−1

b1 b2 · · · bs−1 bs

and makes up the matrices A, b, c such that the tableau can be written as

c A

bT

8.2. Stability of Explicit Runge-Kutta Methods

In order to analyze the numerical stability of a system solved by an ERK method,
we will start by introducing a simple differential equation which as we will see can be
used to determine the numerical stability of the state-space equations for a controller.

Let us consider the scalar test system

ẏ = λy (8.3)

where λ can possibly take on complex values. A solver applied to this system takes
the discrete state yn to the next time step yn+1 with step-size h,

yn+1 = Φ(hλ)yn

= [Φ(hλ)]n y0 (8.4)

where Φ(hλ) is called the stability function. It is evident that (8.4) is stable, i.e.
|yn| ≤ c <∞ ∀n ≥ 0, if and only if

|Φ(hλ)| ≤ 1 (8.5)

All solvers we will consider has such a stability function, and the region of stability,
i.e. the region of the complex plane where (8.5) is satisfied, varies between each solver
type.

Example 1 Euler’s Method applied to (8.3) gives

yn+1 = yn + f(tn, yn)
= yn + h(λyn)
= (1 + hλ) yn (8.6)
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thus Φ(hλ) = 1+hλ, which is stable in the region {z ∈ C | |1 + z| < 1}, in other words
the unit circle with center -1. 4

Before we find an expression for the stability function of ERK methods, let us intro-
duce the concept of solver order. The next definition is taken verbatim from Egeland
and Gravdahl [22].

Definition: Order p of a one-step solver method

A one-step method is of order p if p is the smallest integer such that en+1 =
O(hp+1). If the numerical solution yn+1 satisfies the equation

yn+1 = yn + hf(yn, t) + . . .+ hp

p!
dp−1f(yn, tn)

dtp−1 +O(hp+1) (8.7)

then en+1 = O(hp+1), and it follows that the method is of order p.

The order of an ERK method can be found by considering the coefficients A, b, c,
although the details will be omitted here. We can now state the stability function of
ERK methods.

The stability function of an explicit Runge-Kutta method with coefficients A and b is
given by [22]

Φ(z) = det(I − zA+ z1bT ) (8.8)

where 1 is a column vector of one-elements. In fact for an ERK method of order p = s
this simplifies to

Φ(z) = 1 + z + · · ·+ zp

p! (8.9)

although only ERK of order 1–4 can have p = s, higher order requires more stages
such as the fifth order which needs a minimum of six stages [12]. The Butcher tableau
of some popular ERK methods is given in Table 8.1. These methods are reckoned to
be the same as the fixed-step solver methods available in Simulink. The stability
region of these methods is plotted in Figure 8.1 together with some of the eigenvalues
of two controllers considered in previous chapters. These will be discussed later.
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Table 8.1: Selection of explicit Runge-Kutta methods with their corresponding
Butcher tableau and stability function

Solver name (order) Butcher tableau Stability func. Φ(z)

Euler (erk1)
0

1
1 + z

Heun (erk2)
0
1 1

1
2

1
2

1 + z + z2

2

Bogacki–Shampine (erk3)
Note: 4 stages, but order 3

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9 0

1 + z + z2

2 + z3

6

Runge-Kutta (erk4)

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

1 + z + z2

2 + z3

6 + z4

24

Dormand-Prince (erk5)
Dormand-Prince (erk8)

See Butcher tableau in appendix A.3.
Stability function found by evaluating (8.8)
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Figure 8.1: Stability region of the ERK methods in Table 8.1. Magenta circles:
Eigenvalues of the full order controllerK scaled by the maximum step-size achieving
stability for erk8, denoted h1. Yellow X’s: Eigenvalues of the reduced tenth order
controller K10 scaled by the same step-size. Note that K10 is stable for erk5, so the
order reduction has made it possible to use a simpler solver type.
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8.3. Runge-Kutta Stability of Linear Systems

We have stated the stability functions for several ERK methods for the scalar test
system. But we are ultimately interested in the stability of an explicit Runge-Kutta
method applied to our controllers which are larger state-space models. In this section,
we will show how to find the stability of the solvers applied to a linear system of ODEs.

Theorem 1. Consider the system

ẏ = Ay (8.10)

where A is an n × n diagonalizable matrix with eigenvalues λ1, . . . , λn. Let us apply
a Runge-Kutta method to this system. Then the RK method has a stable (asymp-
totically stable) fixed point at the origin if and only if the same method has a stable
(asymptotically stable) fixed point for

ẋ = λix ∀ i ∈ [1, . . . , n] (8.11)

This is a standard result in theory on numerical methods, see e.g. Ascher and Petzold
[4]. We have used wording similar to [29] which is also used for the next corollary.

Corollary 2. Consider a Runge-Kutta method applied to the system ẏ = Ay. Then
the origin is stable for the numerical method with step-size h if and only if

|Φ(hλi)| ≤ 1, ∀ i ∈ [1, . . . , n] (8.12)

where λi are the eigenvalues of A.

In other words, if all the eigenvalues of A are within the region of stability by satisfying
(8.5) for a given solver and step-size h, then the solver applied to (8.10) is stable. This
gives us a tool to check for the required maximum step-size for a given controller and
solver as will be discussed next.

8.4. Determining Maximum Step-Size

We will now discuss how to find the maximum step-size for a given controller and
solver type. In the previous sections we showed that a solver applied to a controller is
stable iff it’s stable for all its eigenvalues individually. We can thus find a maximum
step-size by starting with a large value of h and reducing it until (8.5) is satisfied for
all the eigenvalues of the controller. This may be slow, but can be sped up by doing
a binary search as in Algorithm 8.1. Note that this may not give correct results if the
stability region is not convex as viewed from the origin, i.e. every point on the edge
of the stability region must be visible from the origin1. This seems to be the case for
the stability regions plotted in Figure 8.1 if we only consider the left half plane.

1We use the word convex rather roughly here, this is not the exact mathematical definition.
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We have used this method to find the maximum step-size hmax for the controllers
designed in chapter 5 as well as the reduced order controllers from chapter 6 for
various solvers. The results are given in Table 8.3. The Matlab code used to generate
the data for this table as well as the stability region plot is given in appendix C.4.

The eigenvalues of the H∞ MIMO controller is plotted in Figure 8.1 (magenta circles)
together with the stability regions of the solvers. They have been scaled by their
maximum step-size achieving stability for erk8, i.e. h1 = 54.62 µs. The eigenvalues
of the reduced 10th order controller is also plotted (yellow x’s) at the same step-size.
The eigenvalues of the two controllers are listed in Table 8.2 for reference.

Algorithm 8.1 Binary search for hmax

L = 0
U = (� 1)
while (U − L) > ε do

h = (U − L)/2 + L
if |Φ(hλi)| ≤ 1 ∀ i then

L = h
else

U = h
end if

end while
return L

Table 8.2: Eigenvalues of original controller K and 10th order reduced controller
Kr10, sorted by absolute value

λ(K)× 104

1) -9.4590 7) -0.0033 + 0.4793i 13) -0.2044
2) -3.6243 8) -0.0033 - 0.4793i 14) -0.2003
3) -1.6074 9) -0.0085 + 0.4777i 15) -0.0548
4) -0.5644 + 0.9322i 10) -0.0085 - 0.4777i 16) -0.0495
5) -0.5644 - 0.9322i 11) -0.1395 + 0.3820i 17) -0.0000
6) -0.5228 12) -0.1395 - 0.3820i 18) -0.0000

λ(Kr10)× 104

1) -7.5155 5) -0.1557 + 0.3664i 9) -0.0000
2) -2.8710 6) -0.1557 - 0.3664i 10) -0.0000
3) -0.5239 + 1.1179i 7) -0.1016
4) -0.5239 - 1.1179i 8) -0.0376

78



8.5 Observations

Table 8.3: Maximum step-size of a given explicit Runge-Kutta (ERK) method for
the various controllers presented in the previous chapters as well as the nominal
plant model. Larger values are generally better because they are stable at higher
step-sizes.

Order hmax [µs]
erk1 erk2 erk3 erk4 erk5 erk8

7 (unst.) 32.18 71.33 95.74 100.8 127.2 203.6
8 58.37 58.37 73.34 81.29 96.51 150.8
9 37.54 37.54 47.17 52.28 62.07 96.99
10 33.61 33.61 42.22 46.8 55.56 86.82
11 39.70 39.7 49.87 55.28 65.63 102.5
12 24.96 32.66 41.03 45.48 54.00 84.37
13 2.821 21.55 27.07 30.01 35.63 55.67
14 2.818 19.11 24.01 26.62 31.60 49.38
15 2.843 21.73 27.30 30.26 35.92 56.13
16 2.948 22.64 28.44 31.53 37.43 58.48
17 2.918 21.18 26.61 29.49 35.01 54.71

18 (full) 2.910 21.14 26.56 29.45 34.96 54.62
PID 80.00 80.00 100.5 111.4 132.3 206.7

H∞ SISO 21.45 21.45 26.95 29.87 35.46 55.41
G(s) 4.564 52.42 65.85 73.00 86.66 135.4

8.5. Observations

In Figure 8.1 we can see that the most negative eigenvalue is on the edge of the
stability region. If the step-size was set any higher than this the eigenvalue would
move outside (to the left of) the stability region and make the system unstable. The
eigenvalues of the 10th order reduced controller have moved to the right causing them
all to lie within the stability region of erk5. Thus, by reducing the model order we
have made it possible to use a less complex solver method or alternatively a larger
step-size.

The same phenomena can be observed in Table 8.3. The reduced controllers are
generally stable for higher step-sizes as they decrease in order, but not strictly so, e.g.
order 15 to 14.

In the previous chapter we ran several simulations for various controllers and solvers
at different step-sizes primarily to give a measure of the computational complexity.
But it also turned out that several of the modes became unstable for large step-sizes.
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We can compare these results (page 66-67) to the values in Table 8.3 to see if the
unstable modes match up with our analysis. Note that since we simulated both the
controller and nominal plant G(s) in a feedback loop, the mode must be stable for
both of these.
The results match up very well. For example, the only stable controller with hmax ≥
100 µs is the 8th order controller with erk8 solver, and we can see in Table 7.1 that
this is the only stable mode for h = 100 µs. The results also match up for h = 40 µs
and actually reveals that the instability for 8th order controller with erk1 is due to
the plant model G(s) and not the controller which should be stable at this mode.
Because we assumed it was unstable, we did not test it in the task execution time
experiment.

8.6. Conclusion

The results of this chapter gives us an insight into to the reason for the instability
experienced in chapter 5 and chapter 7. We have shown that numerical stability
properties can be well predicted and the results are confirmed by comparison to the
stability of the simulations in the previous chapter.

As we have seen, the eigenvalues of the controller are one of the decisive factors
for stability of an applied explicit Runge-Kutta method. Hence, it is important to
consider how controller reduction changes the eigenvalues, especially for a fast and
stiff system such as our lateral positioning platform of an AFM. The eigenvalues of
our controller tended to become smaller (in absolute value) with reduced orders, but
this need not be the case. One should be careful when performing model reduction
and possibly verify that the eigenvalues are within the stable region of the solver
considered. If the solver stability becomes a problem, one could consider a different
model reduction method, such as removing the eigenvalues directly from a diagonal
canonical realization of the controller.

We have also seen how increased solver order increases the stability region, but at the
same time it increases the execution time. This will ultimately be a trade-off between
moving the lower limit (due to computation time) and the upper limit (for stability)
of the step-size, as illustrated in Figure 8.2. If the unstable and hardware-overload
regions overlap, it is impossible to implement the controller. Then one must either
design a computationally simpler controller possibly via model reduction, a controller
with smaller eigenvalues, use more powerful hardware, or try to change the solver
method.

Note that we have not considered the accuracy of the solver methods. This is because
we have assumed that the system is stiff, and stiff systems are characterized such that
instability occurs before accuracy becomes an issue.
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Feasible step-size region UnstableHardware overload

Minimum step-size Maximum step-size

Simpler controller (lower order)
Less complex solver method

More powerful hardware

Smaller eigenvalues
More complex solver method

Figure 8.2: Illustration of the trade-off between step-size, controller complexity,
solver complexity, eigenvalues of the controller, and hardware performance for a
real-time controller implementation.
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Chapter 9

Conclusions

This thesis has presented control challenges within the topic of nanopositioning de-
vices. The challenges are primarily due to nonlinearities such as hysteresis and creep
of piezoelectric actuators, lightly-damped vibration dynamics, and large uncertainties.
We have designed several control laws which tries to overcome these challenges and
implemented them for real-time control of the lateral (xy-) axes of an Atomic Force
Microscope (AFM). We have also discussed the implementability issues for complex
controllers running on hardware with limited computational power.

Because of the high uncertainties and disturbances involved with nanopositioning, we
have emphasized robustness in the control law design. A robustly stable H∞ mixed
sensitivity MIMO controller was designed. Such a model-based control law effectively
reduces the resonant peaks arising due to the lightly damped dynamics of the system.
This controller was compared to a H∞ SISO version of the same controller (one for
each axis) with similar design criteria, and a simple PID controller. We focused es-
pecially on the comparison in cross-coupling gains between the two lateral axes. In
AFMs an image scan is often performed using a raster pattern, any cross-coupling
can then be detrimental to the resulting image. The PID controller was shown to
provide much worse closed-loop characteristics than the other controllers as the res-
onant peaks were not properly damped and got excited by the reference signal. In
terms of cross-coupling gains however, H∞ MIMO controller was found to give only
marginally better theoretical results than the others, and the differences were negli-
gible compared to the noise and disturbance level of the system. So in practice there
were no significant differences between the three controllers in terms of cross-coupling
gain, and all controllers seemed to dampen the cross-coupling significantly. Thus,
the added complexity of a MIMO control strategy does not justify the small benefits
achieved.
We suspect that we may get different results under two conditions. First, by designing
a controller with higher bandwidth, as this will not dampen out the resonant frequen-
cies including the cross-gains as much. Secondly, by implementing on a system with
worse cross-coupling characteristics than the AFM we performed experiments on.
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The implementability issues involved with running a complex controller such as the
H∞ MIMO controller were also discussed. Such a controller can be represented by
a continuous-time state-space model, but for an actual implementation the ordinary
differential equations needs to be solved at discrete time-steps. Many popular solver
types are based on the family of explicit Runge-Kutta (ERK) methods. These solvers
become unstable if the step-size is too large. At the same time, the complexity of a
controller running on hardware with limited computational power puts a lower limit
on the step-size the hardware needs to perform the necessary calculations.
If the lower limit on the step-size (due to computation time) and the upper limit (for
stability) do not overlap, it will be impossible to implement the controller. Then one
must either design a computationally simpler controller, a controller with smaller (in
absolute value) eigenvalues, use more powerful hardware, or try to change the solver
method. We have shown both how to reduce the lower limit by performing model
reduction on the controller, as well as analyzing the controller to find the upper limit.
To reduce the computational complexity of a controller and thus make it more easily
implementable, we showed how to perform model reduction on it. We carried out
model reduction on our most complex H∞ MIMO controller, and showed that it
could be reduced from 18th order to 10th order without any significant impact on
performance or stability. With reduced controller order we achieved stability using a
less complex solver type. So not only do we have reduced computational complexity
from the lower order itself, but the solver also is less computationally demanding. This
combined benefit resulted in a 46.7% reduction in task execution time. Controllers of
lower order than 10th were not robustly stable.
Lastly, we presented a more analytical approach to determine the numerical stability
of an ERK method applied to a controller. We used this to show how to determine
the maximum step-size of a given controller and solver type, and determined that the
placement of the eigenvalues of the controller was decisive for stability. We performed
the calculations on our H∞ MIMO controller and observed that the results complied
with the instability experienced in simulations.

9.1. Future Work

In the cross-coupling experiments we limited the bandwidth of the controllers both to
make it implementable on our experimental setup, and secondly to be able to compare
it to a PID controller of similar performance. We postulated that a MIMO controller
will be more important for the cross-coupling gains at larger bandwidths. This could
be determined by new experiments using larger bandwidth on the controllers. The
PID controller can be dropped as this will not be able to achieve higher bandwidth
due to the resonant gain. It would also be interesting to investigate the differences of
MIMO control versus SISO control on a system with worse cross-coupling character-
istics.
A further extension to the cross-coupling experiments would be to find an expression
for how much is to gain by using a MIMO approach compared to a SISO approach
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9.1 Future Work

in terms of cross-coupling. Such an expression would depend on the plant’s inherent
cross-coupling gains as well as the desired controller bandwidth.

Since we have shown that the eigenvalues of the controller is central to the stability
of the numerical solver, it would be advantageous to have a model order reduction
method that reduces the eigenvalues of the controller as much as possible with a limit
to the allowable error. That is, design a model reduction method which solves

min
Kr

|λ(Kr)| subject to ‖T − Tr‖∞ < ε (9.1)

for some value of ε.

An implicit Runge-Kutta (IRK) method is stable for all controllers with eigenvalues
in the left half plane. Yet, we experienced in our simulations that the solutions to
the IRK method available in Simulink exploded at certain intervals. Nevertheless, it
would be interesting to further analyze the stability and feasibility of using a fixed-step
IRK method for real-time implementation.

We have only considered continuous-time models in our numerical stability analysis.
Some implementations use discrete-time models. Future studies could investigate the
stability properties of such models and discuss this in relationship to model order
reduction and computational complexity.

Another topic of future work which could be considered is to find how a different
solver affects the minimum step-size versus maximum step-size. Consider Figure 8.2,
if a more complex solver method increases the max. step-size more than it increases
the min. step-size, it would be advantageous to switch to this solver in terms of
numerical stability. An expression for this trade-off would involve the controller order
and the constant overhead of the numerical calculations.

Lastly, it would be interesting to see how the controllers designed in this thesis com-
pares to the stock controller on the AFM. This could be done by implementing our
controller and performing an imaging task.

85





Appendix A

Definitions and Properties

A.1. H2 and H∞ Norm

Although with its somewhat intimidating name, the H∞ norm has in fact a simple
definition.

Definition: H∞ norm

The H∞ norm of a proper transfer function G(s) is

‖G(s)‖∞ , max
ω
|G(jω)| (A.1)

So the H∞ norm is simply the peak value of the magnitude of G(jω). Note that if
G(s) is a matrix this definition is insufficient, in this case we have

‖G(s)‖∞ , max
ω

σ̄ (G(jω)) (A.2)

where σ̄(·) is as defined on page 17. The expression has a mathematical origin, where
the H stands for the Hardy space, and the ∞ comes from the notion that we can pick
out the maximum magnitude by raising the signal to the power of infinity, i.e.

max
ω
|G(jω)| = lim

p→∞

(ˆ ∞
−∞
|G(jω)|p dω

)1/p

(A.3)

By considering this equation we can extend the concept to define a H2 norm.
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Definition: H2 norm

The H2 norm of a strictly proper transfer function G(s) is

‖G(s)‖2 ,
(

1
2π

ˆ ∞
−∞
|G(jω)|2 dω

)1/2
(A.4)

The relationship between the norm of a time domain signal and a transfer function
norm is worth noting. For a stable and strictly proper transfer function G(s) with
inputs u(t) and outputs y(t), we have the relationships given in TableA.1. We can see
that the H2 norm is equal to the 2-norm of the output-signal from impulse response,
and that a sine-input is infinite. In fact, the H2 norm must be strictly proper else it
will become infinite [55]. Additional details and proofs for the table is given by Doyle
et al. [21].

Table A.1: Signal norms and transfer function norms for two types of input signals,
with δ(t) being the unit impulse function.

u(t) = δ(t) u(t) = sin (ω0t)

‖y(t)‖2 ‖G(s)‖2 ∞

‖y(t)‖∞ ‖G(s)‖∞ |G(jω0)|

A.2. Hankel Norm and Hankel Singular Value

The Hankel norm aims to provide a measure of how much past input values into the
stable system G(s) can affect the output in the future. We have used the definition
from Skogestad and Postlethwaite [55].

Definition: Hankel norm

Consider a stable transfer function G(s), input signal u(t), and output signal
y(t), then the Hankel norm of G(s) is

‖G(s)‖H , max
u(t)

√´∞
0 ‖y(τ)‖22dτ√´ 0
−∞ ‖u(τ)‖22dτ

(A.5)

One way to think about it is to consider a given amount of input energy, then the
input signal is shaped such that we maximize the amount of energy at the output
after we stop applying any more input.
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A.3 Butcher Tableau for Dormand-Prince Methods

The closely related Hankel singular values of G(s) are central in the model order
reduction theory.

Definition: Hankel singular values

The Hankel singular values of a stable transfer function G(s) are

σi ,
√
λi (PQ), i = 1, . . . , n (A.6)

where λi is the positive ith eigenvalue of PQ, and P , Q are the solutions to
the Lyapunov equations

AP + PAT +BBT = 0 (A.7)
ATQ+QA+ CTC = 0 (A.8)

for a minimal state-space realization (A,B,C,D) of G(s).

The Hankel singular values are called ordered if we have σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

It can be shown that the Hankel norm ‖G(s)‖H is equal to the largest of the Hankel
singular values σi. It is also closely related to the H∞ norm with the relationship [55]

‖G(s)‖H ≡ max
i
σi ≤ ‖G(s)‖∞ ≤ 2

n∑
i=1

σi (A.9)

A.3. Butcher Tableau for Dormand-Prince Methods

The Butcher tableaus for the explicit Runge-Kutta methods Dormand-Prince erk5
and erk8 are given in TableA.2 and TableA.3 respectively.

Table A.2: Butcher tableau for Dormand-Prince (erk5) method [19]

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

35
384 0 500

1113
125
192 − 2187

6784
11
84 0
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Table A.3: Butcher tableau for Dormand-Prince (erk8) method [46]

0 1 18
1 18

1 12
1 48

1 16

1 8
1 32

0
3 32

5 16
5 16

0
−

75 64
75 64

3 8
3 80

0
0

3 16
3 20

59 40
0

29
44

38
41

61
45

63
90

6
0

0
77

73
65

38
69

25
38

34
7

−
28

69
38

83
11

25
e
+

6
23

12
42

83
18

e
+

8

93 20
0

16
01

61
41

94
66
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1
0

0
61

56
41

80
15

87
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13
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−
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Appendix B

Contents of Attached Zip-file

Suggested execution order to generate the various controllers and run a simulation:
1. identification.m

2. uncertainty_weighting.m

3. pid_controller.m

4. h_inf_mixed_sensitivity.m

5. controller_sim.slx

B.1. File Descriptions

Pdf files

thesis.pdf Digital copy of this thesis.
paper.pdf Digital copy of the paper written based on this thesis.

Matlab files

export_plot.m Function used to save plots generated in other files.
h_inf_mixed_sensitivity.m Generates the H∞ MIMO and H∞ SISO controller.
identification.m Identifies the nominal plant model G based on the frequency re-

sponse data.
Phi.m Returns the stability function value Φ(z) for the explicit Runge-Kutta methods

in Table 8.1.
pid_controller.m Generates the PID controller.
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plot_xpc_data.m Generates several of the plots used in the thesis, using data from
the experiments.

rk_stability.m Finds the maximum stable step-size for a given controller and gener-
ates the plot of the stability regions for several explicit Runge-Kutta solvers.

test_bench_raster_pattern.m Runs experiments with raster pattern reference sig-
nal at several frequencies. Saves and plots the results.

test_bench_reduced_controller.m This code generates the reduced order controllers,
runs a simulation on all of them using different solver types and step-sizes,
records the time spent on each simulation, then saves and plots the results.

uncertainty_weighting.m Uses the experimental data and nominal plant G to find
an appropriate uncertainty weighting W.

Simulink files

controller_sim.slx Simulink model for simulation of the various controllers.

controller_xpc.slx Simulink model for implementation of the various controllers on
the xPC hardware.

controller_xpc_stripped.slx Simulink model for implementation of any controller on
the xPC hardware, stripped of all unnecessary blocks and safety checks. Used
in the computational complexity experiment for more accurate timing results.

Data files

The following folders contains frequency response data from the SR780 device, and
outputs from scanning experiments. All data files are provided in .mat file-type which
can be loaded into Matlab.

data/01 - Plant Response G_hat/ Contains the three frequency responses gathered
of the plant in the four directions Ĝxx, Ĝxy, Ĝyx, Ĝyy.

data/02 - PID/ Contains closed-loop frequency response of the PID controller in the
four directions T̂xx, T̂xy, T̂yx, T̂yy, as well as outputs from scanning experiments.

data/03 - Hinf SISO/ Contains closed-loop frequency response of theH∞ SISO con-
troller in the four directions T̂xx, T̂xy, T̂yx, T̂yy, as well as outputs from scanning
experiments.

data/04 - Hinf MIMO/ Contains closed-loop frequency response of the H∞ MIMO
controller in the four directions T̂xx, T̂xy, T̂yx, T̂yy, as well as outputs from scan-
ning experiments.
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Matlab Code

Some of the code used to run the simulations, experiments and generate the plots is
given here. See the zip-file attachment for additional files.

C.1. h_inf_mixed_sensitivity.m

1 % Generates the Hinf MIMO and Hinf SISO controllers
2 %
3 %% Bandwidth
4 M=1.2;
5 wb=70*2*pi;
6 A=1e−4;
7 Wp=tf([1/M wb], [1 wb*A]);
8 Wu=0;
9 Wu=tf([1/1.2 0], [1 wb]);

10
11 %Find H−inf controller
12 [K,ghinf,GAM] = mixsyn(G_nodelay,Wp,Wu,W_O);
13
14 [K_SISO11,ghinf,GAM] = mixsyn(G_nodelay(1,1),Wp,Wu,W_O);
15 [K_SISO22,ghinf,GAM] = mixsyn(G_nodelay(2,2),Wp,Wu,W_O);
16
17 K_SISO = [K_SISO11, 0; 0, K_SISO22];
18
19 L = G*K;
20 T = (eye(2) + L)\L;
21 S = eye(2) − T;
22
23 L_SISO = G*K_SISO;
24 T_SISO = (eye(2) + L_SISO)\L_SISO;
25 S_SISO = eye(2) − T_SISO;
26
27 h=figure(9);
28 hb=sigmaplot(S,T);
29 setoptions(hb,'FreqUnits','Hz');
30 legend1 = legend('S','T','Location','SouthWest');
31 title('H−inf MIMO');
32 xlim([1,1e5]);
33 ylim([−50,10]);
34 grid on
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35
36 export_plot('experiment_03_MIMO_h_inf_MIMO_sensitivity.pdf');
37
38 hb=sigmaplot(S_SISO,T_SISO);
39 setoptions(hb,'FreqUnits','Hz');
40 legend1 = legend('S','T','Location','SouthWest');
41 title('H−inf SISO');
42 xlim([1,1e5]);
43 ylim([−50,10]);
44 grid on
45
46 export_plot('experiment_03_MIMO_h_inf_SISO_sensitivity.pdf');
47
48
49 norm(pade(W_O*T_PID,5),Inf)
50 norm(pade(W_O*T_SISO,5),Inf)
51 norm(pade(W_O*T,5),Inf)

C.2. identification.m

1 %% Identifies the nominal plant model G based on the frequency ...
response data

2
3 close all
4 clear
5 clc
6
7 h=figure(9);
8
9 %% Simulation variables

10
11 Dt_step = 4e−5;
12
13
14 %% −− System identification −−
15 bodeOpt = bodeoptions;
16 bodeOpt.FreqUnits = 'Hz';
17 bodeOpt.PhaseMatching = 'on';
18 bodeOpt.PhaseMatchingFreq = 100;
19 bodeOpt.PhaseMatchingValue = 0;
20 bodeOpt.YLim = {[−80,25];[−360,0]}; % {maglimits; phaselimits}
21 bodeOpt.YLimMode = {'manual';'auto'};
22
23 %% Time delay
24 load('data/01 − Plant Response G_hat/Run 1/GXX.MAT');
25
26 f = gxx(5:end,1);
27 d = gxx(5:end,2);
28 p = phase(gxx(5:end,2));
29
30 Gxx_experimental = frd(d,f,'FrequencyUnit','Hz');
31
32 % Time delay
33 l = fit(f(5:156),p(5:156),'poly1');
34
35 plot(l,f,p);
36 xlabel('Frequency [hz]'); ylabel('Phase [rad]');
37 grid on
38
39 export_plot('experiment_03_MIMO_Gxx_delay.pdf');
40
41 Td = −l.p1/(2*pi);
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C.2 identification.m

42
43
44 %% Gxx
45 np = 3;
46 nz = 2;
47
48 wpass = [20,140; 358,370; 540,548; 666,672; 792,794; 834,846]*2*pi;
49 opt = tfestOptions('Focus',wpass);
50 Gxx = tfest(Gxx_experimental,np,nz,Td,opt);
51
52 bode(Gxx_experimental,Gxx,bodeOpt);
53 childHnd=get(h, 'Children'); axes1=childHnd(3);
54 legend1 = legend(axes1,'$\hat{G}$', '$G$','Location','NorthWest');
55 set(legend1,'Interpreter','latex');
56 title('');
57 xlim([20 3200]);
58 grid on
59
60 export_plot('experiment_03_MIMO_Gxx_id.pdf');
61
62 %% Gyy
63 load('data/01 − Plant Response G_hat/Run 1/GYY.MAT');
64
65 f = gyy(5:end,1);
66 d = gyy(5:end,2);
67 p = phase(gyy(5:end,2));
68
69 Gyy_experimental = frd(d,f,'FrequencyUnit','Hz');
70
71
72 % Use same time delay as from Gxx: Td
73
74 % System identification
75 np = 3;
76 nz = 2;
77
78 wpass = [20,140; 358,370; 540,548; 666,672; 752,821; 1100,1108]*2*pi;
79 opt = tfestOptions('Focus',wpass);
80 Gyy = tfest(Gyy_experimental,np,nz,Td,opt);
81
82 bode(Gyy_experimental,Gyy,bodeOpt);
83 childHnd=get(gcf, 'Children'); axes1=childHnd(3);
84 legend1 = legend(axes1,'$\hat{G}$', '$G$','Location','SouthWest');
85 set(legend1,'Interpreter','latex');
86 title('');
87 xlim([20 3200]);
88 grid on
89
90 export_plot('experiment_03_MIMO_Gyy_id.pdf');
91
92
93
94 %% Gxy
95 load('data/01 − Plant Response G_hat/Run 1/GXY.MAT');
96
97 f = gxy(5:end,1);
98 d = gxy(5:end,2);
99 p = phase(gxy(5:end,2));

100
101 Gxy_experimental = frd(d,f,'FrequencyUnit','Hz');
102
103 % Use same time delay as from Gxx: Td
104
105 % System identification
106 np = 2;
107 nz = 2;
108
109 wpass = [10,300; 756,760;]*2*pi;
110 opt = tfestOptions('Focus',wpass);
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111 Gxy = tfest(Gxy_experimental,np,nz,Td,opt);
112
113 bode(Gxy_experimental,Gxy,bodeOpt);
114 childHnd=get(gcf, 'Children'); axes1=childHnd(3);
115 legend1 = legend(axes1,'$\hat{G}$', '$G$','Location','NorthWest');
116 set(legend1,'Interpreter','latex');
117 title('');
118 xlim([20 3200]);
119 grid on
120
121 export_plot('experiment_03_MIMO_Gxy_id.pdf');
122
123
124 %% Gyx
125 load('data/01 − Plant Response G_hat/Run 1/GYX.MAT');
126
127 f = gyx(5:end,1);
128 d = gyx(5:end,2);
129 p = phase(gyx(5:end,2));
130
131 Gyx_experimental = frd(d,f,'FrequencyUnit','Hz');
132
133 % Use same time delay as from Gxx: Td
134
135 % System identification
136 np = 2;
137 nz = 2;
138
139 wpass = [10,300; 768,772;]*2*pi;
140 opt = tfestOptions('Focus',wpass);
141 Gyx = tfest(Gyx_experimental,np,nz,Td,opt);
142
143 bode(Gyx_experimental,Gyx,bodeOpt);
144 childHnd=get(gcf, 'Children'); axes1=childHnd(3);
145 legend1 = legend(axes1,'$\hat{G}$', '$G$','Location','NorthWest');
146 set(legend1,'Interpreter','latex');
147 title('');
148 xlim([20 3200]);
149 grid on
150
151 export_plot('experiment_03_MIMO_Gyx_id.pdf');
152
153
154 %% Wrap it up
155
156 G = [Gxx, Gxy; Gyx, Gyy];
157 G_nodelay = pade(tf(G),0);

C.3. Phi.m

1 function output = Phi( z, p )
2 %Returns the stability function value of z for some explicit ...

Runge−Kutta
3 %methods of order p. Valid order values: [1:5, 8]
4
5 if any( p == 1:4 )
6 %Any ERK with p == s
7 output = 1;
8 for i=1:p
9 output = output + z.^i ./ factorial(i);

10 end
11 elseif p == 5
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12 %Dormand−Prince 5
13 A = [0 0 0 0 0 0 0;...
14 1/5 0 0 0 0 0 0;...
15 3/40 9/40 0 0 0 0 0;...
16 44/45 −56/15 32/9 0 0 0 0;...
17 19372/6561 −25360/2187 64448/6561 −212/729 0 0 0;...
18 9017/3168 −355/33 46732/5247 49/176 −5103/18656 0 0;...
19 35/384 0 500/1113 125/192 −2187/6784 11/84 0
20 ];
21 b = [35/384 0 500/1113 125/192 −2187/6784 11/84 0]';
22
23 PhiERK = @(z) det( eye(size(A)) − z*A + z*(ones(size(b,1),1)*b'));
24
25 output = zeros(size(z));
26 for i=1:size(z,1)
27 for j = 1:size(z,2)
28 output(i,j) = PhiERK( z(i,j));
29 end
30 end
31
32 elseif p == 8
33 %Dormand−Prince 8
34 A = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...
35 1.0 / 18.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...
36 1.0 / 48.0, 1.0 / 16.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...
37 1.0 / 32.0, 0, 3.0 / 32.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...
38 5.0 / 16.0, 0, −75.0 / 64.0, 75.0 / 64.0, 0, 0, 0, 0, 0, 0, ...

0, 0, 0;...
39 3.0 / 80.0, 0, 0, 3.0 / 16.0, 3.0 / 20.0, 0, 0, 0, 0, 0, 0, ...

0, 0;...
40 29443841.0 / 614563906.0, 0, 0, 77736538.0 / 692538347.0, ...

−28693883.0 / 1125.0e+6, 23124283.0 / 18.0e+8, 0, 0, 0, ...
0, 0, 0, 0;...

41 16016141.0 / 946692911.0, 0, 0, 61564180.0 / 158732637.0, ...
22789713.0 / 633445777.0, 545815736.0 / 2771057229.0, ...
−180193667.0 / 1043307555.0, 0, 0, 0, 0, 0, 0;...

42 39632708.0 / 573591083.0, 0, 0, −433636366.0 / 683701615.0, ...
−421739975.0 / 2616292301.0, 100302831.0 / 723423059.0, ...
790204164.0 / 839813087.0, 800635310.0 / 3783071287.0, 0, ...
0, 0, 0, 0;...

43 246121993.0 / 1340847787.0, 0, 0, −37695042795.0 / ...
15268766246.0, −309121744.0 / 1061227803.0, −12992083.0 / ...
490766935.0, 6005943493.0 / 2108947869.0, 393006217.0 / ...
1396673457.0, 123872331.0 / 1001029789.0, 0, 0, 0, 0;...

44 −1028468189.0 / 846180014.0, 0, 0, 8478235783.0 / ...
508512852.0, 1311729495.0 / 1432422823.0, −10304129995.0 ...
/ 1701304382.0, −48777925059.0 / 3047939560.0, ...
15336726248.0 / 1032824649.0, −45442868181.0 / ...
3398467696.0, 3065993473.0 / 597172653.0, 0, 0, 0;...

45 185892177.0 / 718116043.0, 0, 0, −3185094517.0 / ...
667107341.0, −477755414.0 / 1098053517.0, −703635378.0 / ...
230739211.0, 5731566787.0 / 1027545527.0, 5232866602.0 / ...
850066563.0, −4093664535.0 / 808688257.0, 3962137247.0 / ...
1805957418.0, 65686358.0 / 487910083.0, 0, 0;...

46 403863854.0 / 491063109.0, 0, 0, −5068492393.0 / ...
434740067.0, −411421997.0 / 543043805.0, 652783627.0 / ...
914296604.0, 11173962825.0 / 925320556.0, −13158990841.0 ...
/ 6184727034.0, 3936647629.0 / 1978049680.0, −160528059.0 ...
/ 685178525.0, 248638103.0 / 1413531060.0, 0, 0;...

47 ];
48 b = [14005451.0 / 335480064.0, 0, 0, 0, 0, −59238493.0 / ...

1068277825.0, 181606767.0 / 758867731.0, 561292985.0 / ...
797845732.0, −1041891430.0 / 1371343529.0, 760417239.0 / ...
1151165299.0, 118820643.0 / 751138087.0, −528747749.0 / ...
2220607170.0, 1.0 / 4.0]';

49
50 PhiERK = @(z) det( eye(size(A)) − z*A + z*(ones(size(b,1),1)*b'));
51
52 output = zeros(size(z));
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53 for i=1:size(z,1)
54 for j = 1:size(z,2)
55 output(i,j) = PhiERK( z(i,j));
56 end
57 end
58 end
59
60
61 end

C.4. rk_stability.m

1 %Finds the maximum stable step−size for a given controller and ...
generates

2 %the plot of the stability regions for several explicit Runge−Kutta
3 %solvers.
4
5 % Assumes controller K is already generated
6 for k_r_orders = 10:17
7 % Create the reduced controller
8 new_order = k_r_orders;
9 [K_bal,g] = balreal(K);

10 elim = [ zeros(new_order,1); ones(size(g,1)−new_order,1) ];
11 K_r = modred(K_bal,logical(elim));
12
13 K_eig = sort(eig(K),'descend');
14 K_r_eig = sort(eig(K_r),'descend');
15
16 % Binary search to find the maximum step−size
17 erk_orders = [1:5,8];
18 max_step_sizes = zeros(size(erk_orders));
19
20 for i = 1:size(erk_orders,2)
21 low = 0;
22 high = 1;
23 epsilon = 1e−9;
24
25 while (high − low ) > epsilon
26 h = (high − low) / 2 + low;
27 z = h * K_eig;
28 if abs( Phi(z,erk_orders(i)) ) ≤ 1
29 low = h;
30 else
31 high = h;
32 end
33 end
34
35 max_step_sizes(1,i) = low;
36 end
37
38 display(regexprep( num2str(max_step_sizes*1e6,4), ...

'([0−9])\s+([0−9])', '$1\t$2'))
39 end
40 %% plot
41 [re, im] = meshgrid(−6.0:.01:3, −6:.01:6);
42 z = complex(re,im);
43
44 ineq = zeros(size(z));
45 figure(9); hold off;
46
47 for i=erk_orders
48 ineq = ineq + (ineq | (abs(Phi(z,i))≤1));
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49 end
50
51 [C,h] = contourf(re,im, ineq, [1,2,3,4,5,5.5]) ;
52
53 grid on;
54 xlabel('Re($z$)','Interpreter','latex');
55 ylabel('Im($z$)','Interpreter','latex');
56
57 hold on;
58 re = real(K_eig*max_step_sizes(end));
59 im = imag(K_eig*max_step_sizes(end));
60 plot(re,im,'om');
61 re = real(K_r_eig*max_step_sizes(end));
62 im = imag(K_r_eig*max_step_sizes(end));
63 plot(re,im,'xy');
64 daspect([1 1 1])
65 hold off
66
67 export_plot('experiment_07_rk_stability_K_18_eigenvalues.pdf');

C.5. test_bench_raster_pattern.m

1 %% This code runs the AFM platform using the simulink model ...
controller_xpc

2 % with a raster pattern reference signal at the frequencies ...
specified in

3 % all_freq, then saves the data and plots the results.
4
5 % Initialize
6 tg = xpc('TargetPC1');
7 tg.load('controller_xpc');
8
9 all_freq = [1 10 20 50 100 200 300 400 662 760];

10
11 for ScanRate=all_freq
12
13 LengthPerVolt = 4.664678428174072; % um/V
14 Offset = [7.4 6.8];
15
16 setparam(tg, getparamid(tg, 'Offset_XY', 'Value'), Offset); % V
17
18 ScanWidth = 2; % um
19 NumLines = 10 − 5*(ScanRate < 10);
20
21 LineLength = ScanWidth / NumLines;
22 ScanSpeedY = LineLength * ScanRate; % um/s
23 ScanWidthV = ScanWidth / LengthPerVolt; % V
24 ScanRampSlopeYV = ScanSpeedY / LengthPerVolt; % V
25 SimTime = ScanWidth / ScanSpeedY + 1/ScanRate;
26
27 setparam(tg, getparamid(tg, 'Step_Ref', 'Time'), 1/ScanRate); % ...

Delay scanning by one period to stabilize
28 setparam(tg, getparamid(tg, 'Sequence_X/Constant', 'Value'), ...

1/ScanRate); % Scan Period
29 setparam(tg, getparamid(tg, 'Sequence_X/Look−Up Table1', ...

'InputValues'), [0 .5 1]/ScanRate); % Time
30 setparam(tg, getparamid(tg, 'Sequence_X/Look−Up Table1', 'Table'), ...

[0 ScanWidthV 0]); % Output
31
32 setparam(tg, getparamid(tg, 'Ramp_Y/Step', 'After'), ...

ScanRampSlopeYV );
33
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34 set(tg, 'StopTime', SimTime);
35
36 disp( ['Simulation time: ', num2str(SimTime), ' s'] );
37
38 tg.start();
39
40 while( ¬strcmp(tg.status, 'stopped') )
41 pause(0.25);
42 end
43
44
45 % Plot
46
47 start_index = floor((1/ScanRate)/Dt_step);
48
49 td = tg.TimeLog(start_index:end)−tg.TimeLog(start_index);
50 xd = tg.OutputLog(start_index:end,[1 3]) * LengthPerVolt; % um
51 yd = tg.OutputLog(start_index:end,[2 4]) * LengthPerVolt; % ...

Assuming um/V value is same as for x (should check this)
52 exd = xd(:,2)−xd(:,1) + sum(xd(:,2),1)/size(xd,1);
53 eyd = yd(:,2)−yd(:,1) + sum(yd(:,2),1)/size(yd,1);
54
55 %save(['..\02 − PID\Scanning\data_',int2str(ScanRate),'hz.mat'], ...

'td', 'xd', 'yd');
56 %save(['..\03 − Hinf ...

SISO\Scanning\data_',int2str(ScanRate),'hz.mat'], 'td', 'xd', 'yd');
57 %save(['..\04 − Hinf ...

MIMO\Scanning\data_',int2str(ScanRate),'hz.mat'], 'td', 'xd', 'yd');
58
59
60 plot(td,xd,td,yd,td,exd,'r',td,eyd);
61
62 plot(xd,yd);
63 set(gca,'PlotBoxAspectRatio',[1 1 1]);
64 grid on;
65 xlabel('Displacement x [um]'); ylabel('Displacement y [um]');
66
67 std(exd)
68 std(eyd)
69
70 end

C.6. test_bench_reduced_controllers.m

1 % This code generates the reduced order controllers, runs a ...
simulation on

2 % all of them using different solver types and step−sizes, records ...
the time

3 % spent on each simulation, then saves and plots the results.
4
5 new_order_it = 3:18;
6 solver_type_it = {'ode1','ode2','ode3','ode5','ode8','ode14x'};
7 step_time_it = [1e−4, 1e−5, 4e−5, 1e−6];
8
9 resSimTime = zeros(size(new_order_it,2), size(solver_type_it,2), ...

size(step_time_it,2));
10 resRMSx = Inf*ones(size(new_order_it,2), size(solver_type_it,2), ...

size(step_time_it,2));
11 resRMSy = Inf*ones(size(new_order_it,2), size(solver_type_it,2), ...

size(step_time_it,2));
12 resDT = zeros(size(new_order_it,2),1);
13 resWT = zeros(size(new_order_it,2),1);
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14 resEig = zeros(size(new_order_it,2),18);
15
16 for new_order_index = ...

1:size(new_order_it,2);%[7,10,13,17,18];%[4,7,9,10]%2:17
17 % Step response full order controller
18 K_r = K;
19 simout = sim('controller_xpc','StopTime', '.02');
20 y = simout.get('yout');
21 t = simout.get('tout');
22
23 % Generate reduced order controller
24 new_order = new_order_it(new_order_index);
25 if new_order == 18
26 K_r = K;
27 else
28 [K_bal,g] = balreal(K);
29 elim = [ zeros(new_order,1); ones(size(g,1)−new_order,1) ];
30 K_r = modred(K_bal,logical(elim));
31
32 L_r = G*K_r;
33 T_r = (eye(2) + L_r)\L_r;
34 S_r = eye(2) − T_r;
35
36 dT = T−T_r;
37 resDT(new_order_index,1) = norm(pade(dT,5),inf);
38 resWT(new_order_index,1) = norm(pade(W_O*T_r,5),inf);
39 eigVals = eig(K_r);
40 resEig(new_order_index,1) = eigVals(1);
41 disp(['dT: ',num2str( norm(dT,inf), '%3.2e' )]);
42 end
43
44 eigVals = sort(eig(K_r))
45 resEig(new_order_index,1:size(eigVals,1)) = eigVals;
46
47 solver_type = char(solver_type_it(1));
48 set_param('hinf_ms_controller_stripped','Solver',solver_type);
49
50 h=figure(9);
51 set(h,'DefaultAxesColorOrder',[0 0 1;0 .5 0;0 0 1;0 .5 0])
52 hb=sigmaplot(S,'b',S_r,'g',T,'b',T_r,'g');
53 setoptions(hb,'FreqUnits','Hz'); legend('S, T','S_r, ...

T_r','Location','SouthWest');
54 title([num2str(new_order),'th order']); xlim([1,3e4]); ...

ylim([−35,10]); grid on;
55 export_plot(['experiment_04_S_T_order_', ...

num2str(new_order),'.pdf']);
56
57 Step response reduced order controller
58 simout = sim('sim_closed_loop','StopTime', '.02');
59 y_r = simout.get('yout');
60 t_r = simout.get('tout');
61
62 plot(t,y(:,1),t_r,y_r(:,1)); % step in r1
63 hold on;
64 plot( t,y(:,2),t_r,y_r(:,2));
65 hold off;
66 legend('18th order (full)',[num2str(new_order),'th order'], ...

'Location','Best'); xlabel('time (s)'); ylabel('output (V)'); ...
grid on;

67 title(['Step response']);
68 export_plot(['experiment_04_step_sim_order_', ...

num2str(new_order),'.pdf']);
69
70 % Run simulation for various solvers and step time
71 for solver_type_index = 1:size(solver_type_it,2);
72 solver_type = solver_type_it(solver_type_index);
73 for step_time_index = 1:size(step_time_it,2);
74 step_time = step_time_it(step_time_index);
75
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76 % Simulation
77 Dt_step = step_time;
78 disp(['Order: ',num2str(new_order),' Solver: ...

',char(solver_type),' StepTime: ',num2str(Dt_step)]);
79 %set_param('sim_closed_loop','Solver','ode14x');
80 try
81 t0 = tic;
82 simout = sim('sim_closed_loop','StopTime', ...

'.2','Solver',char(solver_type));
83 elapsedTime = toc(t0);
84 y = simout.get('yout');
85
86 resSimTime(new_order_index, solver_type_index, ...

step_time_index) = elapsedTime;
87 resRMSx(new_order_index, solver_type_index, ...

step_time_index) = rms(y(:,1));
88 resRMSy(new_order_index, solver_type_index, ...

step_time_index) = rms(y(:,2));
89
90 t = simout.get('tout');
91 plot(t,y);
92 hold on
93
94 disp(['RMS x: ',num2str( rms( y(:,1) )),' y: ...

',num2str( rms( y(:,2) ))]);
95 catch err
96 disp(['Unstable Error:',err.identifier]);
97 end
98 disp(resSimTime(new_order_index, solver_type_index, ...

step_time_index));
99 end

100 end
101 end
102
103 hold off;
104 set_param('hinf_ms_controller_stripped','Solver',char(solver_type));
105
106 %%
107 GAM
108 norm(pade(W_O*T,5),Inf)
109
110 %%
111 figure1 = figure(6);
112 axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on',...
113 'YMinorGrid','on',...
114 'XTick',2:17);
115 xlim(axes1,[1.5 17.5]); box(axes1,'on');
116 grid(axes1,'on');
117 hold(axes1,'all');
118 xlabel('Model Order'); ylabel('||T−T_r||_\infty');
119 set(gcf,'Position',[680 558 460 420]);
120
121 bar(new_order_it,resDT,'BaseValue',0.001);
122 export_plot('experiment_04_hinf_error_norm_bar.pdf',figure1);
123
124 %%
125 figure1 = figure(6);
126 axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on',...
127 'YMinorGrid','on',...
128 'XTick',2:17);
129 xlim(axes1,[1.5 17.5]); box(axes1,'on');
130 grid(axes1,'on');
131 hold(axes1,'all');
132 xlabel('Model Order'); ylabel('||W T_r||_\infty');
133 set(gcf,'Position',[680 558 460 420]);
134
135 bar(new_order_it,resWT,'BaseValue',.1);
136 export_plot('experiment_04_W_x_T_robustness.pdf',figure1);
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Appendix D

Paper

The next pages contain a paper written based on the main contents of this thesis. The
paper will be submitted to the IFAC World Congress 2014 at a later date possibly
with modifications.
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Abstract: A robust H∞ multiple-input multiple-output (MIMO) controller is designed and
implemented for the lateral stage of an Atomic Force Microscope (AFM). Such a model-based
controller can quickly become complex and may be difficult to run in real-time on hardware
with limited computational power. Handling this difficulty is the main topic of this paper.
The resulting controller can be considered to be stiff, which is characterized by a large spread
of eigenvalues. Continuous-time systems running in real-time are usually solved using explicit
Runge-Kutta (ERK) methods, which easily becomes unstable for stiff systems. We show how
small the time-step for a given controller needs to be for a selection of ERK methods. We also
consider model reduction on the controller and how this affects the required step-size and how
much it reduces the computational complexity. We have shown that the original 18th order
H∞ controller could be reduced to a 10th order controller without any significant reduction in
performance or stability, which resulted in a 46.7% reduction in execution time partly because
the order reduction enabled us to use a simpler solver type.

1. INTRODUCTION

Atomic Force Microscopy (AFM) is a tool capable of
studying matter down to the atomic scale. This has made
it one of the fundamental tools within the field of nan-
otechnology. Control of the lateral stage of an AFM has
been shown to be challenging because of several reasons,
including non-linearities such as (1) hysteresis and (2)
creep, (3) lightly-damped vibration dynamics, and (4)
large uncertainties. For high performance under such con-
ditions, model-based controllers has been widely employed
in the literature such as H∞ controllers (Schitter et al.,
2001; Salapaka et al., 2002; Salapaka and Sebastian, 2003;
Schitter and Stemmer, 2004; Ladjal et al., 2009; Yong
et al., 2010). Such controllers tends to become complex in
terms of computational complexity. Because of the high
uncertainties and the non-linearities it is important to
consider robustness in nanopositioning applications. This
topic has been studied in Salapaka et al. (2002); Sebastian
and Salapaka (2005); Ladjal et al. (2009).

The majority of the literature on nanopositioning seems
to perform control design in the continuous time domain
as opposed to the discrete-time z-domain. Such controllers
can be described using continuous-time state-space models
which we will base our discussion around. For a real-time
implementation however, the model is solved at discrete

time-steps using a fixed step-size. Many popular solver
types are based on the family of explicit Runge-Kutta
(ERK) methods. These solvers become unstable if the
step-size is too large. At the same time, the complex-
ity of the controller running on hardware with limited
computational power puts a lower limit on the step-size
the hardware needs to perform the necessary calculations.
Thus we have both a lower and an upper limit on the
step-size determined by various factors. For a controller to
be implementable we need the limits to intersect. We will
discuss some of these factors in this paper and what we
can do about them.

To control a system with a mechanically high bandwidth,
we need to have high bandwidth on the control loop as
well. Thus, the step-size needs to be sufficiently small.
On hardware with limited computational power, we often
need to simplify the model such that it becomes feasible.
The most widely used method to reduce the computational
complexity of a controller is to perform model reduction
on an already existing controller. Model reduction aims to
keep the input-output behavior as close as possible to the
original model while removing states from a state-space
representation of the controller. Model reduction has been
used extensively, some approaches performs reduction on
the plant model (Dong et al., 2007; Lee and Salapaka,
2009). Using a model-based approach, this results in a

Chapter D Paper

104



controller with less complexity. Another approach is to
perform reduction after synthesis using a high-order model
plant (Schitter and Stemmer, 2004; Kuiper and Schitter,
2012). The discussion of whether to reduce the plant
model and then perform model reduction, or perform
reduction on the controller is treated in Anderson and Liu
(1989); Anderson (1992), where it is generally concluded
that reduction should be performed as a last step in
the control design process. Even if the system is already
implementable, there is an advantage of reducing the
complexity, because we can then run the system on a
smaller step-size which reduces the overall noise floor of
the system.

In this paper, we will base our discussion around a H∞
controller which is designed for the lateral positioning of a
commercial AFM. The controller is designed to be robustly
stable for a given description of plant uncertainty. We will
present equations for how to determine the solver stability
of a controller and the required maximum step-size for a
variety of ERK methods. Additionally, we will show the
effect of model reduction on the complex controller and
how this affects the solver stability and computational
complexity. This paper is based to a large extent on
Ragazzon (2013).

The paper is organized as follows. In Section 2, the
experimental set-up is explained and identified model of
the plant is found. In section 3, we present the control law
design. In Section 4 we present solver stability, specifically
for some ERK methods. Section 5 describes the model
reduction of the controller. Section 6 gives experimental
results of closed-loop characteristics and execution time.
The results are discussed in Section 7. Finally, some
conclusions are drawn in Section 8.

2. SYSTEM IDENTIFICATION

2.1 Device Description

All experiments are done using a commercial AFM of
the type Park Systems XE-70. In this device, the sam-
ple is placed on a parallel kinematic 2d flexure scanner
for motion in the horizontal xy-plane. Motion along the
vertical z-axis is completely decoupled and not regarded
for our purposes. The signals from the AFM are routed
to an electronic processing and controller box that comes
with the microscope. As well as having its own controller
circuits, it provides access to analogue measurements from
the sensors. It can also receive external signals for manual
control of the AFM’s actuators which we will use to control
the piezoelectric elements.

See a schematic overview of the setup in Fig. 1. The
controllers are implemented in a Simulink model, which
is compiled and transferred to a dedicated computer,
an xPC, which runs a real-time operating system. The
xPC performs the number crunching, and is externally
connected to a DAC and ADC. These input-output signals
are run through anti-aliasing and reconstruction filters,
which are constructed as low-pass filters with a bandwidth
of less than half the sample frequency.

For our purpose, we have overridden control of the piezo-
actuators in the x- and y-axes. This is connected to

a “PiezoDrive PDL200”, a linear voltage amplifier. The
input into this amplifier is considered as the input to the
system. The voltage output from the distance sensors in
the x- and y-axes located on the AFM is used as the output
of the system.

Fig. 1. Block diagram of the experimental setup for the
closed-loop system. For the plant frequency response
the SR780 device is connected directly to u.

2.2 Frequency Response and Model Fit

The lateral positioning stage of the AFM is considered
to be dominantly linear, therefore the system can be
described by its frequency response. The system has two
inputs u1, u2 and two outputs y1, y2, along the x- and
y-axis respectively. The frequency response of the plant
G(s) was gathered using a Stanford SR780 frequency
analyser using a white noise source signal. One of several
gathered frequency responses is plotted in Fig. 2 together
with the fitted models. The transfer functions were fitted
using the Matlab function tfest on the experimental
data. The diagonal elements of G(s) were approximated
by a third-degree transfer function, while the off-diagonal
elements were approximated by a second-degree function.
The nominal plant model was found as shown in (1) at the
top of the next page.

The exponential term represents the time delay between
input and output. A time delay will present itself as a
linear reduction of the phase as a function of frequency.
Thus, we may find the time delay of the system between
input and output by taking a look at the phase plot of the
elements of Ĝ. By assuming that the change in phase at
lower frequencies is dominated by the time delay, and other
sources of phase change is close to zero, we can deduce that
the time delay is proportional to the slope at the start of
the phase plot. This is how we identified the time delay
Td = 4.58× 10−4 s.

We can see that the phase starts at 180◦ which means that
the system has an inverse response, i.e. positive inputs
give negative outputs and vice versa. This is just the sign
convention of our raw data, and we decided not to change
it for simplicity.

We can observe that the off-diagonal elements of G(s)
are relatively small compared to the diagonal elements,
this indicates that the two axes are physically well de-
coupled. This indicates that the system is well suited for
independent control of the axes where the cross-coupling
is not considered. However, we will treat the system as a
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G(s) = e−4.58e-04s



−5924s2 − 1.709e07s− 9.878e10

s3 + 4703s2 + 1.82e07s+ 7.806e10

−0.04567s2 + 69.72s− 6.043e04

s2 + 104.5s+ 2.29e07
−0.04705s2 + 89.17s− 1.253e05

s2 + 134.1s+ 2.288e07

−8708s2 + 2.618e07s− 9.214e11

s3 + 3.865e04s2 + 4.379e07s+ 9.44e11


 (1)

single multiple-input multiple-output (MIMO) plant and
design a single more complex controller rather than two
independent slightly simpler controllers.

2.3 Robust Stability and Uncertainty Weighting

Since the system has large uncertainties and inaccuracies
in the model fits, we need to make sure it is robustly
stable for a specified set of perturbations of the plant. We
chose to model the uncertainties as multiplicative output
uncertainty. The perturbed plant is described as

Gp = (I + ∆W )G (2)

where ∆ is the uncertainty variable with ‖∆‖∞ ≤ 1 and
W is a specified weighting transfer function. The block-
diagram of the feedback system is plotted in Fig. 3.

For a given controllerK the robust stability (RS) condition
for the described set of perturbations is (Skogestad and
Postlethwaite, 2007)

RS ⇔ ‖WT‖∞ < 1 (3)

where T , (I + GK)−1GK is the complementary sensi-
tivity function. Similarly we have the sensitivity function
S , (I +GK)−1.

To find a suitable W that fits the uncertainties in our
system, we can record a set of plant frequency responses
Ĝ ∈ Π. Then we can guarantee robust stability for at
least all of these responses by finding a W such that
|W (jω)| > Ŵ (ω) where (Skogestad and Postlethwaite,
2007)

Ŵ (ω) , max
Ĝ∈Π

σ̄
((
Ĝ(ω)−G(jω)

)
G−1(jω)

)
(4)

and σ̄(·) is the maximum singular value. Other equations
exist for different perturbation descriptions such as input
multiplicative uncertainty or additive uncertainty.

We recorded three different frequency responses at dif-
ferent set-points and input amplitudes, and fitted the
calculated Ŵ by the transfer function

W (s) = 3.8254
(s+ 210)(s+ 1850)

(s+ 2400)(s+ 3200)
(5)

which is plotted together with Ŵ in Fig. 4.

Fig. 3. Feedback system with a multiplicative output
uncertainty
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Fig. 4. Robustness fit, W (s) and Ŵ (ω)

3. CONTROL LAW DESIGN

This section will present the design of the H∞ controller.
We will explain the choice of weightings for the mixed-
sensitivity problem used to synthesize the controller based
on the identified model G.

The H∞ mixed sensitivity problem can be formulated as

min
K

N(K) =

∥∥∥∥∥
WSS
WTT

WKSKS

∥∥∥∥∥
∞

(6)

where WS , WT , and WKS are user-defined weightings.

The sensitivity function S is the closed-loop transfer
function from r to e , y− r. Therefore we want this to be
as small as possible, especially in the bandwidth we would
like to achieve effective control. Thus, within the desired
bandwidth we want WS to be large, so it was chosen as
a first-order filter with large gains at low frequencies and
low gains at high frequencies.

The complementary sensitivity function T is the closed-
loop transfer function from r to y. Thus, we would like
this to be close to one within the desired bandwidth for
good tracking behavior. For higher frequencies we would
like it to be as small as possible to attenuate measurement
noise. Thus WT is chosen to be small at low frequencies
and large at high frequencies. Since WT is a measurement
of the robust stability we have chosen WT = W to form
the system to become more easily robustly stable.

Finally, we have the weighting WKS . In fact KS is the
closed-loop transfer function from r to u, so it describes
the control effort for a given reference signal. We want to
punish high frequencies of u since this means a large energy
usage by the controller, and we know that the system won’t
respond to very high frequencies. Thus WKS is modeled
as a high-pass filter. The resulting weighting functions are
summarized in Table 1.

The problem was solved using the Matlab function mixsyn.
This resulted in a controller with 18 states. For the sake of
comparison later on, we also designed a similar controller
using independent axis design, i.e. one H∞ controller
for each axis, as well as a simple PID controller. The
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Fig. 2. Experimental frequency response for both axes including cross-terms, and the corresponding fitted models, i.e.
the elements of G(s) and Ĝ(jω).

bandwidth of all three controllers as well as the robustness
properties and model order is given in Table 2. The table
shows us that the closed-loop system is robustly stable
because ‖WT‖∞ < 1 for both of the H∞ controllers. This
is not the case for the PID-controller, so in fact we can not
guarantee that this controller is stable for all perturbations
of the system.

Table 1. Summary of weighting transfer functions

WS(s)
0.8333s+ 439.8

s+ 0.04398

WT (s) 3.8254
(s+ 210)(s+ 1850)

(s+ 2400)(s+ 3200)

WKS(s) 0.8333
s

s+ 439.8

Table 2. Bandwidth and robustness comparison be-
tween the three controllers. TF = transfer function,

SS = state space.

ωb,S ωb,T ‖WT‖∞ Implementation

[Hz] [Hz]

PID 58.0 93.1 1.073 4th order TF

H∞ SISO 75.6 96.4 0.9938 14th order SS

H∞ MIMO 69.8 98.6 0.6717 18th order SS

4. SOLVER STABILITY

We will consider the case where a controller is represented
by a continuous-time state-space model. A real-time im-
plementation of such a model will use a solver to perform

the necessary integration steps at fixed discrete time inter-
vals, denoted by the step-size h. A complex controller will
require a larger step-size because of limited computational
power in the hardware, while at the same time an increased
step-size can make the solver unstable. In this section we
will see that the solver stability depends on the eigenvalues
of the controller, the step-size, as well as the solver type.

Let us consider the scalar test system

ẏ = λy (7)

which is applied to a solver taking the discrete state yn to
the next time step yn+1 with step-size h,

yn+1 = Φ(hλ)yn (8)

= [Φ(hλ)]
n
y0 (9)

where Φ(hλ) is called the stability function. It is evident
that (9) is stable, i.e. |yn| ≤ c <∞ ∀n ≥ 0, if and only if

|Φ(hλ)| ≤ 1 (10)

All solvers we will consider have such a stability function,
and the region of stability, i.e. the region of the complex
plane where (10) is satisfied, varies between each solver
type.

Example 1 : Euler’s Method applied to (7) gives

yn+1 = yn + h(λyn)

= (1 + hλ) yn (11)

thus Φ(hλ) = 1 + hλ, which is stable in the region
{z ∈ C | |1 + z| < 1}, in other words the unit circle with
center -1. 4
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4.1 Runge-Kutta Methods

The family of explicit Runge-Kutta (ERK) methods can
be written as

yn+1 = yn +
s∑

i=1

biki (12)

where s describes the number of stages of the Runge-Kutta
method and

k1 = hf(tn, yn)

k2 = hf(tn + c2h, yn + a21k1)

k3 = hf(tn + c3h, yn + a31k1 + a32k2)

...

ks = hf(tn + csh, yn + as1k1 + as2k2 + · · ·+ as,s−1ks−1)

where the coefficients aij , bi, and ci are elements of A, b,
and c respectively, which are specified by a given ERK
solver. Note that Euler’s method is a first order ERK
method.

4.2 Stability of Explicit Runge-Kutta Methods

The stability function of ERK methods are given by
(Egeland and Gravdahl, 2002)

Φ(z) = det(I − zA+ z1bT ) (13)

where 1 is a column vector of one-elements. It can be
shown that this can be simplified for an ERK method of
order p = s to (Hairer and Wanner, 1996)

Φ(z) = 1 + z + · · ·+ zp

p!
which is only possible for methods of order up to 4. Higher
order ERK methods need more stages s than the order
p. We have plotted the stability region of a selection of
ERK methods in Fig. 5. Specifically the region of erk1-
erk4 with p = s, Dormand-Prince 5 (erk5) and Dormand-
Prince 8 (erk8). The last two with coefficients taken from
Dormand and Prince (1980); Prince and Dormand (1981).
The stability functions of these methods are reckoned to
be the same as for the fixed-step solver methods available
in Simulink.

4.3 Linear System

We have given the stability methods for several ERK
methods for the scalar test system. In this section, we will
show that the stability of the solvers applied to a linear
system of ordinary differential equations (ODE) is given
by its eigenvalues.

Theorem 1. Consider the system

ẏ = Ay (14)

where A is an n × n diagonalizable matrix having eigen-
values λ1, . . . , λn. Let us apply an explicit Runge-Kutta
method to this system. Then the ERK method has a stable
point at the origin if and only if the same method has a
stable point for

ż = λiz ∀ i ∈ [1, . . . , n]

4
This is a standard result in numerical methods theory, see
e.g. Ascher and Petzold (1998). We have used a wording
similar to Frank (2008) which is also used for the next
corollary.

Re(z)

Im
(z

)
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λ(K ) · h1
λ(K 10) · h1

|Φ(z)| ≤ 1

Fig. 5. Stability region of a variety of ERK methods
of order 1-5 and 8. Magenta circles: Eigenvalues of
the full order controller K scaled by the maximum
step-size achieving stability for erk8. Yellow X’s:
Eigenvalues of the reduced tenth order controller K10

scaled by the same step-size. Note that K10 is stable
for erk5.

Corollary 2. Consider a Runge-Kutta method with stabil-
ity function Φ(z) applied to the system ẏ = Ay. Then the
origin is stable for the numerical method with step-size h
if and only if

|Φ(hλi)| ≤ 1, ∀ i ∈ [1, . . . , n]

where λi are the eigenvalues of A. 4

In other words, if all the eigenvalues of A are within the
region of stability for a given solver at a specific step-size
h, then the solver applied to (14) is stable. This gives us
a tool to check for the required maximum step-size for a
given controller and solver.

5. CONTROL ORDER REDUCTION

5.1 Model Reduction Theory

There exist several methods to perform model reduction
Obinata and Anderson (2001), most widely used is possi-
bly balanced residualization. Here the controller is first
transformed to a balanced realization. A realization is
said to be balanced if the controllability and observability
Gramians are equal, thus a balanced model can be said
to be as observable as it is controllable. The model states
are ordered by decreasing Hankel singular values to form
a state-space model (A,B,C,D). The last states are re-
moved and the system is transformed such that

A11 A12 B1

A21 A22 B2

C1 C2 D


⇒

[
A11 −A12A

−1
22 A21 B1 −A21A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]

The DC-gain of the system is maintained using this
method, at some cost to the accuracy in the faster modes.
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If we instead of a balanced realization used a canonical
modal realization where the A-matrix is diagonal with
elements equal to the eigenvalues, and performed the same
reduction technique we can essentially remove the system
eigenvalues of choice. This may be useful if some of the
eigenvalues are larger than wanted, but can also result
in large errors and possibly instability. Other methods
include the truncation method which is more accurate
at high frequencies at the cost of low frequencies, the
optimal Hankel norm method, and using Linear Matrix
Inequalities.

5.2 Results of Control Reduction

The designed controller K was first transformed to a
balanced realization using the Matlab command balreal.
The Hankel singular values for K are given in Table 3
which gives an idea of the error to be expected from
removing each state.

We performed model reduction on K by model residual-
ization to several new controllers Kr of order 2 to order
17. This was done in Matlab with the command modred.
The closed-loop H∞ error norm on T − Tr, where Tr is
the complementary sensitivity of the reduced controller,
for each reduced controller is shown in Fig. 6a. We can see
that there are significant drops specifically between order
4-5, 9-10, and 16-17. The error changes relatively little in-
between these drops. Since we would like a controller with
as low order as possible while maintaining the performance
characteristics, we are inclined to select one of the orders
after such a drop, i.e. 5, 10, or 17. The robustness norm
is shown in Fig. 6b where we can see that only controller
order 10 and higher are robustly stable with ‖WTr‖∞ < 1.
The previous discussion clearly favors choosing the 10th
order controller as it provides robust stability with little
error. This choice is further reinforced by considering the
simulated step responses as shown in Fig. 7. The 10th or-
der controller gives nearly indistinguishable results to the
original controller, while the 8th and 9th order controllers
shows some oscillatory behavior. The 7th order model is
unstable, so we clearly want to avoid it.

Table 3. Hankel singular values of the balanced
realization of the controller, σi

1) 5.436e+03 7) 6.799e-02 13) 1.324e-02

2) 4.227e+03 8) 6.049e-02 14) 4.091e-03

3) 3.307e-01 9) 3.885e-02 15) 4.073e-03

4) 2.775e-01 10) 1.977e-02 16) 1.400e-03

5) 1.246e-01 11) 1.514e-02 17) 1.044e-03

6) 7.628e-02 12) 1.430e-02 18) 5.722e-05

5.3 Eigenvalues and Maximum Step-Size

We have previously shown that the stability of an explicit
Runge-Kutta method applied to a state-space model de-
pends on the eigenvalues of the A-matrix and the step-
size. Thus, for a given controller we can find the maximum
step-size needed for stability. The maximum step-size for
controller K was found to be 54.62µs using the erk8 solver.
The eigenvalues scaled by step-size can be seen in Fig. 5
(magenta circles) which are seen to lie within the stability
region of erk8. It is not stable for erk5 as the eigenvalues
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Fig. 6. Reduced controller order properties. (a) Closed-
loop error ‖T − Tr‖∞. (b) Robustness ‖WTr‖∞,
must be < 1 for robust stability (marked red).
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Fig. 7. Simulated step-response in reference signal on the
x -axis, reduced vs original controller. Shows output
from both x-axis and y-axis.

are outside the stability region for this solver. The eigen-
values of the reduced controller K10 has also been plotted
(yellow x’s) for the same step-size and we can see how the
controller reduction has affected the eigenvalues. We can
see that they have become smaller which has resulted in
the controller becoming stable even for the erk5 solver. So
not only does model reduction reduce the computational
complexity of the controller, but it can also enable us to
use a simpler solver type or alternatively a larger step-size.

The maximum step-size for a variety of controllers and
solver types are shown in Table 4. Note that the maximum
step-size does not strictly increase with lower model-
orders, since the model residualization method used does
not necessarily reduce the eigenvalues. Other reduction
methods could be considered if this is critical, such as
methods directly removing states with large eigenvalues.

6. EXPERIMENTAL RESULTS

Experiments were performed for two reasons. The first was
to see how well the reduced order controllers performed
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Table 4. Maximum step-size for a given explicit
Runge-Kutta (ERK) method for the various reduced
controllers as well as some simpler controllers and
the nominal plant model. Larger values are generally
better because they are stable at higher step-sizes.

Order
hmax [µs]

erk1 erk2 erk3 erk4 erk5 erk8

7 (unst.) 32.18 71.33 95.74 100.8 127.2 203.6

8 58.37 58.37 73.34 81.29 96.51 150.8

9 37.54 37.54 47.17 52.28 62.07 96.99

10 33.61 33.61 42.22 46.8 55.56 86.82

11 39.70 39.7 49.87 55.28 65.63 102.5

12 24.96 32.66 41.03 45.48 54.00 84.37

13 2.821 21.55 27.07 30.01 35.63 55.67

14 2.818 19.11 24.01 26.62 31.60 49.38

15 2.843 21.73 27.30 30.26 35.92 56.13

16 2.948 22.64 28.44 31.53 37.43 58.48

17 2.918 21.18 26.61 29.49 35.01 54.71

18 (full) 2.910 21.14 26.56 29.45 34.96 54.62

PID 80.00 80.00 100.5 111.4 132.3 206.7

H∞SISO 21.45 21.45 26.95 29.87 35.46 55.41

G(s) 4.564 52.42 65.85 73.00 86.66 135.4

compared to our simulations. The second was to record
the average task execution time (TET), the time it takes
the hardware to perform calculations from one time-step
to the next. This can be considered a measurement of
the computational complexity of the controller, and is a
lower limit on the step-size. Any lower than this and the
hardware will not be able to meet its deadline and exit
with a “CPU overload” error.

The experiments were performed in the setup shown in
Fig. 1. The closed loop frequency response of the original
controller K compared to the reduced controllers K10 and
K8 is given in Fig. 8. The average TET for the various
controllers and solver types are given in Table 5. The
system was run with step-size h = 40µs, and only the
modes that are stable at this step-size as can be seen from
Table 4 was tested, i.e. hmax ≥ 40µs.

7. DISCUSSION

7.1 Model Reduction and Performance

The model reduction showed us that the original 18th or-
der controller could be reduced to a 10th order model with
no noticeable difference in the simulated step-response or
the experimental closed-loop frequency response. Addi-
tionally, it was shown to maintain robust stability, thus
it is a very viable controller choice. In terms of the impact
on computational complexity, we can see that we have
reduction of 25.5%, from 20.11 to 14.99µs if we use the
erk8 solver for both controllers.

From Table 4 we can see that the 10th order controller
can run using the erk3 solver at a step-size of h = 40µs,
while the fullH∞ MIMO controller needs erk8 for stability
at this step-size. By choosing erk3 for the 10th order
controller we can see from Table 5 that this reduces the
execution time to 10.71µs, or a 46.7% reduction from the
original controller.

Table 5. Average Task Execution Time (TET) with
different controller model order and solver types
which gives an indication on the computational com-
plexity. Step-size h = 40µs. Dash (-) unstable, not

tested. (x) CPU overload.

Order
Average TET [µs]

erk1 erk2 erk3 erk5 erk8 ode14x

≤7 - - - - - -

8 - 10.25 10.43 11.10 13.64 26.72

9 - - 10.55 11.43 14.26 x

10 - - 10.71 11.64 14.99 x

11 - - 10.89 11.91 15.79 x

12 - - 11.07 12.36 16.79 x

13 - - - - 17.68 x

14 - - - - 18.82 x

15 - - - - 19.61 x

16 - - - - 20.91 x

17 - - - - 22.61 x

18 - - - - 20.11 x

PID - 9.95 9.98 10.13 11.12 14.91

H∞SISO - - - - 14.58 x

We tried to run the controller with the implicit solver
ode14x (Extrapolation) supplied with Simulink, but it was
found to be such computationally demanding that we
were only able to run it with the 8th order controller in
addition to the PID controller. Additionally, the solutions
was found to explode at times in our simulations so this
solver was not further considered.

It is also interesting to note that the execution time does
not strictly decrease with increased controller order, e.g.
the 17th to 18th order controller. By inspecting the state-
space model of each of these controllers, we notice that the
18th order controller has a lot more zero-valued elements.
We speculate that the compiler simplifies the arithmetic
on these elements.

7.2 Eigenvalues and Stability

As we have seen, the eigenvalues of the controller are one
of the decisive factors for stability of an applied ERK
method. Hence, it is important to consider how controller
reduction changes the eigenvalues, especially for a fast
and stiff system such as our lateral positioning platform
of an AFM. The eigenvalues of our controller tended to
become smaller with reduced orders, but this need not be
the case. One should be careful when performing model
reduction and possibly verify that the eigenvalues are
within the stable region of the solver considered. If the
solver stability becomes a problem, one should consider a
different model reduction method, such as removing the
eigenvalues directly from a canonical modal realization of
the controller.

We have also seen how increased solver order increases
the stability region, but at the same time it increases
the execution time. This will ultimately be a trade-off
between moving the lower limit (due to computation time)
and the upper limit (for stability) of the step-size, as
illustrated in Fig. 9. Halving the step-size usually doubles
the computational complexity (per unit of time), while
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Fig. 8. Singular values of the closed-loop σ(T̂ ) for the 8th and 10th order reduced controller versus the original controller.

increasing the solver complexity is harder to predict, but
will generally depend on the controller order.

Note that we have not considered the accuracy of the
solver methods. This is because we have assumed that the
system is stiff, and stiff systems are characterized such that
instability comes before any accuracy problems.

Feasible step-size region UnstableHardware overload

Minimum step-size Maximum step-size

Simpler controller (lower order)
Less complex solver method

More powerful hardware

Smaller eigenvalues
More complex solver method

Fig. 9. Illustration of the trade-off between step-size,
controller complexity, solver complexity, eigenvalues
of the controller, and hardware performance for a real-
time controller implementation.

8. CONCLUSION

This paper concerns itself with some practical issues for
a controller running in real-time. Since the capability of
hardware is limited in terms of computational perfor-
mance, a complex controller can become difficult to imple-
ment with a step-size small enough for stability. This paper
tries to achieve two goals, (1) to show how to determine
the maximum step-size a controller requires for numerical
stability, and (2) to show what can be done to reduce the
computational complexity of an already existing controller
with a focus on model reduction.

To show how this can be done, a robustly stable H∞
controller was designed for a nanopositioning device. We
showed that the numerical stability of an explicit Runge-
Kutta method is determined by the eigenvalues of the con-
troller. Model reduction was performed on the controller
and the reduced controllers were compared in terms of
performance and stability both in simulations and exper-
iments which showed that the 18th order controller could
be reduced to a 10th order model without any significant

reduction in performance or stability. After the reduction
process, the largest eigenvalues were reduced in size so the
system also became numerically stable for even simpler
solver types which allow further reduction of the compu-
tational requirement.

An experiment was run to determine the change in compu-
tational complexity by recording the execution time of the
various controllers. The reduction to a 10th order model,
as well as the possibility of using a simpler solver type
resulted in a 46.7% reduction in task execution time.
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