
Biological Cell Models and Atomic Force
Microscopy
Parameter Estimation with Parallel

Computing

Kristin Bræck Leer

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK

Department of Engineering Cybernetics

Submission date: December 2016

Norwegian University of Science and Technology

Abstract

Through several decades, mathematical models have been used to describe real systems.
Studying these mathematical models can give us important information about the system
and its behavior. The Atomic Force Microscopy (AFM) has been described with a mathe-
matical model and the hope is to identify and estimate unknown parameters.

This thesis presents a parameter estimation method for identifying unknown parameters
in the system using parallel computing. Introducing a variety of mathematical expression
that give base to a set of analyzing tools. These were used to evaluate how the estimated
parameter converged to the real values. These simulations were split into experiments, that
changed one or multiple parameters that affected the properties of the system.

Our experiments illustrated how we can improve the convergence of estimated parame-
ters by tuning parameters that effect the properties of the system with basic analyzing
tools (bias, relative tolerance and rate of convergence). The simulations performed, based
on previous work, found a gain matrix were the estimated parameters converged expo-
nentially fast to the real values. The results shows that our system contains two local
minimizers when optimizing the gain matrix.

The cantilever dynamics were described in a linear-in-parameter form, and both the known
and unknown parameters were defined along with a filter. This means that the cantilever
dynamic can be simulated when finding a input signal that is PE.

i

ii

Sammendrag

Gjennom flere tiår har det vært vanlig å beskrive virkelige systemer med matematiske
modeller. Ved å studere disse modellen kan man finne viktig informasjon om systemet og
dens oppførsel. Atomic Force Microscopy (AFM) har blitt beskrevet ved en matematisk
modell og man håper å kunne identifisere og estimere ukjente variabler.

Denne oppgaven presenterer en parameter estimeringsmetode for identifiksjon av ukjent
variabler i et system ved bruke av parallell databehandling. Ved å introdusere en rekke
matematiske uttrykk som gir basisen for et sett med analyseringsmetoder. Disse analy-
seringsmetodene ble brukt til å evaluere hvordan de estimerte variablene konvergerte til
de virkelige verdiene. Disse simuleringene var delt opp i eksperiment, hvor en eller flere
variabler ble endret. Disse variablene påvirker egenskapene til systemet.

Våre eksperimenter illustrerer hvordan vi kan forbedre konvergeringen til de estimerte
variablene ved å tune variabler som påvirker egenskapene til systemet ved hjelp av anal-
yseringsmetoder (bias, relativ toleranse og konvergeringshastighet). Basert på tidligere
arbeid, ble en forsterkningsmatrise funnet hvor de estimerte variablene konvergerte ekspo-
nentielt mot de virkelige verdiene. Resultatene viser at system vårt inneholder to lokale
minimum når man optimaliserer forsterkningsmatrisen.

Cantilever dynamikken ble beskrevet i ”linear-in-parameter” form, der både kjente og
ukjente variabler og et filter ble definert. Dette betyr at cantilever dynamikken kan bli
simulert når man finner et inngangssignal som er PE.

i

ii

Preface

This thesis is the last piece to completing my master’s degree in Engineering Cybernetics
at NTNU, carried out during the autumn semester of 2016.

I would like to thank my supervisor Professor Jan Tommy Gravdahl for inspiration and
constructive criticism. I also want to thank my co-supervisor, PhD-student Michael R. P.
Ragazzon for ideas, guidance and feedback, and also for answering questions at any time.

This thesis was supported in part with computational resources at NTNU provided by
NOTUR, and I would like to thank the staff there for help and guidance when using Vilje.

I would like to thank my friends and fellow students for five and a half amazing years.
I could not have done this without you. Finally, I would like to thank my family for their
support, and an extra thanks to my brothers, Roald and Erik, for help and guidance when-
ever I needed it during the last six months.

Kristin Bræck Leer
Trondheim, December 2016

iii

iv

Table of Contents

Abstract i

Sammendrag i

Preface iii

Table of Contents vii

List of Tables x

List of Listing xi

List of Figures xviii

Abbreviations xix

1 Introduction 1
1.1 Problem Definition . 2
1.2 Outline . 2

2 Basic Theory 3
2.1 Biological Cells . 3

2.1.1 Cell Types . 3
2.1.2 Eukaryotic Cells . 4
2.1.3 New Way to Study Cells . 5

2.2 Simulation Methods . 6
2.2.1 Basic Terms In the Simulation Solver 6
2.2.2 Nonstiff and Stiff Ordinary Differential Equation Problems 7
2.2.3 Explicit Runge-Kutta . 7
2.2.4 Implicit Runge-Kutta . 9
2.2.5 Rosenbrock Methods . 10
2.2.6 Modified Second Order Rosenbrock Method 11

v

2.2.7 Trapezoidal Rule . 12
2.2.8 Adams-Bashforth-Moulton Method 13

2.3 Mathematical Analysing Tools . 14
2.3.1 Mean . 14
2.3.2 Bias . 14
2.3.3 Relative Tolerance . 15
2.3.4 Rate of Convergence . 15

2.4 Transfer Functions . 15

3 Atomic Force Microscopy 17
3.1 Operations . 18

3.1.1 Modes of Operation . 18
3.2 Cantilever Dynamics . 19
3.3 Problems with Atomic Force Microscopy Control 20

3.3.1 Improvement of AFM . 21
3.4 Biological Advantages . 21

4 Parameter Estimation 23
4.1 Gradient Method . 25

4.1.1 Method . 25
4.1.2 Parameter Estimator . 27

4.2 Least-Squares . 27
4.3 Base Model . 28

4.3.1 Cantilever-Sample Dynamics . 28

5 Parallel Computing 33
5.1 Vilje . 33

5.1.1 Matlab on Vilje . 34
5.1.2 Running a Program on Vilje . 35
5.1.3 Challenges with Vilje . 35

5.2 Ways to Analyse the Results When Using Parallel Computing 36
5.2.1 Bias . 37
5.2.2 Relative Tolerance . 37
5.2.3 Rate of Convergence . 37
5.2.4 Matlab Implementation . 37

6 Cantilever Dynamics 41
6.1 Cantilever Dynamic Equation . 41
6.2 Defining Parameters for Simulation . 42

7 Simulation Results 45
7.1 Simulation Setup . 45
7.2 Continuing Work From Final Year Assignment 46

7.2.1 Overview . 46
7.2.2 Tuning the Gain Matrix . 47
7.2.3 Comparing the Gradient Method with the Least-Square Method . 47

vi

7.3 Parallel Computing . 51
7.3.1 Changing the Simulation Solver 52
7.3.2 Combining Changes . 52
7.3.3 Optimize the Gain Matrix . 54
7.3.4 Optimized Gain Matrix and Changing the Tunable Positive Filter

Constant . 58
7.3.5 Optimized Gain Matrix with Different Simulation Solvers 59

8 Discussion 61
8.1 Cantilever Dynamics . 61
8.2 Continuing Work From Final Year Assignment 61

8.2.1 Tuning the Gain Matrix . 61
8.2.2 Comparing the Two On-Line Parameter Estimation Methods . . . 62

8.3 Parallel Computing . 63
8.3.1 Changing the Simulation Solver 63
8.3.2 Combining Changes . 64
8.3.3 Optimizing the Gain Matrix . 66

8.4 Working With Vilje . 70

9 Conclusion 71
9.1 Achievements . 71

9.1.1 Continuing Work From Final Year Assignment 71
9.1.2 Experiments on Vilje . 72
9.1.3 Cantilever Dynamics . 73

9.2 Using Vilje . 74
9.3 Future Work . 74

Bibliography 75

A Tables 79

B Code 89

C Figures From the Simulation 105
C1 Changing the Gain Matrix . 105
C2 Changing the Simulation Solver . 114
C3 Simulation Solver and the Relative Tolerance 117
C4 Simulation Solver and Tap Period . 120
C5 Changing the Damper Constant In the Gain 123
C6 Changing the Spring Constant In the Gain 128
C7 Optimized Gain Matrix with Different Tunable Filter Constants 135
C8 Optimized Gain Matrix with Different Simulation Solvers 138

vii

viii

List of Tables

2.1 Representation of the parameters aij , bi and ci in the explicit Runge-Kutta
method in a Butcher array. 8

2.2 Representation of the Bogacki-Shampine method in a Butcher array. . . . 9

7.1 The setup when starting the simulations. 46
7.2 An overview of the different Γ in Figure 7.1- 7.3. 46
7.3 The relative tolerance and the rate of convergence in Figure 7.1 and Fig-

ure 7.7. 50
7.4 The simulation setup when starting simulations with parallel computing. . 51
7.5 Experiment 1: Changes the simulation solver. Mathematical description

of these solvers are found in section 2.2. 52
7.6 The results corresponding to Experiment 1 (table 7.5), given as the relative

tolerance and the rate of convergence. 52
7.7 Experiment 2: Changes the simulation solver and the relative tolerance in

the simulation solver. Mathematical description of these solvers are found
in section 2.2. 53

7.8 The results corresponding to Experiment 2 (table 7.7), given as the relative
tolerance and the rate of convergence. 53

7.9 Experiment 3: Changes the simulation solver and the tap period. 54
7.10 The results corresponding to Experiment 3 (table 7.9). 54
7.11 Experiment 4: Shows the fine tuning of the damper element in the gain

matrix, Γ. The spring constant remains the same, while the damper ele-
ment changes. 55

7.12 The results corresponding to Experiment 4 (table 7.11). 56
7.13 Experiment 5: Shows the fine tuning of the spring element in the gain ma-

trix, Γ. The damper constant remains the same, while the spring element
changes. 56

7.14 The results corresponding to Experiment 5 (table 7.13). 57
7.15 Experiment 6: Best gain matrix with different tunable positive filter con-

stant, τ . 59

ix

7.16 The results corresponding to experiment 6 (table 7.15). 59
7.17 Experiment 6: Best gain matrix with different simulation solvers. 59
7.18 The results corresponding to experiment 7 (table 7.17). 60

8.1 Absolute value of the deviation in the relative tolerance and the rate of
convergence between the results from Figure 7.1 and Figure 7.7. 63

8.2 Absolute value of the deviation in the relative tolerance between the results
from Figure 7.6 and Figure 7.7. 63

8.3 The relative tolerance given in percentage points between experiment 3
and experiment 1 for ode113. 65

8.4 The relative tolerance given in percentage points between job 4 and jobs 5-
12 in experiment 5. 67

8.5 The mean given in percentage is job 1-2 in experiment 6. 68
8.6 The mean given in percentage is job 1-2 in experiment 6. 68

A.1 An overview over how Γ was tuned. 79
A.2 The results given as the bias, the relative tolerance (four decimals) and the

rate of convergence corresponding to the test in table 7.5. 80
A.3 The results given as the bias, the relative tolerance (four decimals) and the

rate of convergence corresponding to the test in table 7.7. 81
A.4 The results given as the bias, the relative tolerance (four decimals) and the

rate of convergence corresponding to the test in table 7.9. 82
A.5 The results given as the bias, the relative tolerance (four decimals) and the

rate of convergence corresponding to the test in table 7.11. 83
A.6 The results given as the bias, the relative tolerance (four decimals) and the

rate of convergence corresponding to the test in table 7.11. Continuing to
table A.5. 84

A.7 The results given as the bias, the relative tolerance (four decimals) and the
rate of convergence corresponding to the test in table 7.13. 85

A.8 The results given as the bias, the relative tolerance (four decimals) and the
rate of convergence corresponding to the test in table 7.13. Continuing to
table A.7. 86

A.9 The results given as the bias, the relative tolerance (four decimals) and the
rate of convergence corresponding to the Experiment 8 in table 7.15. . . . 87

A.10 The results given as the bias, the relative tolerance (four decimals) and the
rate of convergence corresponding to the Experiment 7 in table 7.17. . . . 88

x

Listings

5.1 Basic needed commands . 35
5.2 Commands when using Matlab . 35
5.3 Run Program From Command Line . 35
5.4 Pseudo code for finding the bias, relative tolerance and rate of conver-

gence.label . 37
B.1 Run Parallel Jobs on Vilje . 89
B.2 Do Nothing file . 89
B.3 Finding the bias, relative tolerance and rate of convergence 90
B.4 Matlab code on Vilje . 94
B.5 init.m . 95
B.6 InstantaneousCost.m . 99
B.7 run.m . 100
B.8 Plot the estimated values . 101

xi

xii

List of Figures

3.1 A simple AFM setup with the optical lever method. 18
3.2 The tip sample distance given by equation 3.2. 20

4.1 An overview of the system in a block diagram. 24
4.2 Biological cell modeled by spring-damper elements from (Ragazzon et al.,

2016). 29

5.1 The HPC Vilje at NTNU. 34
5.2 Vilje at NTNU. 34
5.3 Shows how the analysing tools is defined in section 5.2. 36

7.1 The estimates of k̂ and ĉ using the least square with forgetting factor,
and the cantilever position input u over time. This figure is a result from
(Ragazzon et al., 2016). 47

7.2 The estimates of k̂ and ĉ with the gradient method using instantaneous
cost, and the cantilever position input u over time. It was the first simu-
lation using the gradient method with the same Γ as in (Ragazzon et al.,
2016). 48

7.3 The estimates of k̂ and ĉ with the gradient method using instantaneous
cost, and the cantilever position input u over time. This is the best result
from the Final Year Project (Leer, 2016). 48

7.4 The estimates of k̂ and ĉ with the gradient method using instantaneous
cost, and the cantilever position input u over time. 49

7.5 The estimates of k̂ and ĉ with the gradient method using instantaneous
cost, and the cantilever position input u over time. Gamma10 from table7.1 49

7.6 The estimates of k̂ and ĉ with the gradient method using instantaneous
cost, and the cantilever position input u over time. Test 15 from table A.1 50

7.7 The estimates of k̂ and ĉ using the least square with forgetting factor, and
the cantilever position input u over time. This is the result with Γ equal to
equation 7.1. 51

xiii

7.8 The estimates of ĉ and k̂ using the gradient method, and the cantilever
position input u over time, with gain matrix equal to job 1 in table 7.13.
The oscillations on the estimated spring constant, k̂. 57

7.9 The estimates of ĉ and k̂ using the gradient method, and the cantilever
position input u over time, with gain matrix equal to job 1 in table 7.13.
The estimate of k̂ does not have oscillations. 58

C.1 Test 1 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 105

C.2 Test 2 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 106

C.3 Test 3 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 106

C.4 Test 4 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 107

C.5 Test 5 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 107

C.6 Test 6 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 108

C.7 Test 7 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 108

C.8 Test 8 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 109

C.9 Test 9 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 109

C.10 Test 10 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 110

C.11 Test 11 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 111

C.12 Test 12 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 111

C.13 Test 13 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 112

C.14 Test 14 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 112

C.15 Test 15 in table A.1: The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time. . . 113

C.16 Experiment 1, Job 1 (table 7.5): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 114

C.17 Experiment 1, Job 2 (table 7.5): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 114

xiv

C.18 Experiment 1, Job 3 (table 7.5): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 115

C.19 Experiment 1, Job 4 (table 7.5): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 115

C.20 Experiment 1, Job 5 (table 7.5): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 116

C.21 Experiment 1, Job 6 (table 7.5): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 116

C.22 Experiment 2, Job 1 (table 7.7): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 117

C.23 Experiment 2, Job 2 (table 7.7): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 117

C.24 Experiment 2, Job 3 (table 7.7): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 118

C.25 Experiment 2, Job 4 (table 7.7): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 118

C.26 Experiment 2, Job 5 (table 7.7): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 119

C.27 Experiment 2, Job 1 (table 7.7): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 119

C.28 Experiment 3, Job 1 (table 7.9): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 120

C.29 Experiment 3, Job 2 (table 7.9): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 120

C.30 Experiment 3, Job 3 (table 7.9): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 121

C.31 Experiment 3, Job 4 (table 7.9): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 121

C.32 Experiment 3, Job 5 (table 7.9): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 122

xv

C.33 Experiment 3, Job 6 (table 7.9): The estimates of k̂ and ĉ using the gradient
method using instantaneous cost, and the cantilever position input u over
time. 122

C.34 Experiment 4, Job 1 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 123

C.35 Experiment 4, Job 2 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 123

C.36 Experiment 4, Job 3 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 124

C.37 Experiment 4, Job 4 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 124

C.38 Experiment 4, Job 5 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 125

C.39 Experiment 4, Job 6 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 125

C.40 Experiment 4, Job 7 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 126

C.41 Experiment 4, Job 8 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 126

C.42 Experiment 4, Job 9 (table 7.11): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 127

C.43 Experiment 4, Job 10 (table 7.11): The estimates of k̂ and ĉ using the
gradient method using instantaneous cost, and the cantilever position input
u over time. 127

C.44 Experiment 5, Job 1 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 128

C.45 Experiment 5, Job 2 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 128

C.46 Experiment 5, Job 3 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 129

C.47 Experiment 5, Job 4 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 129

xvi

C.48 Experiment 5, Job 5 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 130

C.49 Experiment 5, Job 6 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 130

C.50 Experiment 5, Job 7 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 131

C.51 Experiment 5, Job 8 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 131

C.52 Experiment 5, Job 9 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 132

C.53 Experiment 5, Job 10 (table 7.13): The estimates of k̂ and ĉ using the
gradient method using instantaneous cost, and the cantilever position input
u over time. 132

C.54 Experiment 5, Job 11 (table 7.13): The estimates of k̂ and ĉ using the
gradient method using instantaneous cost, and the cantilever position input
u over time. 133

C.55 Experiment 5, Job 12 (table 7.13): The estimates of k̂ and ĉ using the
gradient method using instantaneous cost, and the cantilever position input
u over time. 133

C.56 Experiment 5, Job 1 (table 7.13): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 134

C.57 Experiment 6, Job 1 (table 7.15): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 135

C.58 Experiment 6, Job 2 (table 7.15): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 135

C.59 Experiment 6, Job 3 (table 7.15): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 136

C.60 Experiment 6, Job 4 (table 7.15): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 136

C.61 Experiment 6, Job 5 (table 7.15): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 137

C.62 Experiment 7, Job 1 (table 7.17): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 138

xvii

C.63 Experiment 7, Job 2 (table 7.17): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 138

C.64 Experiment 7, Job 3 (table 7.17): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 139

C.65 Experiment 7, Job 4 (table 7.17): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 139

C.66 Experiment 7, Job 5 (table 7.17): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 140

C.67 Experiment 7, Job 6 (table 7.17): The estimates of k̂ and ĉ using the gra-
dient method using instantaneous cost, and the cantilever position input u
over time. 140

xviii

Abbreviations

AFM = Atomic Force Microscopy
c1 = First Real Damper Constant
c2 = First Real Damper Constant
CPU = Central Processing Unit
FSAL = First Same As Last
GUI = Graphical User Interface
HPC = High-Performance Computing
k1 = First Real Spring Constant
k2 = First Real Spring Constant
ODE = Ordinary Differential Equation
PECE = Predict-Evaluate-Correct-Evaluate
RoC = Rate of Convergence
RT = Relative Tolerance
s = Seconds
SPM = Scanning Probe Microscopy
STM = Scanning Tunneling Microscopy

xix

xx

Chapter 1
Introduction

In today’s society, there are many systems that are controlled and monitored autonomously.
These systems can be explained with mathematical models, which means that the behavior
can be tested and any discovered errors can be removed. These mathematical models can
be used to find an appropriate parameter estimator that can identify unknown parameters,
before the system is simulated to check its behavior. One of these systems is the Atomic
Force Microscopy (AFM).

The AFM is a well known microscopy within the scientific world, and it is used in the
field of biology. It is known for its ability to identify mechanical properties in biological
cells, and its precision in imaging of cells at micro- and nanoscale. The ability to identify
mechanical properties (e.g. stiffness in the cell) has proven to be an important in biology
and the discoveries of diseases (Bao and Suresh, 2003; Suresh, 2007). The stiffness in the
cell changes when it goes from being a healthy cell to a diseased cell (Haase and Pelling,
2015; Kuznetsova et al., 2007). To study cells, both healthy and diseased, with an mathe-
matical model of the AFM would be interesting. It could give new information about the
mechanical properties of the cells, which can be helpful when studying medical questions
(Sokolov, 2007). However, this means that a mathematical model is needed.

In (Ragazzon et al., 2016), a mathematical model of a biological cell and an AFM is
given. This model estimates the parameters over time, which allows mechanical changes
in the cell. This model is a product of earlier work (Ragazzon et al., 2015; Ragazzon and
Gravdahl, 2016). The work published in (Leer, 2016), presented another on-line parameter
estimator. Although, the results presented could not show that the estimated parameters
converged exponentially fast to the real values. Both methods (Ragazzon et al., 2016; Leer,
2016), presents a study of the whole system (biological cell and the AFM). However, there
are other interesting aspect to be studied in the AFM. The cantilever dynamics (Cappella
and Dietler, 1999) in the AFM have often been studied using theoretical estimations, or
representations that is only usable for a specific sample (Hutter and Bechhoefer, 1993;
Sader et al., 1995, 1999). However, to our knowledge, an adaptive parameter estimation

1

Chapter 1. Introduction

for this dynamic is not known.

The system proposed here, will use parallel computing (Barney et al., 2010) on Vilje
(NOTUR, 2016), due to storage problems and slow simulation time in (Leer, 2016). In
addition to that, analysing tools (e.g. bias, relative tolerance and rate of convergence
(Kreyszig, 2010; Walpole et al., 1993)) will be used to determine the performance on
how the estimated parameters converge to the real values. Later, the cantilever dynamics
will be studied to see if an adaptive parameter estimation method can be used estimate the
unknown parameters.

1.1 Problem Definition
• Continuing the work from (Leer, 2016). Find a gain matrix for the gradient method

which provides a good estimate.

• Learning to use Vilje and run a single simulation, before learning to run multiple
simulations in parallel.

• Investigate the cantilever dynamics and discovering if it is possible to use an adap-
tive parameter estimator to estimate the damper and spring constant in the cantilever.

1.2 Outline
The rest of this thesis is structured as follow. Chapter 2 contains basic theory that is
relevant on topics in this thesis. Chapter 3 contains the AFM and its working principles,
while theory on parameter estimation and the mathematical model from (Ragazzon et al.,
2016) is found in chapter 4. Chapter 5 presents parallel computing, Vilje and analysing
tool used with parallel computing. In chapter 6, the cantilever dynamics are presented
and derived. The simulation results are presented in chapter 7. The discussion and the
conclusion are given in chapter 8 and chapter 9, respectively.

2

Chapter 2
Basic Theory

This chapter is a continuation of the work published in (Leer, 2016). Several sections have
been modified and added.

2.1 Biological Cells
Cells are fundamental for all living systems, and all cells consist of organelles. These
cells are the simplest matter that can be alive. There are two different kinds of organisms
that exist; single-celled and multicellular. Plants and animals are multicellular. Multicel-
lular organisms consist of different types of specialised cells that cannot survive long on
their own while single-celled organisms only consist of one cell. Hence, the multicellular
organisms are therefore more complex organelles. Even when there are higher organiza-
tions, like tissues and organs, cells still has the basic structure and function (Campbell
et al., 2015; Leer, 2016).

2.1.1 Cell Types
There are two different types of cells, prokaryotic and eukaryotic cells.

prokaryotic = ”before nucleus”
eukaryotic = ”true nucleus”

These cell types produce different kinds of living organisms.

• Prokaryotic cells:

– Bacteria

– Archaea

• Eukaryotic cells:

3

Chapter 2. Basic Theory

– Protists

– Fungi

– Animals

– Plants

All cells consist of organelles (can be looked at as organs in the human body), which is
small parts inside the cell that perform different tasks. Both prokaryotic and eukaryotic
cells share some basic features. First, they are bounded by a selective barrier known as
the plasma membrane. Second, inside all cells there is a semicellular, jelly-like substance,
where subcellular components are suspended. This is the cytosol. Third, all cells carry
genes in form of DNA in the chromosomes. Last, there are tiny complexes that produce
proteins according to instructions from genes. These are called ribosomes. The major dif-
ference between prokaryotic and eukaryotic cells is where the DNA is located. In prokary-
otic cells, the DNA is concentrated in the organelle called nucleoid. This is a region of
the cell that is not membrane-enclosed. Whereas in eukaryotic cells most of the DNA is
located in the organelle called nucleus. This organelle is bounded by a double membrane
(Campbell et al., 2015; Leer, 2016).

2.1.2 Eukaryotic Cells

The main focus in this thesis will be on eukaryotic cells, since one will most likely study
plant or animal (human) cells (Sokolov, 2007). Therefore it will be more important to look
at how an eukaryotic cell is constructed. In a eukaryotic cell there are many organelles,
which all have different jobs (Campbell et al., 2015; Leer, 2016).

Organelles

From (Campbell et al., 2015) the organelles in an animal cell are as follows:

• Nucleus

– Nuclear envelope: A double membrane enclosing the nucleus which is perfo-
rated by pores, and is continuous with endoplasmic reticulum (ER)

– Nucleolus: A non membranous structure that is involved in producing ribo-
somes, and a nucleus has one or more nucleoli

– Chromatin: The material consisting of DNA and proteins, and is visible in a
dividing cell as individual condensed chromosomes

• Plasma membrane
The membrane enclosing the cell

• Endoplasmic Reticulum (ER)
A network of sacs and tubes; active in membrane synthesis and other synthetic and
metabolic processes; have both rough (ribosome-studded) and smooth regions

4

2.1 Biological Cells

• Cytoskeleton
Reinforces the cell’s shape and the functions in cell movement. The components
are made of proteins, which includes microfilaments, intermediate filaments and
microtubules

• Ribosome
The complexes that makes proteins; free in cytosol or bounded to rough endoplasmic
reticulum or nuclear envelope

• Lysosome
Digestive organelle where macromolecules are hydrolyzed

• Mitochondrion
Organelle where cellular respiration occurs and most ATP is generated

• Golgi apparatus
Organelle active in synthesis, modification, sorting, and secretion in cell products

• Flagellum
Motility structure present in some animal cells, composed of a cluster of micro-
tubules within an extension of the plasma membrane

• Centrosome
Region where the cell’s microtubules are initiated. Contains a pair of centrioles

• Microvilli
Projections that increase the cell’s surface area

• Peroxisome
Organelle with various specialized metabolic functions. Produces hydrogen perox-
ide as a by-product, then converts it to water

Studying Cells

Studying cells can take place in three different states; in vitro, in vivo and in silico. These
three ways are different and the resulting information varies. In vitro means that the study
of microorganisms, cells or biological molecules is outside the normal habitat. The study
is fast, inexpensive, but one can only look at the organism. However, it is often not trans-
latable to real life. In vivo happens within the biological context, e.g. animal testing or
clinical trial. After in vitro one often wants to observe the effects on living subjects and
one will therefore preform in vivo. In silico is biological computer simulations (Iversen,
2015; Leer, 2016).

2.1.3 New Way to Study Cells
There have been two ways to study the cell’s mechanical properties:

1. The mechanical properties were integrally studied when the cell was considered as
a whole

5

Chapter 2. Basic Theory

2. Using isolated lipid bilayers, biomembrane and cytosolic proteins, the mechanical
properties of the cell structural components were studied

(Kuznetsova et al., 2007).

AFM (atomic force microscope) makes it possible to study both dynamical and mechanical
properties of cells. These including special cell events like locomotion, differentiation and
aging, physiological activation and electromotility and cell pathology (Kuznetsova et al.,
2007). This can be an important instrument for the future, since it is possible to recognise
changes in the cell structure, which can be a sign for a disease (Sokolov, 2007; Kuznetsova
et al., 2007; Leer, 2016). AFM is explained in more detail in Chapter 3.

2.2 Simulation Methods
When simulating a system, there are a diversity of simulation solvers with different prop-
erties to choose from. These properties either gives a guideline for choosing the right
simulation solver for a specific problem, or they can help determining if e.g. the system is
nonstiff or stiff.

The simulation methods studied in this thesis are the explicit and implicit Runge-Kutta,
Runge-Kutta pair of Bogacki and Shampine, modified Rosenbrock, trapezoidal rule and
Adams-Bashforth-Moulton are used as simulation solvers in Matlab. They are similar to;
ode45, ode15s, ode23, ode23s, ode23t and ode113 (Grenoble, 1999; Leer, 2016).

2.2.1 Basic Terms In the Simulation Solver
Before we look into simulation solvers and their corresponding mathematical methods,
some terms must be explained in advanced.

Relative tolerance in the simulation solver is described as the error mea-
sured relative to the size of each state. This is given as a percentage of the of
the state value, and the default value is 1e− 03 (MatlabWorks, 2016a).

Interpolation is when there are found approximating values to points given
by a function f(x). The approximated values lie between the points of f(x)
(Kreyszig, 2010).

Local extrapolation is used when there is a desire to specify the accuracy
in a local error. This is done by computing the numerical solution of two
method (e.g. explicit Runge-Kutta) with different order, yn+1 (order p) and
ŷn+1 (order p + 1). Starting the computation with yn=ŷn for tn+1, a local
solution and the local error is found. This error is an estimate of the local
error of yn+1. Therefore, the next time step should be yn+1. However, ŷn+1

is more accurate, and will therefore be used as the next time step instead of
yn+1. When ŷn+1 is chosen over yn+1 it is called local extrapolation (Egeland
and Gravdahl, 2002; Shampine, 1973).

6

2.2 Simulation Methods

2.2.2 Nonstiff and Stiff Ordinary Differential Equation Problems

In Matlab, different methods for solving ordinary differential equations (ODE) problems is
presented. Some of the most common ones are mention in the introduction to section 2.2.
There are two types of problems: Nonstiff and stiff problems. The nonstiff problems are
often solved with explicit methods, while stiff problems are solved with implicit methods.

Stiff ODE Problems

Stiff systems are systems with a large spread in eigenvalues of the Jacobian. When using
an explicit method the time-step must be selected to ensure stability. To compute the dy-
namics corresponding to the small eigenvalues, a large amount of time steps are required.
This will in turn have a negative impact on both simulation time and accuracy. In order
to increase accuracy and decrease simulation time when dealing with stiff systems, other
methods should be used, for instance the implicit Runge-Kutta (Egeland and Gravdahl,
2002; Ashino et al., 2000). Solvers that are made for stiff ODE problems are ode15s,
ode23s and ode23t (Leer, 2016).

Nonstiff ODE Problems

Nonstiff ODE problems are problems when the components evolves simultaneously on
the same time scale and that there is a small spread in eigenvalues of the Jacobian. Ex-
plicit methods are used for solving nonstiff ODE problems (Egeland and Gravdahl, 2002;
MatlabWorks, 2016a). There are three solvers that are made for nonstiff ODE problems:
ode45, ode23 and ode113. However, ode15s and ode23s can also be used for solving
nonstiff ODE problems (Ashino et al., 2000).

2.2.3 Explicit Runge-Kutta

The explicit Runge-Kutta method is an extended version of the Euler’s method. The
Euler method is of order p = 1, and the modified Euler method is of order p = 2.
These methods compute yn+1 as a linear combination of f(yn, tn) and the approxima-
tion f [y(tn + ch), tn + ch], 0 < c ≤ 1 (Egeland and Gravdahl, 2002; Leer, 2016).

The explicit Runge-Kutta method is extended to higher order (p > 2) from Euler and
the modified Euler method. By extending to a higher order there are more approximations
of f over the interval that needs to be computed. Then by using a linear combination of
these approximations yn+1 can be computed (Egeland and Gravdahl, 2002; Leer, 2016).

Numerical Scheme

The explicit Runge-Kutta with σ stages for the system

ẏ = f(y, t) (2.1)

7

Chapter 2. Basic Theory

is given by

ki = f(yn + h

i−1∑
j=1

aijkj , tn + cih), i = 1, . . . , σ (2.2)

yn+1 = yn + h

σ∑
j=1

bjkj (2.3)

Stability Function

The stability function is

RE(hλ) = det
[
I− λh

(
A− 1bT

)]
(2.4)

and is derived in (Egeland and Gravdahl, 2002). The stability function shows that

1. |RE(hλ)| will go towards infinity as |λ| goes to infinity

2. RE(hλ) is a polynomial in hλ with order ≤ σ

(Leer, 2016).

Parameters

The parameters aij , bi and ci can be represented in a butcher array:

0
c2 a21
c3 a31 a32
...

...
...

. . .
cσ aσ1 aσ2 . . . aσ,σ−1

b1 b2 . . . bσ−1 bσ

Table 2.1: Representation of the parameters aij , bi and ci in the explicit Runge-Kutta method in a
Butcher array.

The representation in table 2.1 can also be represented as a matrix, A, and as vectors,
b and c.

A =


0 0 . . . 0 0
a21 0 . . . 0 0
a31 a32 . . . 0 0

...
...

. . .
...

...
aσ1 aσ2 . . . aσ,σ−1 0

 , b =


b1
b2
b3
...
bσ

 , c =


0
c2
c3
...
cσ

 (2.5)

8

2.2 Simulation Methods

A only have nonzero elements below the diagonal, and it follows that

det(I− λhA) = 1 (2.6)

(Egeland and Gravdahl, 2002; Leer, 2016).

ode45

The ode45 simulation solver is based on the explicit Runge-Kutta method, Dormand-
Prince (4,5) pair method. ode45 is used as the auto setting when simulating, because
it performs well with many ODE problems (MatlabWorks, 2016b). This method solves
nonstiff ODE problems.

ode23

The Bogacki-Shampoine method is also known as ode23, is a variable-step explicit Runge-
Kutta method. In this method, yn+1 is computed with a third order method, and by com-
paring the result with an embedded second order method, the error estimate is found. Local
extrapolation is used in this method (Egeland and Gravdahl, 2002). The butcher array is
given in Table 2.2.

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

y 21
72

1
4

3
9

1
8

ŷ 2
9

1
3

4
9

∆e − 5
72

1
12

1
9 − 1

8

Table 2.2: Representation of the Bogacki-Shampine method in a Butcher array.

2.2.4 Implicit Runge-Kutta

Numerical Scheme

The implicit Runge-Kutta with σ stages for the system

ẏ = f(y, t) (2.7)

9

Chapter 2. Basic Theory

is given by

ki = f(yn + h(a11k1 + . . .+ a1σkσ), tn + c1h) (2.8)
...

kσ = f(yn + h(aσ1k1 + . . .+ aσσkσ), tn + cσh) (2.9)
yn+1 = yn + h(b1k1 + . . .+ bσkσ) (2.10)

(Egeland and Gravdahl, 2002).

Stability Function

There are two alternative stability expressions for the implicit Runge-Kutta method

R(hλ) =
[
1 + λhbT (I− hλA)

−1
1
]

(2.11)

R(hλ) =
det
[
I− λh

(
A− 1bT

)]
det (I− λhA)

(2.12)

(Egeland and Gravdahl, 2002; Leer, 2016).

ode15s

The ode15s is based on the implicit Runge-Kutta method, and is a stiff ODE solver, which
can also be used to solve nonstiff ODE problems. If nonstiff solvers like ode45, ode23
or ode113 are slow in terms of compute time, this is usually the first stiff solver to try
(Shampine and Reichelt, 1997; MatlabWorks, 2016b).

2.2.5 Rosenbrock Methods

Numerical Scheme

A Rosenbrock method with σ stages for the system

ẏ = f(y, t) (2.13)

is given by

ki = f(yn + h

i−1∑
j=1

aijkj , tn + cih) + hJ

i∑
j=1

ρijkj + ρihḟ(yn, tn) (2.14)

i = 1, . . . , σ

yn+1 = yn + h

σ∑
j=1

bjkj (2.15)

10

2.2 Simulation Methods

where J is the Jacobian (J = ∂f(yn, tn)/∂y), the interpolation constants satisfy ci
i−1∑
j=1

aij ,

and

ρi =

i∑
j=1

ρij (2.16)

(Egeland and Gravdahl, 2002). The Jacobian, J, and the interpolation constant are the
same for the Rosenbrock method and the Runge-Kutta method (Leer, 2016).

Definition of the Rosenbrock method

First term on the right side of the stage computations (equation 2.14) has the same form
as the stage in an explicit Runge-Kutta (equation 2.2). To make the method implicit a
linearized term is added to the stage. In an implicit Runge-Kutta method each time step is
required a Newton search to compute the stages. The stage computations in a Rosenbrock
method can be performed without iterations according to the formula

Viki = f(yn + h

i−1∑
j=1

aijkj , tn + cih) + hJ

i−1∑
j=1

ρijkj + ρjhḟ(yn, tn) (2.17)

where
Vi = I− hρijJ (2.18)

is a nonsingular matrix for a sufficiently small time step h (Egeland and Gravdahl, 2002;
Leer, 2016).

2.2.6 Modified Second Order Rosenbrock Method
A second order modified Rosenbrock method is given by

Vk1 = f(yn, tn) + hρḟ(yn, tn)

Vk2 = f(yn, tn) + f(yn +
h

2
k1, tn +

h

2
)− k1 + hρḟ(yn, tn)

yn+1 = yn + kk2

V = I− hρJ, ρ =
1

2 +
√

2

(2.19)

with step size control using a FSAL (First Same As Last) computation

Vk3 = 2f(yn, tn) + (6 +
√

2)f(yn +
h

2
k1, tn +

h

2
) + f(yn+1, tn+1)

− 2k1 − (6 +
√

2)k2 + hρḟ(yn, tn)

error =
h

6
(k1 − 2k2 + k3).

(2.20)

The modified Rosenbrock method is quite similar to the Rosenbrock method, except for
the computation of the second stage has a term of type −k1 instead of hJρijk1 (Egeland
and Gravdahl, 2002; Leer, 2016).

11

Chapter 2. Basic Theory

ode23s

The ode23s solver is based on the modified Rosenbrock method. Some stiff problems can
be inefficient or difficult to solve using ode15s. The next solver one tries is often ode23s
(Shampine and Reichelt, 1997; MatlabWorks, 2016b).

2.2.7 Trapezoidal Rule

Numerical Scheme

Have the implicit Runge-Kutta method

k1 = f(yn, tn) (2.21)

k2 = f

[
yn +

h

2
(k1 + k2), tn + h

]
(2.22)

yn+1 = yn +
h

2
(k1 + k2) (2.23)

Equation 2.23 revealed that
k2 = f(yn+1, tn+1) (2.24)

This means that the last row in A is equal to bT . Then, yn+1 can be rewritten and becomes
what is known as the trapezoidal rule

yn+1 = yn +
h

2
[f(yn, tn) + f(yn+1, tn+1)] (2.25)

(Egeland and Gravdahl, 2002).

Stability Function

From equation 2.25 and a test function

yn+1 = yn +
hλ

2
(yn + yn+1) (2.26)

which gives the stability function

R(λh) =
1 + hλ

2

1− hλ
2

(2.27)

(Egeland and Gravdahl, 2002; Leer, 2016).

ode23t

The ode23t is based on the trapezoidal rule, and it is a stiff ODE problem solver (Shampine
and Reichelt, 1997).

12

2.2 Simulation Methods

2.2.8 Adams-Bashforth-Moulton Method
The ode113 solver is a PECE (predict-evaluate-correct-evaluate) implementation of Adams-
Bashforth-Moulton method. This method originally comes from combining two methods,
Adams-Bashforth and Adams-Moulton method (Shampine and Gordon, 1975).

Adams-Bashforth Method

The method is also known as the explicit Adams method, and has the equation

y(tn+1) = y(tn) +

tn+1∫
tn

f(y(t), t)dt (2.28)

as a starting point. The algorithm for the explicit Adams method becomes

yn+1 = yn + hfn

yn+1 = yn + h

(
3

2
fn −

1

2
fn−1

)
yn+1 = yn + h

(
23

12
fn −

4

3
fn−1 +

5

12
fn−2

)
yn+1 = yn + h

(
55

24
fn −

59

24
fn−1 +

37

24
fn−2 −

9

24
fn−3

)
(2.29)

by using the expression for the backwards difference operator (Egeland and Gravdahl,
2002; Kreyszig, 2010).

Adams-Moulton Method

The Adams-Moulton method is known as the implicit Adams method. The numerical
algorithm

yn+1 = yn + hfn+1

yn+1 = yn + h

(
1

2
fn+1 +

1

2
fn

)
yn+1 = yn + h

(
5

12
fn+1 +

8

12
fn−1 −

1

12
fn−1

)
yn+1 = yn + h

(
9

24
fn+1 +

19

24
fn −

5

24
fn−1 +

1

24
fn−2

)
(2.30)

(Egeland and Gravdahl, 2002; Kreyszig, 2010).

Adams-Bashforth-Moulton Method

The Adams-Bashforth-Moulton PECE formulas of order k will refer to the Adams-Bashforth
predictor of order k and the Adams-Moulton corrector of order k + 1 (Shampine and

13

Chapter 2. Basic Theory

Gordon, 1975). Here, the implicit Adams method is based on computing a predictor,
ŷn+1, with the explicit Adams method. Using f̂n+1 := f (tn+1,ŷn+1), gives the PECE
method, also known as the Adams-Bashforth-Moulton method (Egeland and Gravdahl,
2002; Shampine and Gordon, 1975; Kreyszig, 2010).

ode113

The ode113 solver is based on the Adams-Bashforth-Moulton method, and is a nonstiff
ODE problem solver (Shampine and Reichelt, 1997; Shampine and Gordon, 1975).

2.3 Mathematical Analysing Tools

When performing different experiments with simulation, it is important to determine the
performance of each simulation. This can be done by using simple mathematical expres-
sions to find bias, relative tolerance and rate of convergence for the estimated values. These
expressions will be described mathematically in this section. Before this, some terms must
be explained in advanced. In (Walpole et al., 1993):

”A population consists of the totality of the observations with which we are
concerned.”
”A sample is a subset of a population.”

2.3.1 Mean

The numerical average, also known as mean, gives an average over the observations in a
sample. The sample mean is given by

x̄ =

n∑
i=1

xi
n

=
x1 + x2 + · · ·+ xn

n
(2.31)

(Walpole et al., 1993).

2.3.2 Bias

A bias is when a procedure produces inferences that overestimates or underestimates from
the exact or value (Walpole et al., 1993). When estimating one value, the bias becomes

bias = x0 − x (2.32)

where x is the estimated value and x0 is the wanted result. Having a sample of estimated
values one can either compare each value in the sample with the real value

biasi =

n∑
i=1

x0 − xi i = 1, . . . , n (2.33)

14

2.4 Transfer Functions

or take the mean over the sample and compare it with the real value

bias = x0 − x̄ =

n∑
i=1

xi
n

(2.34)

where biasi is the bias for each value xi in the sample for i = 1, . . . , n.
(Kreyszig, 2010).

2.3.3 Relative Tolerance
In (Kreyszig, 2010), the relative error is defined as

εr =
ε

a
=
a− ã
a

=
Error

True value
(2.35)

where a is the true value, ã is the estimated value, ε is the error and εr is the relative error.
The definition of relative tolerance is given by equation 2.35 multiplied with 100%

εrt = εr · 100% =
ε

a
· 100% (2.36)

2.3.4 Rate of Convergence
A sample can either converge or diverge. From (Kreyszig, 2010), the terms are defined as:

Convergence: A convergent sequence z1,z2,· · · is one that has a limit c, writ-
ten

lim
n→∞

zn = c or simply zn → c (2.37)

By definition of limit this means that for every ε ≥ 0 we can find an N such
that

|zn − c| ≤ ε for all n ≥ N ; (2.38)

geometrically, all terms zn with n ≥ N lie in an open disk of radius ε and
center c (complex sequence). For a real sequence, equation 2.38 gives an
open interval of length 2ε and real midpoint c on the real line.

Divergence: A divergent sequence is one that does not converge.

The rate of convergence is described as the time it takes for a sequence to converge.

2.4 Transfer Functions
In the field of cybernetics, it is often needed to describe physical system using mathemat-
ical models. These system can be effected by the surroundings. If this effect is wanted or
set, it is said to be the input, u. If not, it is described as noise, v. In (Balchen et al., 2003),
a transfer function is described as:

15

Chapter 2. Basic Theory

A transfer function describes the context between one input and one output.

A transfer function is often given as

h(s) =
pps

p + · · ·+ p1s+ p0
sn + αn−1 + · · ·+ α1s+ α0

=
pp(s− v1)(s− v2) · · · (s− vp)
(s− λ1)(s− λ2) · · · (s− λn)

(2.39)

h(s) =
α(s)

β(s)
(2.40)

where α, β are polynomials of s. α(s) is known as the characteristic polynomial. The roots
of the characteristic polynomial is known as the poles, while the roots of β are known as
zeros. In equation 2.39, λi are the poles. By analysing the placement of zeros and poles,
the properties of the system is revealed. When the parameters in the system changes, the
pole placement will change (Balchen et al., 2003). The transfer fuction of second order is
given by

h(s) =
K

(s
ω0

)2 + 2ξ s
ω0

+ 1
(2.41)

where K is the steady-state gain, ξ is the damping coefficient and the ω0 is the natural
frequency (Balchen et al., 2003).

16

Chapter 3
Atomic Force Microscopy

This chapter is a continuation of the work published in (Leer, 2016). Several sections have
been modified and subsection 3.2 was added.

The atomic force microscopy (AFM) is an imaging tool which can be used as a mechanism
for studying micro- and nanostructures for both living cells and cell organelles (Sokolov,
2007). This instrument allows us to study the mechanical properties of cells (Bao and
Suresh, 2003), and at the same time give the topography with high resolution and force
sensitivity (Kuznetsova et al., 2007). AFM originates from scanning probe microscopy
(SPM), and was invented and introduced in the 1980’s (Binnig et al., 1986). The first type
of SPM was the scanning tunneling microscopy (STM). The STM had some drawback, e.g
some scans required ultra-high resolution, and that the samples needed to be conductive,
which made the STM limited to investigate only metal and semiconductors. The AFM was
made without these drawbacks (Leer, 2016).

For engineers this instrument is especially interesting, since the surface image is entirely
dependent on the use of a feedback loop. Most AFMs use piezo-electric actuators, opti-
cal detection of cantilever deflection, and PI or PID control (Abramovitch et al., 2007).
Another interesting aspect with AFM is that it gives a 3D image of the surface by using
generated false colors for detecting height differences (Abramovitch et al., 2007; Leer,
2016).

Chapter 3 takes on the working principles of AFM and modes of operation. Section 3.2
goes more in depth of the cantilever on the AFM. Later in this thesis the dynamic in the
cantilever will be looked at. Section 3.3 looks at the problems/disadvantages of AFM, and
section 3.4 explains the biological advantages of using AFM (Leer, 2016).

17

Chapter 3. Atomic Force Microscopy

Figure 3.1: A simple AFM setup with the optical lever method.

3.1 Operations
The AFM consists of components seen in figure 3.1. The probe connected to the can-
tilever is scanned across the sample surface and gives an interaction force between the tip
and the sample. The deflection in the cantilever can be measured and monitored by differ-
ent types of methods, but the most popular and simplest to implement is the optical lever
method (figure 3.1) (Cappella and Dietler, 1999). In the setup shown in figure 3.1, a laser
is attached above the cantilever to make the light reflect, and is then detected by a photo
detector (Sokolov, 2007).

A typical approach for moving the tip across the sample is to use a piezo actuator. This
makes the sample move in x-, y- and z-direction. Alternatively, the sample is moved in the
xy-plane by maneuvering an area beneath the sample. The z-axis is controlled by moving
the cantilever up and down (oscillation). (Abramovitch et al., 2007; Iversen, 2015; Leer,
2016).

3.1.1 Modes of Operation
There are three main imaging modes; contact, tapping and non-contact mode. These can
be divided into static and dynamic mode (Abramovitch et al., 2007). In the three main
imaging modes, there is a feedback loop designed to hold a constant z-actuator. The feed-

18

3.2 Cantilever Dynamics

back loop gives the z-axis position and a topographic map can be created (Abramovitch
et al., 2007).

Contact Mode (static)

The tip is ”dragged” across the sample surface, where the cantilever deflection is kept
constant by using a feedback loop. Therefore the force between the sample and probe is
constant, and from this one can obtain an image of the surface. The downside of this mode
is that friction induced by the feedback loop can scratch the sample, thus destroying it. The
upside is that it is simple and allows fast scanning (Wilson and Bullen, n.d; Leer, 2016).

Tapping Mode (dynamic)

The cantilever oscillates above the sample and taps it in very small periods. The oscil-
lation frequency is equal to, or somewhere near the resonance of the cantilever. When
the tip touches the sample, the oscillation amplitude changes depending on the tip-sample
distance (Iversen, 2015). To avoid this, a feedback loop is used to keep the amplitude con-
stant, which keeps a constant tip-sample interaction. With that information it is possible
to make a surface image. Since the tapping mode depends on slower amplitude estimates,
it is slower than contact mode. On the upside, it is preferable for soft biological samples
as it has a low friction rate, thereby decreasing the chances of destroying the sample due
to friction (Wilson and Bullen, n.d; Leer, 2016).

Non-Contact Mode (dynamic)

The probe oscillates above the sample surface, but do not come in contact with the sample.
The topography can be measured by using a feedback loop to monitor changes in the
amplitude due to attractive forces (Abramovitch et al., 2007). Disadvantages of this mode
is that it generally provides lower resolution than tapping mode, and it gives best results
in vacuum. This mode is the best of the three when it comes to avoiding damage on the
probe and sample (Wilson and Bullen, n.d; Leer, 2016).

3.2 Cantilever Dynamics
The cantilever is often made out of silicon or silicon nitride with a microfabricated tip.
The shape of the tip is often rectangular or ”V”-shaped with a metallic thin layer on the
back. The layer is often gold and improve the reflectivity, especially in liquid where the
silicon nitride reflection is reduced (Cappella and Dietler, 1999).

As mention in section 3.1, the most common method to detect cantilever deflection is
the optical lever method. Two other common deflection methods are the interferometric
method and the electronic tunneling method (Cappella and Dietler, 1999).

The tip-sample force, F , is given by Hooke’s law:

F = −kcδc (3.1)

19

Chapter 3. Atomic Force Microscopy

where kc is the cantilever spring constant and the δc is the cantilever deflection. The actual
tip-sample distance, D, is related to the cantilever deflection, sample deflection and the
distance between the sample surface and rest position of the cantilever, Z:

D = Z − (δc + δs) (3.2)

The relationship in equation 3.2 is given in figure 3.2 (Cappella and Dietler, 1999). The

Figure 3.2: The tip sample distance given by equation 3.2.

main problem is to establish the cantilever spring constant, kc. How the problem is solved
depends on the shape and material of the cantilever (Hutter and Bechhoefer, 1993). How-
ever, for a rectangular shaped tip, kc is equal to

kc =
Et3cw

4L3
(3.3)

and for a ”V”-shaped tip, kc is equal to

kc =
Et3cWb

2b(L3
1 − L3

2) + 6WL3
2

(3.4)

where tc is the thickness and E is the Young modulus (Butt et al., 2005; Sader et al., 1999;
Cappella and Dietler, 1999; Tortonese, 1997). The rest of the parameters in equation 3.3
and equation 3.4 are given in figure 15 in (Cappella and Dietler, 1999).

3.3 Problems with Atomic Force Microscopy Control
Some problems have been identified for the use and control AFM. Firstly, there is an issue
when it comes to exchanging the cantilevers and tips, because the system then needs to be

20

3.4 Biological Advantages

readjusted each time (Abramovitch et al., 2007). Secondly, it requires a lot of adjustment
when there is a new measurement, sample or new cantilever/tip. Calibrations need to be
done often, since the height measurements have to be estimated for each image. Thirdly,
it can be a time consuming operation, ranging from under a minute and up to an hour
(Abramovitch et al., 2007; Leer, 2016).

3.3.1 Improvement of AFM
To increase the performance, one or more of the loop components need improvement. One
can either re-design one of the individual components, implement a better controller, or
both (Abramovitch et al., 2007; Leer, 2016).

3.4 Biological Advantages
There is a huge advantage in using AFM when studying biological cells. The reason for
this is that there is not so many restrictions when using AFM as to Scanning Probe Mi-
croscopy (SPM). When using AFM you are able to study the biological object directly in
their natural conditions, in vitro, if not in vivo (see 2.1.2), in air, in water, buffers, and
other ambient media. Also, there are as good as no sample preparations, except for the
attachment of sample to surface, temperature of the solution/sample have literally nothing
to say, as well as chemical composition or medium type (non-aqueous or aqueous liquid).
The only limitation of importance is that the medium should be transparent for the laser
light that is used for detection (Leer, 2016).

When scanning the sample it is possible to get resolution up to nanometer precision
(molecular), and vertical resolution up to 0.01 nanometer, but this is decided by the AFMs
detection sensitivity and the noise from the environment. It provides a topographic 3D im-
age, and it is possible to measure different biophysical properties like elasticity, adhesion,
hardness, friction, etc. (Sokolov, 2007; Leer, 2016).

21

Chapter 3. Atomic Force Microscopy

22

Chapter 4
Parameter Estimation

This chapter is a continuation of the work published in (Leer, 2016). Several sections have
been modified and added.

In (Leer, 2016), the system from (Ragazzon et al., 2016) was used, except that the pa-
rameter estimator was changed. (Ragazzon et al., 2016) used the least-square method with
forgetting factor, while the gradient method with instantaneous cost was used in (Leer,
2016). Both are on-line parameter estimation methods, using adaptive laws with nor-
malization. In on-line parameter estimation, the structure of the plant is known, but the
parameters can be unknown and changing with time. Since the parameters are unknown
or changing, it is important to use an estimation scheme that provide frequent estimates of
the parameters (Ioannou and Sun, 2012).

The essential idea of on-line estimation is comparison of the observed system response
y(t) and the output of a parametrized model ŵ(θ, t). ŵ(θ, t) has the same structure as the
plant model, w(t). The parameter vector, θ(t), is adjusted continuously so that ŵ(θ, t)
approaches w(t) as t increases. With some special input conditions, ŵ(θ, t) will approach
and be close to w(t), which means that θ is close to the unknown parameter vector θ∗ of
the plant model (Ioannou and Sun, 2012).

Adaptive laws with normalization are developed because the plant does not have to be
stable or for the plant input to be bounded a priori. The stability and boundedness of these
plants are properties that have to be proven (Ioannou and Sun, 2012).

The on-line parameter estimation procedure has three steps:

1. Select an appropriate parametrization of the plant model.

2. Decide on an adaptive law for generating or updating θ(t). The adaptive law is often
a differential equation whose state is θ(t) and is designed using stability consider-
ations or simple optimization techniques to minimize the difference between w(t)

23

Chapter 4. Parameter Estimation

and ŵ(θ, t) with respect to θ(t)at each time t.

3. Design of the plant input so that the properties of the adaptive law imply that θ(t)
approaches the unknown plant parameter vector θ∗ as t −→∞.

This chapter is a continuation of the work published in (Leer, 2016). Several sections have
been modified and section 4.2 I added.

Figure 4.1: An overview of the system in a block diagram.

To be able to understand some of the properties in the methods described below, the term
persistence of excitation (PE) will be described as in definition 4.3.1 in (Ioannou and Sun,
2012):

A piecewise continuous signal vector φ: R+ 7→ Rn is PE in Rn with a level
of excitation α0 > 0 if there exist constants α0,T0>0 such that

α1I ≥
1

T0

t+T0∫
t

φ(τ)φT (τ)dτ ≥ α0I, ∀t ≥ 0 (4.1)

24

4.1 Gradient Method

4.1 Gradient Method
The gradient method is an on-line parameter estimation using adaptive laws with nor-
malization. The first adaptive laws using the gradient or steepest descent method were
introduced in the early 1960s. In that period, there was a lack of stability and the scheme
have been changed to increase stability properties (Ioannou and Sun, 2012; Leer, 2016).

4.1.1 Method
Within on-line parameter estimation there are adaptive laws with normalization, and for
developing an adaptive law for estimating θ∗ in the parametric model

w = W (s)θ∗Tψ (4.2)

both the gradient method and a cost function is used. The first thing one must do, is
developing an algebraic estimation error equation. The error equation influence on the
selection of cost function J(θ) which has to be convex over the space of θ(t), the estimate
of θ∗ at time t, for each time t. Then the gradient method is used to minimize J(θ) with
respect to θ(t) for each time t (Ioannou and Sun, 2012; Leer, 2016).

Gradient Method

The gradient method is also known as the method of steepest descent and solves the un-
constrained minimization problem

minimize J(θ)

subject to θ ∈ <n.
(4.3)

The process of this method is an initial approximation, θ0, for the minimum θ∗ to suc-
cessive points θ1, θ2, . . . in <n in an iterative manner until some stopping condition is
satisfied (Ioannou and Sun, 2012). This is done by a linear search in direction, dk, which
is given by

dk = −∇J(θk) (4.4)

where θk is the current point and dk is the direction from θk in which the initial rate of
decrease of J(θ) is greatest. The sequence of {θk} is defined by

θk+1 = θk + λkdk = θk − λk∇J(θk), (k = 0, 1, 2, . . .) (4.5)

where θ0 is given and λk is known as the is step size or step length. Setting λk = λ∀k for
a simpler expression, but still obtaining θk+1 from equation 4.5

θk+1 = θk − λ∇J(θk). (4.6)

The step length of λ is a compromise between accuracy and efficiency. Equation 4.6 can
be converted into a continuous-time differential equation when assuming infinitesimally
small step length,

θ̇ = −∇J(θ(t)), θ(t0) = θ0. (4.7)

25

Chapter 4. Parameter Estimation

The solution to equation 4.7, θ(t), is the descent path in the time domain starting at t = t0.

By using a constant positive definite matrix Γ = ΓT , the direction of the steepest descent
d = −∇J can be scaled. By using a n× n nonsingular matrix Γ1, so that Γ = Γ1ΓT1 , and
a vector θ̄ ∈ <n given by

Γ1θ̄ = θ. (4.8)

The minimization problem from equation 4.3 becomes

minimize J̄(θ̄) , J(Γ1θ̄)

subject to θ̄ ∈ <n
(4.9)

If θ̄∗ is a minimum of J̄ , the vector θ∗ = Γ1θ̄
∗ is a minimum of J (Ioannou and Sun,

2012; Leer, 2016). The steepest descent for the minimization problem (equation 4.9) is
then given by

θ̄k+1 = θk − λ∇J̄(θ̄k) (4.10)

which can be written as
θk+1 = θk − λΓ1ΓT1∇J(θk) (4.11)

since

∇J̄(θ̄) =
∂J(Γ1θ̄)

∂θ̄
= ΓT1∇J(θ), Γ1θ̄ = θ

and to obtain the scaled version of the steepest descent algorithm, Γ = Γ1ΓT1

θk+1 = θk − λΓ∇J(θk) (4.12)

which can be written in continuous-time as

θ̇ = −Γ∇J(θ) (4.13)

(Ioannou and Sun, 2012; Leer, 2016).

Estimation Error

Now that J(θ) is minimized with respect to θ by using the gradient method, the next step
is to develop the estimation error. The parametric model (equation 4.2) can be written on
the form

w = θ∗Tφ (4.14)

since θ∗ is constant, and where φ = W (s)ψ. By using equation 4.14 the estimate ŵ of w
is generated at time t as

ŵ = θTφ (4.15)

where θ(t) is the estimate of θ∗ at time t. With this at hand the normalized estimation error
ε is developed as

ε =
w − ŵ
m2

=
w − θTφ
m2

(4.16)

where m2 = 1 + n2s and n2s is the normalizing signal designed so that

φ

m
∈ L∞ (4.17)

(Ioannou and Sun, 2012; Leer, 2016).

26

4.2 Least-Squares

Instantaneous Cost Function

The instantaneous cost function is a simple quadratic function given by

J(θ) =
ε2m2

2
=

(w − θTφ)2

2m2
. (4.18)

From equation 4.13 the minimization of J(θ) is generated, and the only unknown part of
this equation is the term ∇J(θ), because Γ = ΓT > 0 is referred to as the adaptive gain
and scaling matrix

∇J(θ) = − (w − θTφ)φ

m2
= −εφ (4.19)

then the adaptive law for generating θ(t) is given by

θ̇ = Γεφ (4.20)

which is referred to as the gradient algorithm (Ioannou and Sun, 2012; Leer, 2016).

4.1.2 Parameter Estimator
The method described in section 4.1.1 gives every equation that is needed to make an on-
line parameter estimator using the gradient method with instantaneous cost for the system
4.37−4.40. For simplicity, the equations needed will be repeated below

ŵ = θTφ (4.21)

ε =
w − ŵ
m2

(4.22)

θ̇ = Γεφ (4.23)

m2 = 1 + n2s = 1 + αφTφ (4.24)

θ is the parameter estimate vector, and α, Γ are positive constants. Theorem 4.3.2 in
(Ioannou and Sun, 2012) gives independence of the boundedness of the signal vector φ
and φ is persistently exciting (PE), so that θ(t) converges exponentially to θ∗. Proof is
found in (Ioannou and Sun, 2012; Leer, 2016).

4.2 Least-Squares
This old method can be dated back to the eighteenth century where Gauss used it to deter-
mine the orbit of the plants. Along with the gradient method (see section 4.1), the least-
squares are an on-line parameter estimation and the adaptive laws are developed using
normalization (Ioannou and Sun, 2012). The basic idea of the least-squares are described
in (Ioannou and Sun, 2012) as:

”Fitting a mathematical model to a sequence of observed data by minimizing
the sum of the squares of the difference between the observed and computed
data. In doing so, any noise or inaccuracies in the observed data are expected
to have less effect on the accuracy of the mathematical model.”

27

Chapter 4. Parameter Estimation

The unknown parameters in this method are given in a linear form, which makes it easy
to apply and analyze. This apply that the parametric model is linear and is given in equa-
tion 4.14.

This method have the estimate ŵ of w and the normalized estimation error

ŵ = θTφ, ε =
w − ŵ
m2

=
w − θTφ
m2

(4.25)

which is generated the same way as in section 4.1, and where m2 = 1 + n2s, θ(t) is
the estimate of θ∗ at time t, and m satisfies φ/m ∈ L∞. The equations known as the
continuous-time recursive least-squares algorithm with forgetting factor

Ṗ = βP − P φφ
T

m2
P, P (0) = P0 = Q−10 (4.26)

θ̇ = Pεφ (4.27)

where P is the covariance matrix, β is a positive constant, ε,m2 defined above and φ is the
signal vector. The derivations of equations 4.26-4.27 can be found in (Ioannou and Sun,
2012). The stability properties to the least-squares algorithm depends on the value of β,
which is known as the forgetting factor in equation 4.26.

In section 4.3, the method used is the least-squares with forgetting factor, but it is also
PE. The stability properties is described in (Ioannou and Sun, 2012) as:

Corollary 4.3.2 If ns, φ ∈ L∞ and φ is PE then the recursive least-squares
algorithm with forgetting factor β > 0 given by (4.26) and (4.27) guarantees
that P , P−1 ∈ L∞ and that θ(t) converges exponentially to θ∗.

This method is appropriate when the main objective is parameter estimation of stable
plants with parameter convergence (Ioannou and Sun, 2012).

4.3 Base Model
In this thesis, the model from (Ragazzon et al., 2016) will be used as a base. The model
consists of cantilever-sample dynamics and a parameter estimator (figure 4.1). The cell
model consists of springs and dampers, and the goal is to get a good estimate which mimics
that of a real biological cell and its mechanics. Most of this section can be found in
(Ragazzon et al., 2016).

4.3.1 Cantilever-Sample Dynamics
The cantilever-sample dynamics consists of three parts; cantilever dynamics, tip geometry
and sample force. These parts are supposed to provide a dynamical description of a can-
tilever interaction with a general viscoelastic sample material (Ragazzon et al., 2016).

Figure 4.2 shows that the best way to measure is when the position of the tip of the AFM is

28

4.3 Base Model

given in the coordinate system (x,y,z). As mentioned earlier, the model consists of spring-
damper elements in the xy-axis. These elements can be compressed in z-direction, which
gives a coordinate system of (x,y,z). Fig.2 in (Ragazzon et al., 2016) describes the inter-
action between the cantilever and the cell. From the description, the vertical Z position is
given by the cantilever deflection, D, and the cantilever base position, U.

Z = U −D. (4.28)

Figure 4.2: Biological cell modeled by spring-damper elements from (Ragazzon et al., 2016).

Cantilever Dynamics

The cantilever dynamics is a spring-damper system, and is approximated from its first
resonance mode.

MZ̈ = KD + CḊ + Fsample

= K(U − Z) + C(U̇ − Ż) + Fsample
(4.29)

where M is the effective mass of the cantilever, K is the cantilever spring constant, C is
the cantilever damper constant, and Fsample is the force from the sample acting on the
cantilever (Ragazzon et al., 2016).

29

Chapter 4. Parameter Estimation

Tip Geometry

From equation 4.28 the cantilever tips position determines the deflection and the motion
of each individual spring element. The tip has a spherical shape with radius R. This gives
a relationship between the tip and the ith sample elements position, zi, and the velocity,
żi, (Ragazzon et al., 2016).

zi = Z −
√
R2 − (X − xi)2 − (Y − yi)2 (4.30)

żi = Ż (4.31)

where Ẋ , Ẏ is assumed to be zero when the tip is in contact with the sample, and (ẋi,ẏi)
is the lateral position of the ith sample element (Ragazzon et al., 2016).

Sample Force

There is a rest position, z0i , for the ith spring-damper element and this represents the
sample topography at the given lateral position (xi,yi). zi from equation 4.30 gives the new
position when the cantilever tip is pressed onto the sample and compresses the elements.
The force generated by this is according to Hooke’s law

Fki = kiz̄i (4.32)

where ki is the spring constant of the ith element, and

z̄i , zi − z0i (4.33)

is the deflection of the ith sample element (Ragazzon et al., 2016). The same goes for the
damping force

Fci = ciżi (4.34)

where ci is the damping constant. By combining equation 4.32 and 4.34 the total force
acting from the sample on the tip is given as

Fsample =
∑
i∈W

Fki + Fci (4.35)

where W = W (X,Y, Z) (Ragazzon et al., 2016), which is the active set of sample ele-
ments on which the tip is in contact with

W = {i : z̄i < 0 ∧ (X − xi)2 + (Y − yi)2 < R2} (4.36)

(Ragazzon et al., 2016).

Parametric System Model

Have the system on the form
w = θ∗Tφ (4.37)

30

4.3 Base Model

where w is the signal scalar, θ∗ = [cj , kj]T is parameter vector and φ is the signal vector.
From (Ragazzon et al., 2016) the system has the form

w =
1

Λ(s)

[
(Cs+K)u− (Ms2 + Cs+K)d

]
(4.38)

φ =

[
sz̄

Λ(s)
,
z̄

Λ(s)

]
(4.39)

θ = [cj , kj]
T (4.40)

with the adaptive law given in equations 4.26-4.27, and repeated below

θ̇ = Pεφ

Ṗ =

{
βP − P φφT

m2 P, if ‖P (t)‖ ≤ R0

0, otherwise

P (0) = P0

(4.41)

(Ragazzon et al., 2016).

Method Properties

The least-square with forgetting factor have the same properties as the pure least-square
with covariance resetting given by theorem 4.3.5 from (Ioannou and Sun, 2012). The
theorem is given below for simplicity

(i) ε, εns, θ, θ̇ ∈ L∞.

(ii) ε, εns, θ̇ ∈ L2.

(iii) If ns, φ ∈ L∞ and φ is PE then θ(t) converges exponentially to θ∗.

The properties for equation 4.41 given by theorem 4.3.5 from (Ioannou and Sun, 2012),
are similar for those of the gradient method with instantaneous cost in subsection 4.1.2
(Ragazzon et al., 2016).

31

Chapter 4. Parameter Estimation

32

Chapter 5
Parallel Computing

In parallel computing, a problem is solved by using multiple compute nodes. The given
problem is broken into discrete parts which can be solved concurrently. These parts are
then transformed into a series of instructions that can be executed independently on dif-
ferent compute nodes. This differs from serial computing, where a problem is broken into
discrete series of instructions. These instructions are sequentially executed, and there can
only be one instruction executed at a given moment of time. Also, they are executed on a
single CPU (central processing unit) (Barney et al., 2010).

Solving complex problems tend to be time consuming. By carefully dividing the prob-
lem into smaller parts, these parts can be executed in parallel on several compute nodes,
taking advantage of often highly specialized hardware (internal network, storage capabili-
ties and high speed computing power). Different parts of the problem can even be solved
with different problem solvers (Barney et al., 2010).

Parallel computing really shines when it comes to calculating complex systems, i.e. weather
systems, orbital movements, particle collisions, DNA sequencing etc. Theses type of ma-
chines are expensive and therefore mostly used in science, engineering and large scale
industrial and commercial companies (Barney et al., 2010).

5.1 Vilje
Vilje is a HPC (High-Performance Computing) computer procured by NTNU together
with met.no and UNINETT Sigma. It is used for different purposes: numerical weather
prediction, research, master thesis, etc. The name Vilje comes from Vilje or Vili, which
is the brother of Odin from Norse Mythology (NOTUR, 2016). Vilje is a computer with
1404 nodes, where every node has 2 eight core CPU and 32 GB RAM.

In (Leer, 2016), the simulation time was high, ending with Matlab crashing due to local
storage exhaustion when the simulation ran for too long. By using Vilje with it’s paral-

33

Chapter 5. Parallel Computing

lel computing abilities this is no longer be a problem. Also, it is possible to run several
simulations in parallel.

Figure 5.1: The HPC Vilje at NTNU.

Figure 5.2: Vilje at NTNU.

5.1.1 Matlab on Vilje
When using parallel computing with Matlab, the problem was not that the code needed
to be changed, but to make it usable on Vilje. In order to run Matlab programs on Vilje,
several changes to the original code has been made.

Several problems relating to different versions of Matlab on Vilje occurred. The Mat-
lab version R2014a is the most stable version to run on Vilje. However, several models
and scripts for the Simulink model were written in Matlab version R2015a, thus will not
run on in Vilje’s Matlab environment due to non working backward compatibility. In or-
der to fix this, Matlab version R2016a was installed on Vilje. However, too many errors
were encountered, forcing the team to uninstall the version. Therefore, one had to wait for
version R2016b to come out before running the program with parallel computing. Still,
there were problems running the simulation on Vilje. So, a quick fix was made for using
the new version R2016b. By running a Matlab program that displayed ”donothing” first, it
worked.

34

5.1 Vilje

5.1.2 Running a Program on Vilje
A bash script was used to initiate simulation runs on Vilje. The following commands had
to be included in the start of the bash script

Listing 5.1: Basic needed commands

1 #!/bin/bash
2 #
3 #PBS -N jobname
4 #PBS -A accountname
5 #PBS -l select=1:ncpus=32:ompthreads=16
6 #PBS -l walltime=01:00:00
7 #PBS -q workq
8 #
9 cd $PBS_O_WORKDIR

In the code 5.1, all the commands are basic features that is needed to run a program on
Vilje. These commands represent the job name, which account is running the program, a
message to the queue system (PBS), maximum run time before the job is shut down and
that it will be added to the queue.

Listing 5.2: Commands when using Matlab

1 #Basic needed commands
2 module load matlab/R2016b
3
4 matlab -nodisplay -nosplash -r matlabFile

Code listing 5.2 shows the commands needed to load the Matlab program onto Vilje, as
well as a description of what Matlab file to run (”ViljeJob.m” in appendix B). The simu-
lation could then be started by running the bash script through terminal access using the
qsub command, as shown in listing 5.3.

Listing 5.3: Run Program From Command Line

1 qsub filename.sh

5.1.3 Challenges with Vilje
There have been some challenges with using Vilje. In the beginning, the main problem
was to make the code usable on Vilje. Vilje do not support GUI (graphical user interface),
which means that every part of the code containing any form of GUI had to be removed. In
this process, another problem was discovered. The Matlab version which the simulations
run on differs from the most stable version to run on Vilje. The Matlab version problem
was described in detail in subsection 5.1.1.

In theory, there is possible to run up to twenty jobs on Vilje at the same time, but when
dealing with programs that requires a large amount of storage it is important not to use up

35

Chapter 5. Parallel Computing

the assigned storage per user. Due to possible storage problems, the maximum number of
jobs was set to seven.

Before the quick fix (described in subsection 5.1.1), there was a period of time where
it was not possible to use Vilje, due to Matlab version problems. However, after the quick
fix was introduced, there were no problems running simulations on Vilje.

In November, there was an internal error on Vilje and large update that made it unable
to use Vilje in these periods.

5.2 Ways to Analyse the Results When Using Parallel Com-
puting

When using parallel computing, several jobs are started simultaneously. This means that
there will be multiple results, and these results need to be analysed. Therefore, some
method(s) need be to used to determine the quality of these results. Three methods were
chosen, bias, relative tolerance and the rate of convergence. The theory till these methods
can be found in subsections 2.3.2-2.3.4.

8.2 8.3 8.4 8.5
5

6

7

ĉ

×10-7

1

1.5

2

k̂

×10-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10-7

Horizontal lines

shows the

convergeation

threshold

Midpoint

Figure 5.3: Shows how the analysing tools is defined in section 5.2.

36

5.2 Ways to Analyse the Results When Using Parallel Computing

5.2.1 Bias
When implementing a procedure based on the theory presented in subsection 2.3.2 in
Matlab, some assumptions were made. Firstly, the bias is found by taking the mean over
a estimated sequence. Secondly, when looking at figure 5.3, there are four time intervals
defining the real values at the displayed time period. The sequences will be defined from
the midpoint to the end on each of these time intervals. Then, equation 2.34 is used to find
the bias.

5.2.2 Relative Tolerance
The relative tolerance (described in subsection 2.3.3), gives the percentage difference be-
tween the real and estimated values (see equation 2.36). This method uses the same as-
sumptions as in subsection 5.2.1, because equation 2.36 uses the bias (in the equation
known as the error, ε).

5.2.3 Rate of Convergence
The methods described in the two previous subsections 5.2.1-5.2.2, will only give an an-
swer to how good the estimations are from a defined part of the time intervals. A small
bias indicates a good estimation, which correspond to a small relative tolerance. When the
bias and relative tolerance is satisfactory, but observing from the figure that the estimated
values uses long time to reach the real values. A new analysing tool are introduced to
handle problems were this occurs. Therefore, the rate of convergence is introduced and
found. The theory is described in subsection 2.3.4.

To implement this in Matlab, some assumptions have to be made. The starting points
of the measurement is given in figure 5.3 and the end points will be when the estimation
has reached 95 % of the real values. The real values exist for 0.1s each. This means the
results in rate of convergence will be less than 0.1s. Therefore, when analysing the result
it will be easier to see how many percent of 0.1s it takes for the estimated parameter to
converge to 95% of the real values. This is given as

RoC% =
RoC

0.1
· 100% (5.1)

where RoC% is the rate in percent, RoC is the rate of convergence in seconds (Walpole
et al., 1993). However, when comparing two results it can be interesting to find the increase
or decrease in rate of convergence in percent. Here, equation 2.36 can be used. The
difference will be that ε will be the deviation between the two results and a will be 0.1s.

5.2.4 Matlab Implementation
The implementations of the bias, relative tolerance and the rate of convergence in Matlab
is given in pseudo code below, while the Matlab script is given in appendix B

Listing 5.4: Pseudo code for finding the bias, relative tolerance and rate of convergence.label

37

Chapter 5. Parallel Computing

1 %% Find the bias, relative tolerance and the rate of
convergence for the different tests

2 Retrive results from logout
3 t1__, t2__ % Real values defined in time [s] [1x2]
4 c1_, c2_, k1_, k2_ %the real damper and spring values
5 t_ % time axis given in 300 steps
6 theta_ = interp1(t, theta, t_); % theta_=[c_hat k_hat];
7 c_hat, k_hat % Estimated damper and spring values
8
9 %% Finding the bias

10 % Find the indices on the time axis where the real values
lies

11 idx1 = find(t_>=t1__(1) & t_<=t1__(2));
12 idx2 = find(t_>=t2__(1) & t_<=t2__(2));
13
14 % Values in c_hat and k_hat that correspond to the indices

in t1__ and t2__
15 c_hat1 = c_hat(idx1(1):idx1(end));
16 c_hat2 = c_hat(idx2(1):idx2(end));
17 k_hat1 = k_hat(idx1(1):idx1(end));
18 k_hat2 = k_hat(idx2(1):idx2(end));
19
20 % Calculate the bias from the middle of the real values
21 % Find c_hat and k_hat for these values
22 c_hat1_mid = c_hat1(end/2:end);
23 c_hat2_mid = c_hat2(end/2:end);
24 k_hat1_mid = k_hat1(end/2:end);
25 k_hat2_mid = k_hat2(end/2:end);
26
27 % Bias
28 bias_c1 = c1_ - mean(c_hat1_mid);
29 bias_c2 = c2_ - mean(c_hat2_mid);
30 bias_k1 = k1_ - mean(k_hat1_mid);
31 bias_k2 = k2_ - mean(k_hat2_mid);
32
33 %% Relative tolerance (bias/real value *100%)
34 rel_error_c1 = bias_c1/c1_ *100;
35 rel_error_c2 = bias_c2/c2_ *100;
36 rel_error_k1 = bias_k1/k1_ *100;
37 rel_error_k2 = bias_k2/k2_ *100;
38
39 %% Finding the rate of convergence
40 tid1, tid2 %time the real values exist
41
42 % The estimated values converge between

38

5.2 Ways to Analyse the Results When Using Parallel Computing

43 conv_c1 = [c1_105 c1_95]; %epsilon_c1
44 conv_c2 = [c2_105 c2_95]; %epsilon_c2
45 conv_k1 = [k1_105 k1_95]; %epsilon_k1
46 conv_k2 = [k2_105 k2_95]; %epsilon_k2
47
48 % Indices where the estimated values are between 95% and

105% of real value
49 c1_idx=find(c_hat1>=conv_c1(1) & c_hat1<=conv_c1(2));
50 c2_idx=find(c_hat2>=conv_c2(1) & c_hat2<=conv_c2(2));
51 k1_idx=find(k_hat1>=conv_k1(1) & k_hat1<=conv_k1(2));
52 k2_idx=find(k_hat2>=conv_k2(1) & k_hat2<=conv_k2(2));
53
54 % Time the estimated values crosses epsilon
55 t_eps_c1 = tid1(c1_idx(1));
56 t_eps_c2 = tid2(c2_idx(1));
57 t_eps_k1 = tid1(k1_idx(1));
58 t_eps_k2 = tid2(k2_idx(1));
59
60 % Rate of Convergence
61 RoC_c1 = t_eps_c1-t1__(1);
62 RoC_c2 = t_eps_c2-t2__(1);
63 RoC_k1 = t_eps_k1-t1__(1);
64 RoC_k2 = t_eps_k2-t2__(1);

39

Chapter 5. Parallel Computing

40

Chapter 6
Cantilever Dynamics

The cantilever dynamics have great impact on the force and image measurements of the
AFM (see chapter 3). Therefore are these properties very important in the interaction be-
tween the sample and the tip. There are many factors that interfere with these properties:
Shape and material of the tip, where the AFM is operated (air, gases, vacuum, liquid, etc.)
and the dimensions of the cantilever. These properties are typically based on theoretical
estimates or have only been made for the supposedly representative sample (Hutter and
Bechhoefer, 1993).

The task is to find an equation for the cantilever dynamics and transforming it into a form
that is suitable for implementation of various adaptive estimation methods presented in
(Ioannou and Sun, 2012).

6.1 Cantilever Dynamic Equation
Using equation 4.29 for the spring-damper system from (Ragazzon et al., 2016), which is
repeated below

MZ̈ = KD + CḊ + Fsample

= K(U − Z) + C(U̇ − Ż) + Fsample
(6.1)

with the following relationship

Z = U −D ⇒ Ż = U̇ − Ḋ (6.2)

it is possible to identify the following parameters by on-line parameter estimation:

K = spring constant
C = damper constant
M = effective mass of cantilever

41

Chapter 6. Cantilever Dynamics

Assuming to know the cantilever base position, U , and the cantilever deflection, D. These
two can be used to find the vertical position of the cantilever tip,Z, using equation 6.2(Ragaz-
zon et al., 2016). The only difficulty withU andD is that they have unknown scaling. They
are in volt ([V]), not meter. The scaling constant can be found with some simple experi-
ments in the nanolab, and that is why they are assumed to be known. Equation 6.1 need to
be rewritten into linear-in-parameter form (equation 4.21):

w = θ∗Tφ (6.3)

By using the Laplace transform of derivatives (Kreyszig, 2010), equation 6.1 from (Ragaz-
zon et al., 2016) becomes

M [s(Z − Z(0))− Z ′(0)]− Fsample
s

= K
D

s
+ C(D −D(0)) (6.4)

then rearranging it

Fsample
s

= M [s(Z − Z(0))− Z ′(0)]−KD

s
− C(D −D(0)) (6.5)

The system is now on the form (equation 6.3)

w′ =
Fsample

s
(6.6)

θ = [M,K,C]
T (6.7)

φ =

[
s (Z − Z(0))− Z ′(0),−D

s
,− (D −D(0))

]T
(6.8)

The important part in equation 6.5 is Fsample, which is defined as the total force acting
from the sample on the tip.

6.2 Defining Parameters for Simulation
When lowering the cantilever down slowly towards the sample, the total force acting from
the sample on the tip can be assumed to be equal to Hooke’s law (equation 3.1), which
means that Fsample becomes

Fsample = F = −kcδc = −kcz̄c (6.9)

(Cappella and Dietler, 1999). The cantilever deflection zc can be measured, which means
that only unknown parameter is equation 6.2 is the cantilever spring constant, kc. Typical
values for this parameter varies between 0.01 N/m and 50 N/m, which is the variation
between soft and hard cantilevers. A good assumption for kc is

kc = 0.2 N/m. (6.10)

A stable filter of relative degree 1 is added on each side of equation 6.5. The degree
is chosen because s appear in w

′
. The filter makes all signals proper and avoids pure

differentiation. The chosen filter
1

Λ(s)
=

1

τ1s+ 1
(6.11)

42

6.2 Defining Parameters for Simulation

where τ1 is the tunable positive filter constant. This gives the system

w
′

Λ(s)
= [M,K,C]

[
s(Z − Z(0))− Z ′(0)

Λ(s)
,
−Ds
Λ(s)

,
−(D −D(0))

Λ(s)

]T
(6.12)

and on the form (equation 6.3)

w =
1

Λ(s)

(
Fsample

s

)
φ =

[
s (Z − Z(0))− Z ′(0)

Λ(s)
,

1

s

−D
Λ(s)

,
− (D −D(0))

Λ(s)

]T
θ = [M,K,C]

T

(6.13)

Before the system can be simulated, an input signal that is PE have to be chosen for the
system (equation 6.6-6.8).

43

Chapter 6. Cantilever Dynamics

44

Chapter 7
Simulation Results

The simulations in this chapter are split into experiments. These experiments consist of
multiple jobs, where the name job comes from running simulations on Vilje (section 5.1).

When simulating the model and using the analysing tools described in section 5.2, the
results will consist of four solutions per analysing tool. That means that the bias, the rel-
ative tolerance and the rate of convergence will together produce twelve result sets per
simulation. The bias will produce small numbers (e.g. 6.4532e-09) which will not be
listed in this chapter, because of the difficulty of relating the number to the real value. In-
stead, the relative tolerance will be listed, because it gives the deviation between the two in
percent. Also, the relative tolerance will only consist of two decimals in this chapter, while
in the tables in appendix A it will be given with four decimals. The rate of convergence
gives the amount of time in seconds it takes for the system to converge to the real values.
The bias can be found in the tables in appendix A.

7.1 Simulation Setup

When starting the simulation, the setup will be the same for all the experiments. The setup
consist of parameters that can be tuned in order to improve the result. These parameters
are: gain matrix (Γ), the tap period, simulation solver, relative tolerance in the simulation
solver, the cantilever oscillation period (T0), the cantilever oscillation frequency (f0), the
tunable positive constant in the filter (τ). The starting setup is given in table 7.1. The sim-
ulations were performed on my own computer and on Vilje (see section 5.1) with Matlab
version R2016b.

The gain matrix consist of two diagonal elements, where the first diagonal element is the
gain on the damper constant, while the second diagonal element is the gain on the spring
constant.

45

Chapter 7. Simulation Results

Simulation solver ode45

Gamma, Γ 1e− 0 · diag([10e8 10e18])

Tap period 0.2

Relative Tolerance (sim. solver) 1.00e− 09

τ 0.1 · T0

T0 1/f0

f0 2.00e04

Table 7.1: The setup when starting the simulations.

The different experiments in this chapter will conduct changes on the parameters in ta-
ble 7.1. Every change will be described in the relevant experiment.

7.2 Continuing Work From Final Year Assignment
The results from the Final Year Assignment (Leer, 2016) differed from (Ragazzon et al.,
2016), because there was a large difference between the two methods (least square with
forgetting factor and the gradient method using instantaneous cost) when it came to con-
verging towards the real values, c and k.

7.2.1 Overview
In (Leer, 2016), the main task was to compare the convergence result between two dif-
ferent adaptive estimation methods, least square with forgetting factor and the gradient
method using instantaneous cost, on a mathematical model of a biological cell and AFM
(figure 4.1). The results from the least square method is given in (Ragazzon et al., 2016)
and the convergence result is given as a recap in Figure 7.1. Using the same model from
(Ragazzon et al., 2016), the same gain, Γ, and only changing the on-line parameter estima-
tor from least square with forgetting factor to the gradient method using instantaneous cost.
The result is given in Figure 7.2. The best result from (Leer, 2016) is given in Figure 7.3.
The different gains, Γ, and on-line parameter estimation method in the Figure 7.1- 7.3 is
given in Table 7.2.

Figure Gamma, Γ On-Line Parameter Estimation Method
7.1 1e− 0 · diag([10e8 10e18]) Least square with forgetting factor

7.2 1e− 0 · diag([10e8 10e18]) Gradient method using instantaneous cost

7.3 1e− 0 · diag([8e7 15e19]) Gradient method using instantaneous cost

Table 7.2: An overview of the different Γ in Figure 7.1- 7.3.

46

7.2 Continuing Work From Final Year Assignment

8.2 8.3 8.4 8.5

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure 7.1: The estimates of k̂ and ĉ using the least square with forgetting factor, and the cantilever
position input u over time. This figure is a result from (Ragazzon et al., 2016).

7.2.2 Tuning the Gain Matrix
The setup when starting the simulations is given in table 7.1. When tuning in (Leer, 2016),
the gain on the damper constant was decreased while the spring constant was increased.
Here, the opposite is tried, because of bad results in (Leer, 2016). First, by only decreasing
the spring constant and later tune from that result. The first change, gave the Figure 7.4.
It is an okay estimate for ĉ, while the k̂ never reaches the real spring constant, k. When
continuing tuning, the end result is given in figure 7.5 and figure 7.6. The different tuning
cases for the gain matrix, Γ, is given in table A.1. The related figures to table A.1 are given
in appendix C1.

7.2.3 Comparing the Gradient Method with the Least-Square Method
The best result with the gradient method using instantaneous cost is given in figure 7.6,
and the gain matrix used is given as Test 15 in table A.1, is repeated below

Γ = 1e− 0 · diag([5e8 10e14])

=

[
5.0 · 108 0

0 1.0 · 1015

]
(7.1)

47

Chapter 7. Simulation Results

8.2 8.3 8.4 8.5

1.1

1.2

1.3

1.4

1.5

ĉ

×10
-7

-2

0

2

4

6

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure 7.2: The estimates of k̂ and ĉ with the gradient method using instantaneous cost, and the
cantilever position input u over time. It was the first simulation using the gradient method with the
same Γ as in (Ragazzon et al., 2016).

8.2 8.3 8.4 8.5

5.2

5.4

5.6

5.8

6

6.2

6.4

ĉ

×10
-7

-4

-2

0

2

4

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-1

0

1

u
[m

]

×10
-6

Figure 7.3: The estimates of k̂ and ĉ with the gradient method using instantaneous cost, and the
cantilever position input u over time. This is the best result from the Final Year Project (Leer, 2016).

48

7.2 Continuing Work From Final Year Assignment

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1.60433

1.604335

1.60434

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-1

0

1

u
[m

]

×10
-6

Figure 7.4: The estimates of k̂ and ĉ with the gradient method using instantaneous cost, and the
cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-1

0

1

u
[m

]

×10
-6

Figure 7.5: The estimates of k̂ and ĉ with the gradient method using instantaneous cost, and the
cantilever position input u over time. Gamma10 from table7.1

49

Chapter 7. Simulation Results

8.2 8.3 8.4 8.5

5

6

7

ĉ
×10

-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-1

0

1

u
[m

]

×10
-6

Figure 7.6: The estimates of k̂ and ĉ with the gradient method using instantaneous cost, and the
cantilever position input u over time. Test 15 from table A.1

This gain matrix replaces the gain matrix given in the simulation setup (table 7.1) in the
Simulink model using the least square with forgetting factor as the on-line parameter esti-
mation method. Here, the gain matrix is used as initial condition in the integration of Ṗ to
P , which is given in equation 4.26.

By comparison, figure 7.1 and figure 7.7 are quite similar. Therefore, the relative tolerance
and the rate of convergence (see subsection 5.2.4 for Matlab impementation) are used for
further analysis. The results from the two analysing tools are given in table 7.3.

Relative tolerance (%) Rate of convergence
Figure RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
7.1 1.14 0.68 -1.76 -0.58 0.0093 0.014 0.032 5.78e-04
7.7 1.14 0.67 -1.77 -0.58 0.0093 0.014 0.032 5.78e-04

Table 7.3: The relative tolerance and the rate of convergence in Figure 7.1 and Figure 7.7.

50

7.3 Parallel Computing

8.2 8.3 8.4 8.5

5

6

7

ĉ
×10

-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure 7.7: The estimates of k̂ and ĉ using the least square with forgetting factor, and the cantilever
position input u over time. This is the result with Γ equal to equation 7.1.

7.3 Parallel Computing
The simulations conducted here, are split into different experiments, where every exper-
iment consists of multiple jobs. Each experiment represent one specific change in the
system. The changes affects the system and the on-line parameter estimation method.

When starting to use Vilje and parallel computing a new simulation setup is given, hence
to the gain matrix found in equation 7.1. The new simulation setup is given in table 7.4 The

Simulation solver ode45

Gamma, Γ 1e− 0 · diag([5e8 10e14])

Tap period 0.2

Relative Tolerance (sim. solver) 1.00e− 09

τ 0.1 · T0

T0 1/f0

f0 2.00e04

Table 7.4: The simulation setup when starting simulations with parallel computing.

analysing tools described in section 2.3 will be used as a simple procedure for analysing

51

Chapter 7. Simulation Results

the performance of the system when dealing with multiple results.

7.3.1 Changing the Simulation Solver
It is possible that the result from subsection 7.2.2 can be improved by using a different
simulation solver. The first experiment consist of six jobs with simulation setup equal to
the parameters in table 7.4, except the gain matrix which is equal to equation 7.1.

Experiment 1
Job Simulation solver
1 ode45

2 ode15s

3 ode23

4 ode23s

5 ode23t

6 ode113

Table 7.5: Experiment 1: Changes the simulation solver. Mathematical description of these solvers
are found in section 2.2.

The results from experiment 1 (table 7.5) is given as relative tolerance and rate of conver-
gence in table 7.6 and the corresponding figures are found in appendix C2.

Relative tolerance (%) Rate of convergence ([s])
Job RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
1 1.51 1.19 -1.10 -0.43 0.0013 5.78e-04 0.016 5.78e-04
2 1.47 1.21 -1.11 -0.43 0.0013 5.78e-04 0.016 5.78e-04
3 1.52 1.21 -1.10 -0.43 0.0013 5.78e-04 0.016 5.78e-04
4 1.56 1.25 -1.10 -0.43 0.0146 5.78e-04 0.016 5.78e-04
5 1.44 1.14 -1.09 -0.43 0.012 5.78e-04 0.016 5.78e-04
6 1.52 1.21 -1.09 -0.42 0.0013 5.78e-04 0.016 5.78e-04

Table 7.6: The results corresponding to Experiment 1 (table 7.5), given as the relative tolerance and
the rate of convergence.

7.3.2 Combining Changes
In this subsection, changes will be made on parameters effecting the model and the simu-
lation solver. The results found in subsection 7.3.1 will be used to experiment with other
parameter changes combined with simulation solvers.

52

7.3 Parallel Computing

Simulation Solver and Relative Tolerance

In this experiment, the simulation setup is equal to table 7.4, except for the simulation
solver and the relative tolerance in the solver (section 2.2). Experiment 2 consist of six
jobs and is given in table 7.7.

Experiment 2
Job Simulation solver Relative tolerance (in sim. solver)
1 ode45 1.00e− 07

2 ode15s 1.00e− 07

3 ode23 1.00e− 07

4 ode23s 1.00e− 07

5 ode23t 1.00e− 07

6 ode113 1.00e− 07

Table 7.7: Experiment 2: Changes the simulation solver and the relative tolerance in the simulation
solver. Mathematical description of these solvers are found in section 2.2.

Relative tolerance (%) Rate of convergence ([s])
Job RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
1 1.51 1.19 -1.10 -0.43 0.0013 5.78e-04 0.016 5.78e-04
2 1.46 1.22 -1.10 -0.43 0.0013 5.78e-04 0.016 5.78e-04
3 1.52 1.21 -1.10 -0.43 0.0013 5.78e-04 0.016 5.78e-04
4 1.56 1.25 -1.10 -0.43 0.0146 5.78e-04 0.013 5.78e-04
5 1.44 1.14 -1.09 -0.43 0.012 5.78e-04 0.016 5.78e-04
6 1.52 1.21 -1.09 -0.43 0.0013 5.78e-04 0.016 5.78e-04

Table 7.8: The results corresponding to Experiment 2 (table 7.7), given as the relative tolerance and
the rate of convergence.

The corresponding figures to experiment 1 if found in appendix C3.

Simulation Solver and Tap Period

The simulation setup for this experiment is given in table 7.4, where the simulation solver
and the tap period have been changed. The tap period is the time it takes for the tip on the
cantilever to tap into the sample and go back into start position (section 3). When changing
the tap period, it will allow the solvers to get more time for estimation and giving them
time to converge toward the real values.

Experiment 3 is given in table 7.9 and consist of six jobs with corresponding results given

53

Chapter 7. Simulation Results

as relative tolerance and rate of convergence in table 7.10. The corresponding figures to
experiment 3 if found in appendix C4.

Experiment 3
Job Simulation solver Tap period
1 ode45 0.205

2 ode15s 0.205

3 ode23 0.205

4 ode23s 0.205

5 ode23t 0.205

6 ode113 0.205

Table 7.9: Experiment 3: Changes the simulation solver and the tap period.

Relative tolerance (%) Rate of convergence ([s])
Job RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
1 1.49 1.19 -1.08 -0.42 0.0093 0.0086 0.024 5.78e-04
2 1.47 1.23 -1.08 -0.42 0.0039 0.0086 0.024 5.78e-04
3 1.50 1.21 -1.07 -0.42 0.0013 0.0046 0.024 5.78e-04
4 1.57 1.25 -1.08 -0.42 0.0013 5.78e-04 0.024 5.78e-04
5 1.41 1.16 -1.07 -0.42 0.0013 5.78e-04 0.024 5.78e-04
6 1.88 1.51 -1.47 -0.96 0.024 5.78e-04 0.0079 0.022

Table 7.10: The results corresponding to Experiment 3 (table 7.9).

7.3.3 Optimize the Gain Matrix

After finding a good estimate for the gain matrix, Γ, in section 7.2. It was important to try
to optimize the gain matrix when gaining access to tools like Vilje (section 5.1). Then it
was possible to run multiple simulations at the same time and run simulations with large
gain matrix. By running multiple jobs in parallel, small changes could be made on the two
diagonal elements in the gain matrix. This made the optimization quicker, than running
these jobs in sequence.

The simulation setup was similar to table 7.4. These simulations were split into two exper-
iments. Experiment 4 consisted of changing the gain on the damper constant (table 7.11),
while experiment 5 changed the gain on the spring constant (table 7.13).

54

7.3 Parallel Computing

Experiment 4
Job Γ (gain matrix)
1 1e− 0 · diag([6e7 10e14])

2 1e− 0 · diag([7e7 10e14])

3 1e− 0 · diag([8e7 10e14])

4 1e− 0 · diag([9e7 10e14])

5 1e− 0 · diag([1e8 10e14])

6 1e− 0 · diag([2e8 10e14])

7 1e− 0 · diag([3e8 10e14])

8 1e− 0 · diag([4e8 10e14])

9 1e− 0 · diag([6e8 10e14])

10 1e− 0 · diag([7e8 10e14])

Table 7.11: Experiment 4: Shows the fine tuning of the damper element in the gain matrix, Γ. The
spring constant remains the same, while the damper element changes.

The results from experiment 4 (table 7.11) is given in relative tolerance and rate of con-
vergence in table 7.12. Examining the results in experiment 4, shows a local minimizer.
Although, the rate of convergence is unsatisfactory at this minimizer. Therefore, job 8 in
results will be used as the optimal gain on the damper constant. The reason for this is the
rate of convergence. It is 0.0187s faster than the rate of convergence in the local minimizer
in job 3 (0.02s). Given in percentage, job 8 has a rate of convergence 18.7% quicker than
job 3 (equation 5.1).

In experiment 4 we found the optimized gain on the damper constant, which means that
optimized gain on the spring constant have to be determined. This will be done in ex-
periment 5. The same method for finding the gain on the damper constant will be used.
Keeping the gain on the damper constant equal to the one found in job 8 and vary the
gain on the spring constant around the best spring constant gain found in subsection 7.2.2.
Before starting experiment 5 the gain matrix is given as

Γ = 1e− 0 · diag([4e8 10e14])

=

[
4.0 · 108 0

0 1.0 · 1015

]
(7.2)

Experiment 5 is given in table 7.13, and the corresponding results in relative tolerance and
rate of convergence are found in table 7.14.

Analysing the relative tolerance and rate of convergence in table 7.14, job 4 produces the
best overall results, because of the large variations in relative tolerance from job 5 to job 13.
Job 1 produced the best results in rate of convergence. However, the relative tolerance is

55

Chapter 7. Simulation Results

Relative tolerance (%) Rate of convergence ([s])
Job RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
1 -0.59 -1.19 -1.12 -0.45 0.02 0.0367 0.016 5.78e-04
2 -0.28 -0.54 -1.11 -0.44 0.0213 0.0313 0.0163 5.78e-04
3 0.02 -0.08 -1.11 -0.44 0.02 0.0273 0.016 5.78e-04
4 0.28 0.25 -1.11 -0.44 0.02 0.0247 0.016 5.78e-04
5 0.50 0.49 -1.11 -0.44 0.0186 0.022 0.016 5.78e-04
6 1.38 1.15 -1.10 -0.43 0.012 0.0126 0.016 5.78e-04
7 1.49 1.19 -1.08 -0.42 0.0093 0.0086 0.024 5.78e-04
8 1.50 1.19 -1.10 -0.43 0.0013 0.0059 0.016 5.78e-04
9 1.51 1.19 -1.10 -0.43 0.0013 5.78e-04 0.016 5.78e-04
10 1.51 1.19 -1.10 -0.43 0.0013 5.78e-04 0.016 5.78e-04

Table 7.12: The results corresponding to Experiment 4 (table 7.11).

Experiment 5
Job Γ (gain matrix)
1 1e− 0 · diag([4e8 6e16])

2 1e− 0 · diag([4e8 6e15])

3 1e− 0 · diag([4e8 2e15])

4 1e− 0 · diag([4e8 1e15])

5 1e− 0 · diag([4e8 9e14])

6 1e− 0 · diag([4e8 8e14])

7 1e− 0 · diag([4e8 7e14])

8 1e− 0 · diag([4e8 6e14])

9 1e− 0 · diag([4e8 5e14])

10 1e− 0 · diag([4e8 4e14])

11 1e− 0 · diag([4e8 3e14])

12 1e− 0 · diag([4e8 2e14])

13 1e− 0 · diag([4e8 1e14])

Table 7.13: Experiment 5: Shows the fine tuning of the spring element in the gain matrix, Γ. The
damper constant remains the same, while the spring element changes.

worse and the estimates oscillates around the real values (see figure 7.8). These oscillations
does not appear in job 4 (figure 7.9). This means that the optimized gain matrix is equal to
equation 7.2.

56

7.3 Parallel Computing

Relative tolerance (%) Rate of convergence ([s])
Job RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
1 2.09 1.70 -1.09 -0.37 0.0013 0.0059 0.0013 5.78e-04
2 1.51 1.20 -1.18 -0.45 0.0026 0.0073 0.0039 5.78e-04
3 1.50 1.20 -1.14 -0.44 0.0026 0.0059 0.0106 5.78e-04
4 1.50 1.19 -1.10 -0.43 0.0013 0.0059 0.016 5.78e-04
5 1.14 0.68 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
6 1.14 0.67 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
7 1.14 0.67 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
8 1.14 0.67 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
9 1.14 0.67 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
10 1.14 0.67 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
11 1.14 0.67 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
12 1.14 0.67 -1.76 -0.85 0.0093 0.014 0.032 5.78e-04
13 1.48 1.19 -4.38 -1.43 0.0013 0.0059 0.0641 0.022

Table 7.14: The results corresponding to Experiment 5 (table 7.13).

8.2 8.3 8.4 8.5

5

5.5

6

6.5

7

ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure 7.8: The estimates of ĉ and k̂ using the gradient method, and the cantilever position input
u over time, with gain matrix equal to job 1 in table 7.13. The oscillations on the estimated spring
constant, k̂.

57

Chapter 7. Simulation Results

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure 7.9: The estimates of ĉ and k̂ using the gradient method, and the cantilever position input u
over time, with gain matrix equal to job 1 in table 7.13. The estimate of k̂ does not have oscillations.

The corresponding figures to table 7.11 and table 7.13 are found in appendix C5 and ap-
pendix C6.

7.3.4 Optimized Gain Matrix and Changing the Tunable Positive Fil-
ter Constant

The optimized gain matrix is found (equation 7.2), which means that the results can be
improved by changing the tunable positive filter constant, τ . The filter is given as

1

Λ(s)
=

1

τ2s2 + 2 · τs+ 1
(7.3)

where τ is the tunable positive filter constant. In equation 7.3, the term in the denominator
is a transfer function (section 2.4). Studying this term

Λ(s) = τ2s2 + 2 · τs+ 1 (7.4)

it is found that τ is equal to 1/ω0 in equation 2.41 and K, ξ is equal to 1. Changing τ will
effect the properties of the system. The same will happen if T0 or f0 is changed, since τ
is defined from them. The simulation setup is equal to the parameters in table 7.4. These
are given in table 7.15 as experiment 6 and consist of five jobs.

The results from experiment 6 is given in table 7.16 as relative tolerance and rate of con-
vergence. The corresponding figures to table 7.15 is found in appendix C8.

58

7.3 Parallel Computing

Experiment 7
Job Γ (gain matrix) τ

1 1e− 0 · diag([1e8 6e14]) 0.05 · T0

2 1e− 0 · diag([1e8 6e14]) 0.10 · T0

3 1e− 0 · diag([1e8 6e14]) 0.15 · T0

4 1e− 0 · diag([1e8 6e14]) 0.17 · T0

5 1e− 0 · diag([1e8 6e14]) 0.20 · T0

Table 7.15: Experiment 6: Best gain matrix with different tunable positive filter constant, τ .

Relative tolerance (%) Rate of convergence ([s])
Job RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
1 1.49 1.18 -1.10 -0.43 0.0013 0.0059 0.016 5.78e-04
2 1.50 1.19 -1.10 -0.43 0.0013 0.0059 0.016 5.78e-04
3 1.15 0.68 -1.76 -0.58 0.0093 0.014 0.032 5.78e-04
4 1.16 0.69 -1.76 -0.58 0.0093 0.014 0.032 5.78e-04
5 1.16 0.69 -1.76 -0.58 0.0093 0.014 0.032 5.78e-04

Table 7.16: The results corresponding to experiment 6 (table 7.15).

7.3.5 Optimized Gain Matrix with Different Simulation Solvers

After finding the optimized gain matrix, the properties of the system might be changed.
This can be discovered by trying different simulation solvers. The simulation setup is equal
to the parameters in table 7.1, except the gain matrix and the simulation solver. These are
given in table 7.17 as experiment 7 and consist of six jobs.

Experiment 7
Job Γ (gain matrix) Simulation solver
1 1e− 0 · diag([4e8 10e14]) ode45

2 1e− 0 · diag([4e8 10e14]) ode15s

3 1e− 0 · diag([4e8 10e14]) ode23

4 1e− 0 · diag([4e8 10e14]) ode23s

5 1e− 0 · diag([4e8 10e14]) ode23t

6 1e− 0 · diag([4e8 10e14]) ode113

Table 7.17: Experiment 6: Best gain matrix with different simulation solvers.

59

Chapter 7. Simulation Results

The results from experiment 7 is given as relative tolerance and rate of convergence in
table 7.18. The figures corresponding to table 7.17 is found in appendix C7.

Relative tolerance (%) Rate of convergence ([s])
Job RT c1 RT c2 RT k1 RT k2 RoC c1 RoC c2 RoC k1 RoC k2
1 1.50 1.19 -1.10 -0.43 0.0013 0.0059 0.016 5.78e-04
2 1.48 1.21 -1.10 -0.43 0.0013 0.0019 0.016 5.78e-04
3 1.51 1.21 -1.10 -0.43 0.0013 5.78e-4 0.016 5.78e-04
4 1.56 1.25 -1.10 -0.43 0.0013 5.78e-4 0.016 5.78e-04
5 1.44 1.14 -1.09 -0.43 0.0013 5.78e-4 0.016 5.78e-04
6 1.51 1.21 -1.10 -0.42 0.0013 5.78e-4 0.016 5.78e-04

Table 7.18: The results corresponding to experiment 7 (table 7.17).

60

Chapter 8
Discussion

8.1 Cantilever Dynamics

By using equation 4.29 and Laplace transform of derivatives (Kreyszig, 2010), it was
possible to find an equation the described the system in a linear-in-parameter form. There
are three unknown parameters,K, C andM , that need to be estimated, while others had to
be defined. The total force acting from the sample on the tip, the cantilever spring constant
and the filter were found. The system was written into a linear-in-parameter form, which
means that there are multiple parameter estimation method that can be chosen to solve this
problem.

8.2 Continuing Work From Final Year Assignment

8.2.1 Tuning the Gain Matrix

Figures 7.4-7.6 shows changes in the estimated damper constant, ĉ. The estimated damper
constant oscillates around the real damper constant, c (see figure 7.4). When the gain
on the damper constant is decreases, the oscillation on the estimated damper constant
becomes smoother. In (Ioannou and Sun, 2012), an increase in the gain matrix will make
the system faster, but it will create more noise since the noise is multiplied with the gain
matrix. In figure 7.4, the oscillations is seen as noise in the system. Also, the rate of
convergence decreases when the gain on the damper constant decreases. On the other hand,
the difference between the estimated spring constant, k̂, in Figure 7.4 and Figure 7.5 is
large. The limits on the y-axis in Figure 7.4 is small compared to the limits in Figures 7.5-
7.6. By increasing the gain on the estimated spring constant improves as it almost reaches
the real value of c.

61

Chapter 8. Discussion

8.2.2 Comparing the Two On-Line Parameter Estimation Methods

Comparing the Least-Square and Gradient Method

The relative tolerance and the rate of convergence given in table 8.1 shows that the there
are a difference between the least-square method with forgetting factor and the gradi-
ent method using instantaneous cost. There are small deviations in the relative tolerance
varying from 0.15% to 0.66%. The deviation in the rate of convergence varies from 0s
to 0.016s, which corresponds to an increase of 16% in the rate of convergence (subsec-
tion 5.2.3).

The difference between the two methods lies in the adaptive laws, since the systems have
the same form (see equations 4.37-4.40). The adaptive laws for the two methods is re-
peated below, first the gradient method,

θ̇ = Γεφ

then the least-square method

θ̇ = Pεφ

Ṗ = βP − P φφ
T

m2
P, P (0) = P0

The least-square method performs an extra computation for each time state opposed to
the gradient method. The extra computation changes the least-square algorithm from a
nonrecursive to a recursive one (Ioannou and Sun, 2012). The convergence properties of
the gradient method and least-square method is the same (Ioannou and Sun, 2012), which
means that the results shall in theory be equal. However, they are not equal (table 8.1).
Deviations on the rate of convergence have more impact on the system than the relative
tolerance, which can be seen in figure 7.6 and figure 7.7. This means that the gradient
method has the best performance between the two parameter estimation methods.

Least-square with Two Different Γ

Table 8.2 shows that the deviation between the least-square method with Γ given in equa-
tion 7.1 and the least-square method with Γ equal to equation 7.1. Only the relative toler-
ance is taking into account, because the rate of convergence is the same for both Γs when
studying the results in table 7.3. The deviation between the to results is small considering
that the results are given in percent. The largest deviation is 0.0045%.

In (Ragazzon et al., 2016), Γ represented the initial value of P , P0, found in the adap-
tive law for the least-square method (see equations 4.26-4.27). This means that the two
results are with different initial values for P (equation 4.26). Since the maximum devia-
tion is 0.0045%, the two results can be said to be equal. That means the initial value, P0,
does not affect the end results in this case.

62

8.3 Parallel Computing

Relative tolerance (%)
Figure RT c1 RT c2 RT k1 RT k2
7.6 1.5066 1.1934 -1.1026 -0.4330
7.7 1.1429 0.6750 -1.7646 -0.5788

Deviation 0.3637 0.5184 0.6620 0.1458

Rate of convergence ([s])
Figure RoC c1 RoC c2 RoC k1 RoC k2
7.6 0.0013 5.7839e-04 0.016 5.7839e-04
7.7 0.0093 0.014 0.032 5.7839e-04

Deviation 0.0080 0.0134 0.0160 0

Table 8.1: Absolute value of the deviation in the relative tolerance and the rate of convergence
between the results from Figure 7.1 and Figure 7.7.

Relative tolerance (%)
Figure RT c1 RT c2 RT k1 RT k2
7.1 1.1425 0.6745 -1.7652 -0.5833
7.7 1.1429 0.6750 -1.7646 -0.5788

Deviation 0.0004 0.0005 0.0006 0.0045

Table 8.2: Absolute value of the deviation in the relative tolerance between the results from Fig-
ure 7.6 and Figure 7.7.

8.3 Parallel Computing
When studying the results, there are two analysing tools used, relative tolerance and rate
of convergence (subsection 5.2). Each of these produce four results, eight in total. These
result corresponds to the relative tolerance and the rate of convergence defined in subsec-
tion 5.2.3. The relative tolerance between the real and estimated values for the damper
constant and the spring constant, and the rate of convergence for the estimated values
(damper and spring constant) towards the real values. The relative tolerance is given with
four decimals in appendix A for more accuracy.

8.3.1 Changing the Simulation Solver
Simulation solvers have mathematical differences (see section 2.2), which means that they
effect the results. The produced results are given as relative tolerance and rate of conver-
gence in table 7.6. Studying these results, there is found that the there are small variations
between the solvers. The largest variation in the relative tolerance is 0.1269%. Although,
the rate of convergence varies for two solvers (ode23s and ode23t) in the first value for the

63

Chapter 8. Discussion

damper constant (RoC c1). The remaining solvers have equal rate of convergence. This
makes a considerable difference in the results, because the rate of convergence increases
with 0.0107s (ode23s) and 0.0133s (ode23t). The two results correspond to an increase
in rate of convergence of 10.7% and 13.3%. If comparing the two analysing tools, small
changes in the rate of convergence have more impact on the system than the relative toler-
ance. The two solvers produces an increase of minimum 10.7% in the rate of convergence
are stiff solvers (see subsection 2.2.2): ode23s and ode23t (Egeland and Gravdahl, 2002;
Shampine and Reichelt, 1997). The remaining solvers (ode45, ode15s, ode23, ode113)
produce similar results with a maximum variation of 0.1269% in the relative tolerance.

8.3.2 Combining Changes

Simulation Solver and Relative Tolerance

The relative tolerance in the simulation solver has an impact on the simulation (sec-
tion 2.2), because it determines the error relative to the size of each state (MatlabWorks,
2016a). Therefore, when increasing the relative tolerance in the simulation solver from
1.00e−09 to 1.00e−07 the produced results can change. By allowing the error relative to
the size of each state to increase, the simulation time decreases and it might affect the sys-
tem. The results is given in relative tolerance and rate of convergence (see subsection 5.2)
and are found in table 7.8.

There are variations when studying the relative tolerance in experiment 2 (table 7.7). For
RT c1 (relative tolerance), the largest variation between the solvers is 0.127%. For RT
c2, it is 0.1067% (see subsection 5.2.3). For RT k1, it is 0.0123%, while it is 0.0046%
for RT k2. The variations in relative tolerance between the simulation solvers are small,
greatest at 0.1067%. When looking at the rate of convergence, the results are equal except
in two solvers (ode23s and ode23t). The results for ode23s is job 4 in experiment 2, and
for ode23t it is job 5 in experiment 2. In both cases the rate of convergence is equal to
the other solvers for RoC c2 (rate of convergence) and RoC k2. The rate of convergence
increases to 0.0146s for RoC c1 and decreases to 0.013s for RoC k1 in ode23s. Com-
pared to the other solvers at these points, ode23s takes 0.0133s longer time to converge
in RoC c1 and 0.003s shorter time to converge. These numbers correspond to an increase
of 13.3% and a decrease of 3% in the rate of convergence. ode23t has the equal rate of
convergence as the other simulation solvers, except for RoC c1, which is equal to 0.012s
instead of 0.0013s as the others. This means that it has 0.0107s longer convergence time,
which correspond to 10.7% (equation 5.1).

Comparing the results from experiment 1 (table 7.6) and experiment 2 (table 7.8), there is
a small deviation between the same simulation solvers. The largest deviation is 0.0157%
in the relative tolerance, while the rate of convergence is equal except one result in RoC
k1 for ode23s in experiment 2. This value is 0.003s lower than the same value in experi-
ment 1.

When changing the simulation solver and the relative tolerance in the solver, the stiff
solvers, ode23s and ode23t have an unsatisfactory performance on the system. This is

64

8.3 Parallel Computing

due to the fact that the rate of convergence increases with minimum 10%. The remaining
solvers (ode45, ode15s, ode23, ode113) have a desirable performance with an estimation
leading to low relative tolerance and rate of convergence.

Based on experiments, results show that the relative tolerance in the simulation solvers
should have been set to the default value first, 1e − 03. This would yield a better start-
ing point, before testing what value that worked best with the solvers. Another point is
that not only should the relative tolerance in the solvers be changed, but also the abso-
lute tolerance. The reason for this is that the relative and absolute tolerance determine the
acceptable error. The two tolerances defines the acceptable error as

ei ≤ max(rtol × |xi|, atoli)

where rtol is the relative tolerance, xi is the ith state and atoli is absolute tolerance in the
ith state. The absolute tolerance in the solvers is defined by (MatlabWorks, 2016a) as:

Absolute tolerance is a threshold error value. This tolerance represents the
acceptable error as the value of the measured state approaches zero. The
default value for the absolute tolerance is 1e− 06.

In this thesis, only the relative tolerance was changed, even though the relative tolerance
and the absolute tolerance depend on each other.

Simulation Solver and Tap Period

In experiment 3, job 4 (ode23s) have the best relative tolerance (table 7.10) for the esti-
mated values. The rate of convergence shows that job 4 (ode23s) and job 5 (ode23t) have
the best performance (table 7.10). Since ode23s have the best performance for both the
relative tolerance and the rate of convergence. It is the best solver for this case where the
tap period is increased by 0.005s. The rest of the solvers have quite similar performance.
Although, ode113 (job 6), have a large increase in the relative tolerances and the most
varying rate of convergence.

By comparing experiment 3 and experiment 1, there are small deviation in the relative
tolerance between each solver, except for ode113. In percentage points,
The rate of convergence for ode113 increases in three out of four cases. When studying

RT c1 RT c2 RT k1 RT k2
Percentage Point 0.3647% 0.2952% 2.5575% 0.5344%

Table 8.3: The relative tolerance given in percentage points between experiment 3 and experiment 1
for ode113.

the results in table 7.10, the two best performances are two of the stiff solvers (ode23s and
ode23t) (subsection 2.2.2).

65

Chapter 8. Discussion

Changing the tap period to 0.205 and then change to simulation solvers was one way to ex-
ecute experiment 3. However, if the tap period had been varied around 0.2 (see simulation
setup, table 7.4), it would be possible to analyse the system in another way.

8.3.3 Optimizing the Gain Matrix

In experiment 4 (table 7.11) and experiment 5 (table 7.13), a special case occurs when
analysing at the results. In both, only one of the diagonal elements in the gain matrix were
changed. There is a clear change in the relative tolerance in the result. When changing the
value in either direction, the relative tolerance increases.

Changing the Gain on the Damper Constant

When looking at the relative tolerances, RT c1 and RT c2, in table 7.12 the smallest rela-
tive tolerance is found in job 3. On either side of this job, the relative tolerance increases,
which means that there exists a local minimizer. In (Nocedal and Wright, 2006), a local
minimizer is described as:

A point x∗ is a local minimizer if there is a neighborhood N of x∗ such that
f(x∗) ≤ f(x) for all x ∈ N .

where x∗ in this case is the gain matrix, Γ.

The rate of convergence increases as the 1st element in the gain matrix decreases. How-
ever, if the 1st element increases, the rate of convergence decreases. This can be seen in
RoC c1 and RoC c2 in table 7.12 when comparing to the gain matrices (Γ) in table 7.11.

Changing the Gain on the Spring Constant

When changing the gain on the spring constant, the same phenomenon occurs as when
changing the gain on the damper constant. By looking at the relative tolerances RT k1
and RT k2 in table 7.14, job 4 had the lowest relative tolerances. On either side of this
job the relative tolerances increased. This means that there exist a local minimizer for the
spring constant as well. The spring constant varies less when changing the gain on the
spring opposed to changing the gain on the damper constant. There are smaller changes
between the results than for the damper constant. However, the relative tolerance decreases
for the damper constant from job 5 to job 12. Whereas, the relative tolerance for the spring
constant increases at these jobs. The percentage points for the relative tolerance for the
damper constant is given in table 8.4. Negative percentage points means that there are
decreasing, while positive means that there are an increasing between job 4 and jobs 5-12
(the average, equation 2.3.1).

The rate of convergence increases from job 4 to job 5, except for RoC k2 which is
equal. However, the rate of convergence is equal for jobs 5-12. This means that there is
an increase in RoC c1, RoC c2 and RoC k1 between there jobs. For RoC c1, the rate of
convergence increased with 0.008s, which correspond to 8% slower rate of convergence.
For RoC c2 and RoC k1, the rate of convergence increased with 0.0081s and 0.016s,

66

8.3 Parallel Computing

RT c1 RT c2 RT k1 RT k2
Percentage Point -0.36% -0.54% 0.66% 0.42%

Table 8.4: The relative tolerance given in percentage points between job 4 and jobs 5-12 in experi-
ment 5.

corresponding to 8.1% and 16% (see subsection 5.2.3 and equation 5.1 for these calcu-
lations). Even though there were small changes in the relative tolerance, the percentage
increase from job 5 to job 12 indicate that job 4 produces the best result.

In (Ioannou and Sun, 2012), it is described that the rate of convergence decreases when the
gain matrix increases, and vice versa. When studying the rate of convergence in table 7.12
and table 7.14 and compare them to the gain matrices in experiment 4 (table 7.11) and
experiment 5 (table 7.13). The phenomenon described in (Ioannou and Sun, 2012) appear
in experiment 4 and experiment 5.

As described above, when the two elements in the gain matrix are increased, the rate
of convergence will decrease (Ioannou and Sun, 2012). However, the gain matrix is mul-
tiplied with the noise in the system, which means that the noise will increase (Ioannou
and Sun, 2012) when increasing the gain elements. The noise is seen as oscillations in the
estimated parameters around the real values. This can be seen in figure C.44 by comparing
it to figure C.47. There are few variations in relative tolerance and rate of convergence
between the two figures as seen in table 7.14. The small variations in the relative tolerance
from experiment 6, an extra job was added. This was done to conclude that it actually
existed a local minimizer. However, this was not done in experiment 5, because the vari-
ations were clearer. Therefore, it is not possible to see the same oscillations in the figures
from experiment 4 (appendix C5).

Local Minimizer

There exist a local minimizer when changing both parameters in the gain matrix. Al-
though, the definition of a local minimizer given above can sometimes imply that it is a
weak local minimizer. This means that one cannot know if it is an outright winner in its
neighborhood. When a point a the outright winner it is called a strict local minimizer,
which is defined in (Nocedal and Wright, 2006) as:

A point x∗ is a strict local minimizer (also called strong local minimizer) if
there is a neighborhood N of x∗ such that f(x∗) < f(x) for all x ∈ N with
x 6= x∗.

It is not possible to call the gain matrix given in equation 7.2 for a strict local minimizer,
because there have not been executed enough tests to conclude this. There is extremely
small numbers in the results given in section 7.3. Therefore, it is possible that there exist
another combination with the two diagonal elements in the gain matrix that gives the same
results as in equation 7.2. Since it is not possible to conclude that the gain matrix found

67

Chapter 8. Discussion

is a strong local minimizer, it implies that it cannot be a global minimizer either. A global
minimizer is defined in (Nocedal and Wright, 2006) as:

A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x,

where x ranges over all of Rn. The reason for not being able to say it can be global is that
we only have knowledge of the behavior of the system at a small part, which in this case
is local knowledge.

Optimized Gain Matrix and Changing the Tunable Positive Filter Constant

The tunable positive filter constant, τ , was varied in experiment 6 (table 7.15), where job 2
is the same as in the simulation setup (table 7.4). The results are given in relative tolerance
and rate of convergence (table7.16). Analysing the results, there are a clear distinction
in both relative tolerance and rate of convergence between job 2 and job 3. The relative
tolerance is studied in detail before the rate of convergence.

Job 1-2 have a maximum variation at 0.0112% (RT c2) and a minimum at 0.0003% (RT
k2), and is therefore assumed equal. The mean (subsection 2.3.1) between the different
relative tolerances are taken to use as comparison to the mean between job 3-5. The mean
of jobs 1-2 are given in table 8.5. The maximum variation between job 3-5 is 0.008% (RT

RT c1 RT c2 RT k1 RT k2
Mean 1.4950% 1.1883% -1.1008% -0.4333%

Table 8.5: The mean given in percentage is job 1-2 in experiment 6.

c1), while the minimum is 0.0003% (RT c1,c2). As for job1 2, the mean between job 3-5
is found and given in table 8.6. From the new relative tolerances (RT) found above, there

RT c1 RT c2 RT k1 RT k2
Mean 1.1560% 0.6878% -1.7642% -0.5781%

Table 8.6: The mean given in percentage is job 1-2 in experiment 6.

is found a decrease in RT c1 (0.339%) and RT c2 (0.5005%), and an increase in RT k1
(0.6634%) and RT k2 (0.1448%). This means that the deviation in the relative tolerance
for experiment 6 have little impact on which τ works best for the system performance.

When studying the rate of convergence, the jobs are separated into the same two groups
as for the relative tolerance, job 1-2 and job 3-5. In the two groups separately, the rate of
convergence is similar. However, for RT k2 the rate of convergence is equal for every job
in experiment 7. There is an increase in RoC c1 (0.008s), RoC c2 (0.0081s) and RoC k1
(0.016s) from jobs 1-2 to jobs 3-5. This correspond an increase of 8%, 8.1% and 16% in
rate of convergence (subsection 5.2.3).

68

8.3 Parallel Computing

The increase of the tunable positive filter constant (τ) makes the performance of the system
decrease. This can be seen in the rate of convergence for these jobs (3-5). The best results
are when τ is less or equal to 0.1 ·T0, where T0 is defined in table 7.4. The reason for this
is found when studying the transfer function in equation 7.4. In (Balchen et al., 2003), an
increase in ω0 will resolve in a quicker system, while decreasing ω0 will make the system
slower. ω0 increases as τ decreases, which shows in the rate of convergence in table 7.16.
Because of the small differences in the relative tolerance in job 1-2, there is not possible
to decide which one have the best performance. However, Both the relative tolerance and
the rate of convergence decreases from job 1 to job 2. Transfer function theory found in
(Balchen et al., 2003), states that continuing the decrease in τ will resolve in a increase in
ω0 which is equal to 1/τ in the transfer function 2.41.

τ is described as

τ = 0.1 · T0 = 0.1 · 1

f0
(8.1)

This means that the properties of the system will not only change when changing τ , but
also when changing T0 and f0. When T0 and f0 is given as in the simulation setup
(table 7.4), a decrease in f0 will make T0 increase and τ increase, while ω0 decrease. If
f0 increases, T0 and τ decreases, while ω0 increases.

Optimized Gain Matrix with Different Simulation Solvers

The system properties might have changed and therefore it can have changed from a nons-
tiff to a stiff system. This is easily checked when trying different simulation solvers on the
system. This resulted in experiment 7 (table 7.17) with the corresponding relative toler-
ance and rate of convergence found in table 7.18. When studying the results for the relative
tolerance, it is discovered that there are small variations here. Because of earlier findings
on the importance in rate of convergence, it is studied in detail before the relative tolerance.

Studying the rate of convergences in experiment 7, all results are equal except one re-
sults from RoC c2. Job 1 (0.0059s) and job 2 (0.0019s) have a higher rate of convergence
than the rest of the jobs (5.78e−4s. In terms of rate of convergence, ode45 (job 1) have the
least satisfactory performance before ode15s (job 2). ode23, ode23s, ode23t and ode113
have the best performance in terms of rate of convergence.

The small deviations between the relative tolerances in experiment 7, makes it difficult
to conclude which of the solvers that have the best performance. However, because of
the rate of convergence ode45 and ode15s can be excluded. The largest deviations in the
relative tolerances are

RT c1 = 0.1253%, RT c2 = 0.1070%, RT k1 = 0.0108%, RT k2 = 0.0115%.

Non of the remaining solvers stand out with best performance, because they all vary. How-
ever, a special case is that there are both nonstiff and stiff solvers remaining.

69

Chapter 8. Discussion

8.4 Working With Vilje
Vilje was a big part of this thesis. The problems described in subsection 5.1.3 made the
progress slow in the beginning. However, when it was possible to run multiple simulations
at the same time the usage of Vilje became positive. The reason for this is that it is pos-
sible to run simulations at night, which means that there are multiple results to the next day.

Another point is that now that version R2016b is installed on Vilje, it is possible to use the
Matlab command parpool on Vilje.

70

Chapter 9
Conclusion

In this chapter we will conclude this thesis. We have described and implemented a set of
analysing tools that were able to analyse the simulation results given when running sim-
ulations in parallel. Also, a set of equations for were derived for the cantilever dynamics
and given in linear-in-parameter form.

9.1 Achievements
This thesis is based on the problem descriptions

• Continuing the work from (Leer, 2016). Finding a gain matrix for the gradient
method which provides a good estimate.

• Learning to use Vilje and run a single simulation before trying to run multiple sim-
ulations in parallel.

• Investigate the cantilever dynamics and discovering if it is possible to use an adap-
tive parameter estimator to estimate the damper and spring constant in the cantilever.

This thesis has focused on the use of parameter estimation on a mathematical model of
a biological cell and AFM as a base in the simulations. We have reviewed different pa-
rameters that effect the properties of the model, simulation solvers and a set of analysing
tools. Based on the findings, the chosen analysing tools are described and implemented in
section 5.2. The parameters chosen to be tuned are found in table 7.1 and the simulation
methods are described in section 2.2. In addition, the cantilever dynamics of the AFM was
reviewed and studied. The findings are found in section 3.2 and chapter 6.

9.1.1 Continuing Work From Final Year Assignment
Multiple experiments were conducted with the gradient method using instantaneous cost
as parameter estimator. First, we continued the work from (Leer, 2016), where the gain

71

Chapter 9. Conclusion

matrix was tuned. The results gave a gain matrix that made the estimated parameters con-
verge to the real values.

Then, the new gain matrix was used to see if there was a deviation in the results be-
tween two simulations with the least-square method, but with different initial value, P0

(=gain matrix). There were no deviation between the rate of convergence, but there were
maximum deviation of 0.0045% in the relative tolerances.

Concluding Remarks

By successfully finding a gain matrix that made the estimated parameters converge to the
real values, and comparing this result with the result using the least-square method found
in the base model (section 4.3). The theory stated in subsection 4.1 and subsection 4.2,
gives the two parameter estimation methods the same convergence properties. However,
the gradient method gave a faster rate of convergence than the least-square method.

The simulations of least-square with different initial value can be assumed equal, which
means that the initial value did not effect the end result in this case.

9.1.2 Experiments on Vilje
Using Vilje and parallel computing (section 5.1), multiple simulations ran simultaneously.
This open the opportunity for optimization of the gain matrix and other parameters (ta-
ble 7.4), while determining if the system is nonstiff or stiff (section 2.2). In addition to
determine if it was useful running parallel computing with Vilje.

In experiment 1, the solvers produced similar results, except for two stiff solvers (see
subsection 2.2.2), ode23s and ode23t. The remaining solvers are three nonstiff solvers
(ode45,ode23,ode113) and one stiff solver (ode15s). Each of the remaining solvers have
variations in the relative tolerance. This means that there is not one specific solver that
produced the best result.

The results from experiment 2, shows small deviation between the solvers in relative tol-
erance. The largest deviation is at 0.1067%. However, when analysing the rate of con-
vergence, job 4 (ode23s) and job 5 (ode23t) varies from the other solvers. There is an
increase in RoC c1 of 13.3% and a decrease in RoC k1 of 3% for ode23s, while there is
a increase in rate of convergence of RoC 10.7% for ode23t.

Experiment 3 changes the rate of convergence when comparing to experiment 1. The
nonstiff solvers have become slower, while the stiff solvers have a decrease in the rate of
convergence.

The optimize gain matrix was found (equation 7.2) by changing each diagonal element
separately, and two local minimizers (see subsection 8.3.3) were discovered. However, the
second depended on the first.

72

9.1 Achievements

By finding the optimal gain matrix, it was possible to try and optimize the other parameters
in the simulation setup (table 7.4). The filter is a transfer function with properties defined
in section 2.4. This indications that by decreasing the tunable positive filter constant, τ ,
the system will become faster. Experiment 6 was about optimizing the system even more
by decreasing τ .

After changing parameters from the simulation setup (table 7.4), a change in the prop-
erties of the system can occur. Early in the simulations, the simulation solver was changed
to check if the system was nonstiff or stiff. Therefore, experiment 7 consisted of running
the optimized parameter found earlier with different simulation solvers.

Concluding Remarks

All the remaining solvers in experiment 1 are nonstiff and one is stiff solver which per-
forms well with nonstiff problems, the system with the given parameters can be said to be
nonstiff (see subsection 2.2.2).

Experiment 2 shows that the system performs best when nonstiff solvers are used (see
subsection 2.2.2). This means that the system is nonstiff for these properties. Also, if
comparing experiment 1 to experiment 2 the results are almost identical. The largest de-
viation in relative tolerance is at 0.0157%, while the rate of convergence is equal for all
except that RoC k1 for ode23s which converges 0.003s faster in experiment 2.

Changing the tap period in experiment 3, changed the system behavior. With these pa-
rameters, the system have become stiff (subsection 2.2.2).

Experiment 4 and experiment 5 found two local minimizers. The number of experiments
made it impossible to conclude if the second local minimizer (equation 7.2) was a strict
local minimizer or a global local minimizer.

Experiment 6, showed that the tunable filter constant, τ , decides the properties of the
system. This is because τ is equal to ω0 in equation 2.41 (section 2.4).

No conclusion could be drawn from experiment 7, since the results were varying and
consisted of both stiff and nonstiff solvers.

9.1.3 Cantilever Dynamics

The unknown parameters in the cantilever dynamics described in the linear-in-parameter
form (equation 6.13) can be estimated using an adaptive parameter estimation method.
Before the system can be implemented, an input signal that is PE need to be found.

73

Chapter 9. Conclusion

9.2 Using Vilje
Though we encountered problems using Vilje (subsection 5.1.3) in the beginning, it was
rewarding in the later stages of this thesis when everything worked. By using Vilje, we
were able to run more simulations than if not.

9.3 Future Work
In this section, issues for future work is presented.

• Continue to optimize the system with changing the parameters in the simulation
setup (table 7.4) or other parameters that could effect the properties of the system.
The relative tolerance could be set to default value and changed from there along
with changing the absolute tolerance. The same goes for changing the tap period,
and T0 and f0 in τ .

• Make the system into an optimization problem. When trying to optimize the system,
it was difficult to know how the parameters should be changed. First, finding which
optimization algorithm could be used. Second, trying to optimize one parameter
before increasing the number.

• Find the input signal that is PE will for the cantilever dynamics. Implement the
model and simulate.

• Try to remove the bias by adding another estimation parameter. This is the indention
depth, and by adding this the system changes into a bilinear model. This will make
the estimator more complex.

74

Bibliography

Abramovitch, D., Andersson, S., Pao, L., Schitter, G., 2007. A tutorial on the mecha-
nisms, dynamics, and control of atomic force microscopes. In: Proceedings of the 2007
American Control Conference. New York City, USA, pp. 3488–3502.

Ashino, R., Nagase, M., Vaillancourt, R., 2000. Behind and beyond the matlab ode suite.
Computers & Mathematics with Applications 40 (4), 491–512.

Balchen, J. G., Fjeld, M., Solheim, O. A., 2003. Reguleringsteknikk. Tapir.

Bao, G., Suresh, S., 2003. Cell and molecular mechanics of biological materials. Nature
materials 2 (11), 715–725.

Barney, B., et al., 2010. Introduction to parallel computing. Lawrence Livermore National
Laboratory 6 (13), 10.

Binnig, G., Quate, C. F., Gerber, C., 1986. Atomic force microscope. Physical Review
Letters 56 (9), 930–933.

Butt, H.-J., Cappella, B., Kappl, M., 2005. Force measurements with the atomic force
microscope: Technique, interpretation and applications. Surface science reports 59 (1),
1–152.

Campbell, N. A., Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V.,
Jackson, R. B., 2015. Biology - A Global Approach, 10th Edition. Pearson.

Cappella, B., Dietler, G., 1999. Force-distance curves by atomic force microscopy. Surface
science reports 34 (1), 1–104.

Egeland, O., Gravdahl, J. T., 2002. Modeling and simulation for automatic control. Vol. 76.
Marine Cybernetics Trondheim, Norway.

Grenoble, J. F. U., 1999. ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb.
URL http://www.obs.ujf-grenoble.fr/scci/logiciels/
matlab61/help/techdoc/ref/ode23.html

75

http://www.obs.ujf-grenoble.fr/scci/logiciels/matlab61/help/techdoc/ref/ode23.html
http://www.obs.ujf-grenoble.fr/scci/logiciels/matlab61/help/techdoc/ref/ode23.html

Haase, K., Pelling, A. E., 2015. Investigating cell mechanics with atomic force mi-
croscopy. Journal of The Royal Society Interface 12 (104), 20140970.

Hutter, J. L., Bechhoefer, J., 1993. Calibration of atomic-force microscope tips. Review of
Scientific Instruments 64 (7), 1868–1873.

Ioannou, P. A., Sun, J., 2012. Robust Adaptive Control. Dover Publications, Inc.

Iversen, K., 2015. Biological cell models and atomic force microscopy: A literature re-
view. Master’s thesis, Norwegian University of Science and Technology, Department of
Engineering Cybernetics.

Kreyszig, E., 2010. Advanced engineering mathematics. John Wiley & Sons.

Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A., Zhdanov, R. I.,
2007. Atomic force microscopy probing of cell elasticity. Micron 38 (8), 824–833.

Leer, K. B., May 2016. Biological cell models and atomic force microscopy: Parameter
estimation. Final year project assignment, Norwegian University of Science and Tech-
nology.

MatlabWorks, 2016a. Choose a solver.
URL https://se.mathworks.com/help/simulink/ug/
types-of-solvers.html

MatlabWorks, 2016b. Choose an ode solver.
URL https://se.mathworks.com/help/matlab/math/
choose-an-ode-solver.html

Nocedal, J., Wright, S., 2006. Numerical optimization. Springer Science & Business Me-
dia.

NOTUR, 2016. About vilje.
URL https://www.hpc.ntnu.no/display/hpc/About+Vilje

Ragazzon, M. R., Gravdahl, J. T., 2016. Imaging topography and viscoelastic properties by
constant depth atomic force microscopy. In: Control Applications (CCA), 2016 IEEE
Conference on. IEEE, pp. 923–928.

Ragazzon, M. R., Gravdahl, J. T., Pettersen, K. Y., Eielsen, A. A., 2015. Topography and
force imaging in atomic force microscopy by state and parameter estimation. In: 2015
American Control Conference (ACC). IEEE, pp. 3496–3502.

Ragazzon, M. R., Vagia, M., Gravdahl, J. T., 2016. Cell mechanics modeling and identifi-
cation by atomic force microscopy. IFAC-PapersOnLine 49 (21), 603–610.

Sader, J. E., Chon, J. W., Mulvaney, P., 1999. Calibration of rectangular atomic force
microscope cantilevers. Review of Scientific Instruments 70 (10), 3967–3969.

Sader, J. E., Larson, I., Mulvaney, P., White, L. R., 1995. Method for the calibration of
atomic force microscope cantilevers. Review of Scientific Instruments 66 (7), 3789–
3798.

76

https://se.mathworks.com/help/simulink/ug/types-of-solvers.html
https://se.mathworks.com/help/simulink/ug/types-of-solvers.html
https://se.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://se.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://www.hpc.ntnu.no/display/hpc/About+Vilje

Shampine, L., 1973. Local extrapolation in the solution of ordinary differential equations.
Mathematics of Computation 27 (121), 91–97.

Shampine, L. F., Gordon, M. K., 1975. Computer solution of ordinary differential equa-
tions.

Shampine, L. F., Reichelt, M. W., 1997. The matlab ode suite. SIAM journal on scientific
computing 18 (1), 1–22.

Sokolov, I., 2007. Atomic force microscopy in cancer cell research. Cancer Nanotechnol-
ogy, 1–17.

Suresh, S., 2007. Biomechanics and biophysics of cancer cells. Acta Materialia 55 (12),
3989–4014.

Tortonese, M., 1997. Cantilevers and tips for atomic force microscopy. IEEE engineering
in medicine and biology magazine 16 (2), 28–33.

Walpole, R. E., Myers, R. H., Myers, S. L., Ye, K., 1993. Probability and statistics for
engineers and scientists. Vol. 5. Macmillan New York.

Wilson, R., Bullen, H., n.d. Basic theory - atomic force microscopy, note on AFM from
Northern Kentucky University. Accessed online 15-March-2016.

77

78

Appendix A
Tables

Continuing changing Γ from Final Year Assignment

Test Γ Short summary
1 1e− 0 · diag([10e8 10e8]) ĉ good with some oscillation, can’t see k

2 1e− 0 · diag([10e9 10e8]) ĉ okay with some oscillation, can’t see k

3 1e− 0 · diag([10e11 10e8]) much oscillation on ĉ, can’t see k

4 1e− 0 · diag([10e2 10e8]) can’t see k or c

5 1e− 0 · diag([10e6 10e8]) can’t see k or c

6 1e− 0 · diag([10e12 10e8]) much oscillation on ĉ, can’t see k

7 1e− 0 · diag([10e8 10e12]) ĉ good with some oscillation, can’t see k

8 1e− 0 · diag([10e10 10e12]) ĉ okay, can’t see k

9 1e− 0 · diag([10e8 10e13]) k̂,ĉ good, some oscillation on ĉ

10 1e− 0 · diag([10e8 10e14]) very good results on both k̂ and ĉ

11 1e− 0 · diag([10e9 10e14]) good, but not as good as test 10

12 1e− 0 · diag([10e7 10e14]) okay, but a little slow

13 1e− 0 · diag([10e6 10e14]) k̂ okay, can’t see c

14 1e− 0 · diag([5e7 10e14]) almost the same as test 12

15 1e− 0 · diag([5e8 10e14]) best result till now

Table A.1: An overview over how Γ was tuned.

79

Parallel Computing

Changing Simulation Solver

Bias (real value - estimated value)
Job Bias c1 Bias c2 Bias k1 Bias k2
1 9.5901e-09 6.6547e-09 -1.6039e-05 -6.1070e-06
2 9.3571e-09 6.7283e-09 -1.6074e-05 -6.1072e-06
3 9.6480e-09 6.7333e-09 -1.5977e-05 -6.0498e-06
4 9.9482e-09 6.9445e-09 -1.6053e-05 -6.0934e-06
5 9.1403e-09 6.3480e-09 -1.5892e-05 -6.1229e-06
6 9.6598e-09 6.7528e-09 -1.5890e-05 -5.9592e-06

Relative tolerance (%)
Job RT c1 RT c2 RT k1 RT k2
1 1.5066 1.1934 -1.1026 -0.4330
2 1.4700 1.2066 -1.1050 -0.4330
3 1.5157 1.2075 -1.0983 -0.4289
4 1.5628 1.2453 -1.1035 -0.4320
5 1.4359 1.1384 -1.0925 -0.4341
6 1.5175 1.2110 -1.0923 -0.4225

Rate of convergence ([s])
Job RoC c1 RoC c2 RoC k1 RoC k2
1 0.0013 5.7839e-04 0.016 5.7839e-04
2 0.0013 5.7839e-04 0.016 5.7839e-04
3 0.0013 5.7839e-04 0.016 5.7839e-04
4 0.0146 5.7839e-04 0.016 5.7839e-04
5 0.0120 5.7839e-04 0.016 5.7839e-04
6 0.0013 5.7839e-04 0.016 5.7839e-04

Table A.2: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the test in table 7.5.

Combining Changes
Simulation Solver and Relative Tolerance

80

Bias (real value - estimated value)
Job Bias c1 Bias c2 Bias k1 Bias k2
1 9.5901e-09 6.6547e-09 -1.6039e-05 -6.1070e-06
2 9.3095e-09 6.8160e-09 -1.6070e-05 -6.1100e-06
3 9.6451e-09 6.7320e-09 -1.6061e-05 -6.0577e-06
4 9.9488e-09 6.9431e-09 -1.6053e-05 -6.0936e-06
5 9.1403e-09 6.3480e-09 -1.5892e-05 -6.1219e-06
6 9.6692e-09 6.7458e-09 -1.5899e-05 -6.0623e-06

Relative tolerance (%)
Job RT c1 RT c2 RT k1 RT k2
1 1.5066 1.1934 -1.1026 -0.4330
2 1.4625 1.2223 -1.1048 -0.4332
3 1.5152 1.2072 -1.1041 -0.4295
4 1.5629 1.2451 -1.1035 -0.4321
5 1.4359 1.1384 -1.0925 -0.4341
6 1.5190 1.2097 -1.0930 -0.4298

Rate of convergence ([s])
Job RoC c1 RoC c2 RoC k1 RoC k2
1 0.0013 5.7839e-04 0.016 5.7839e-04
2 0.0013 5.7839e-04 0.016 5.7839e-04
3 0.0013 5.7839e-04 0.016 5.7839e-04
4 0.0146 5.7839e-04 0.013 5.7839e-04
5 0.0120 5.7839e-04 0.016 5.7839e-04
6 0.0013 5.7839e-04 0.016 5.7839e-04

Table A.3: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the test in table 7.7.

81

Simulation Solver and Tap Period

Bias (real value - estimated value)
Job Bias c1 Bias c2 Bias k1 Bias k2
1 9.4568e-09 6.6448e-09 -1.5671e-05 -5.9512e-06
2 9.3732e-09 6.8711e-09 -1.5697e-05 -5.9443e-06
3 9.5528e-09 6.7315e-09 -1.5613e-05 -5.8972e-06
4 9.9651e-09 6.9834e-09 -1.5687e-05 -5.9401e-06
5 8.9448e-09 6.4597e-09 -1.5553e-05 -5.9601e-06
6 1.3578e-08 9.5880e-09 2.5863e-05 -1.3919e-05

Relative tolerance (%)
Job RT c1 RT c2 RT k1 RT k2
1 1.4856 1.1916 -1.0773 -0.4220
2 1.4725 1.2322 -1.0791 -0.4215
3 1.5007 1.2072 -1.0733 -0.4181
4 1.5655 1.2523 -1.0784 -0.4212
5 1.4052 1.1584 -1.0692 -0.4226
6 1.8822 1.5062 -1.4652 -0.9569

Rate of convergence ([s])
Job RoC c1 RoC c2 RoC k1 RoC k2
1 0.0093 0.0086 0.024 5.7839e-04
2 0.0039 0.0086 0.024 5.7839e-04
3 0.0013 0.0046 0.024 5.7839e-04
4 0.0013 5.7839e-04 0.024 5.7839e-04
5 0.0013 5.7839e-04 0.024 5.7839e-04
6 0.0240 5.7839e-04 0.0079 0.022

Table A.4: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the test in table 7.9.

82

Optimize the Gain Matrix
Damper Constant

Bias (real value - estimated value)
Job Bias c1 Bias c2 Bias k1 Bias k2
1 -3.7364e-09 -6.6212e-09 -1.6234e-05 -6.3085e-06
2 -1.7774e-09 -3.0224e-09 -1.6199e-05 -6.2492e-06
3 9.6142e-11 -4.5903e-10 -1.6167e-05 -6.2082e-06
4 1.7582e-09 1.3988e-09 -1.6140e-05 -6.1798e-06
5 3.1780e-09 2.7498e-09 -1.6117e-05 -6.1600e-06
6 8.7718e-09 6.4284e-09 -1.6042e-05 -6.1125e-06
7 9.4568e-09 6.6448e-09 -1.5671e-05 -5.9512e-06
8 9.5585e-09 6.6577e-09 -1.6037e-05 -6.1080e-06
9 9.6095e-09 6.6525e-09 -1.6041e-05 -6.1064e-06
10 9.6249e-09 6.6512e-09 -1.6043e-05 -6.1060e-06

Relative tolerance (%)
Job RT c1 RT c2 RT k1 RT k2
1 -0.5870 -1.1874 -1.1160 -0.4473
2 -0.2792 -0.5440 -1.1136 -0.4431
3 0.0151 -0.0823 -1.1114 -0.4402
4 0.2762 0.2508 -1.1095 -0.4382
5 0.4993 0.4931 -1.1080 -0.4368
6 1.3780 1.1528 -1.1028 -0.4334
7 1.4856 1.1916 -1.0773 -0.4220
8 1.5016 1.1939 -1.1025 -0.4331
9 1.5096 1.1930 -1.1027 -0.4330
10 1.5120 1.1928 -1.1028 -0.4329

Table A.5: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the test in table 7.11.

83

Rate of convergence ([s])
Job RoC c1 RoC c2 RoC k1 RoC k2
1 0.02 0.0367 0.016 5.7839e-04
2 0.0213 0.0313 0.0163 5.7839e-04
3 0.02 0.0273 0.016 5.7839e-04
4 0.02 0.0247 0.016 5.7839e-04
5 0.0186 0.022 0.016 5.7839e-04
6 0.0120 0.0126 0.016 5.7839e-04
7 0.0093 0.0086 0.0240 5.7839e-04
8 0.0013 0.0059 0.016 5.7839e-04
9 0.0013 5.7839e-04 0.016 5.7839-04
10 0.0013 5.7839e-04 0.016 5.7839e-04

Table A.6: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the test in table 7.11. Continuing to table A.5.

84

Spring Constant

Bias (real value - estimated value)
Job Bias c1 Bias c2 Bias k1 Bias k2
1 1.3314e-08 9.5190e-09 -1.5879e-05 -5.1708e-06
2 9.6447e-09 6.7409e-09 -1.7154e-05 -6.3708e-06
3 9.5774e-09 6.6577e-09 -1.6592e-05 -6.2667e-06
4 9.5585e-09 6.7515e-09 -1.6037e-05 -6.1080e-06
5 7.2750e-09 3.7638e-09 -2.5667e-05 -8.1572e-06
6 7.2749e-09 3.7637e-09 -2.5666e-05 -8.1559e-06
7 7.2748e-09 3.7636e-09 -2.5665e-05 -8.1544e-06
8 7.2747e-09 3.7635e-09 -2.5665e-05 -8.1526e-06
9 7.2746e-09 3.7633e-09 -2.5664e-05 -8.1503e-06
10 7.2744e-09 3.7631e-09 -2.5560e-05 -8.1474e-06
11 7.2741e-09 3.7628e-09 -2.5660e-05 -8.1435e-06
12 7.2738e-09 3.7624e-09 -2.5658e-05 -8.1478e-06
13 9.4423e-09 6.7571e-09 -6.3760e-05 -2.0100e-06

Relative tolerance (%)
Job RT c1 RT c2 RT k1 RT k2
1 2.0916 1.7070 -1.0916 -0.3666
2 1.5151 1.2029 -1.1792 -0.4517
3 1.5046 1.1956 -1.1406 -0.4443
4 1.5016 1.1939 -1.1025 -0.4331
5 1.1429 0.6750 -1.7645 -0.5784
6 1.1428 0.6749 -1.7644 -0.5783
7 1.1428 0.6749 -1.7644 -0.5782
8 1.1428 0.6749 -1.7643 -0.5780
9 1.1428 0.6749 -1.7642 -0.5779
10 1.1428 0.6748 -1.7641 -0.5777
11 1.1427 0.6748 -1.7640 -0.5774
12 1.1427 0.6747 -1.7638 -0.5770
13 1.4833 1.1876 -4.3831 -1.4252

Table A.7: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the test in table 7.13.

85

Rate of convergence ([s])
Job RoC c1 RoC c2 RoC k1 RoC k2
1 0.0013 0.0059 0.0013 5.7839e-04
2 0.0026 0.0073 0.0039 5.7839e-04
3 0.0026 0.0059 0.0106 5.7839e-04
4 0.0013 0.0059 0.016 5.7839e-04
5 0.0093 0.014 0.032 5.7839e-04
6 0.0093 0.014 0.032 5.7839e-04
7 0.0093 0.014 0.032 5.7839e-04
8 0.0093 0.014 0.032 5.7839e-04
9 0.0093 0.014 0.032 5.7839e-04
10 0.0093 0.014 0.032 5.7839e-04
11 0.0093 0.014 0.032 5.7839e-04
12 0.0093 0.014 0.032 5.7839e-04
13 0.0013 0.0059 0.0641 0.022

Table A.8: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the test in table 7.13. Continuing to table A.7.

86

Optimized Gain Matrix and Changing the Tunable Positive Filter Constant

Bias (real value - estimated value)
Job Bias c1 Bias c2 Bias k1 Bias k2
1 9.4896e-09 6.5950e-09 -1.5990e-05 -6.1132e-06
2 9.5585e-09 6.6577e-09 -1.6037e-05 -6.1080e-06
3 7.3342e-09 3.8149e-09 -2.5664e-05 -8.1545e-06
4 7.3556e-09 3.8330e-09 -2.5662e-05 -8.1530e-06
5 7.3851e-09 3.8579e-09 -2.5660e-05 -8.1505e-06

Relative tolerance (%)
Job RT c1 RT c2 RT k1 RT k2
1 1.4908 1.1827 -1.0992 -0.4334
2 1.5016 1.1939 -1.1025 -0.4331
3 1.1522 0.6841 -1.7643 -0.5782
4 1.1555 0.6874 -1.7642 -0.5781
5 1.1602 0.6918 -1.7640 -0.5779

Rate of convergence ([s])
Job RoC c1 RoC c2 RoC k1 RoC k2
1 0.0013 0.0059 0.016 5.7839e-04
2 0.0013 0.0059 0.016 5.7839e-04
3 0.0093 0.014 0.032 5.7839e-04
4 0.0093 0.014 0.032 5.7839e-04
5 0.0093 0.014 0.032 5.7839e-04

Table A.9: The results given as the bias, the relative tolerance (four decimals) and the rate of con-
vergence corresponding to the Experiment 8 in table 7.15.

87

Optimized Gain Matrix with Different Simulation Solvers

Bias (real value - estimated value)
Job Bias c1 Bias c2 Bias k1 Bias k2
1 9.5585e-09 6.6577e-09 -1.6037e-05 -6.1080e-06
2 9.4516e-09 6.7419e-09 -1.6063e-05 -6.1115e-06
3 9.6215e-09 6.7357e-09 -1.5955e-05 -6.0505e-06
4 9.9363e-09 6.9493e-09 -1.6051e-05 -6.0947e-06
5 9.1384e-09 6.3526e-09 -1.5894e-05 -6.1236e-06
6 9.6429e-09 6.7570e-09 -1.5938e-05 -5.9614e-06

Relative tolerance (%)
Job RT c1 RT c2 RT k1 RT k2
1 1.5016 1.1939 -1.1025 -0.4331
2 1.4848 1.2090 -1.1042 -0.4333
3 1.5115 1.2079 -1.0968 -0.4290
4 1.5609 1.2462 -1.1034 -0.4321
5 1.4356 1.1392 -1.0926 -0.4342
6 1.5149 1.2117 -1.0956 -0.4227

Rate of convergence ([s])
Job RoC c1 RoC c2 RoC k1 RoC k2
1 0.0013 0.0059 0.016 5.7839e-04
2 0.0013 0.0019 0.016 5.7839e-04
3 0.0013 5.7839e-04 0.016 5.7839e-04
4 0.0013 5.7839e-04 0.016 5.7839e-04
5 0.0013 5.7839e-04 0.016 5.7839e-04
6 0.0013 5.7839e-04 0.016 5.7839e-04

Table A.10: The results given as the bias, the relative tolerance (four decimals) and the rate of
convergence corresponding to the Experiment 7 in table 7.17.

88

Appendix B
Code

Code from Vilje

Listing B.1: Run Parallel Jobs on Vilje

1 #!/bin/bash
2 ##################################
3 #
4 # Matlab job
5 #
6 ##################################
7 #
8 #PBS -N parCompJob1
9 #PBS -A ntnu265

10 #PBS -l select=1:ncpus=32:ompthreads=16
11 #PBS -l walltime=05:00:00
12 #PBS -q workq
13 #
14
15 cd $PBS_O_WORKDIR
16 export OMP_NUM_THREADS=16
17
18 module load matlab/R2016b
19
20 matlab -nodisplay -nosplash -r donothing
21 matlab -nodisplay -nosplash -r ViljeJob1

For description of the different part of the code B.1, see subsection 5.1.2.

Listing B.2: Do Nothing file

1 display(’donothing’)

89

Matlab Code

BiasAndConvRate.m

Listing B.3: Finding the bias, relative tolerance and rate of convergence

1 %% Find the bias, relative tolerance and the rate of
convergence for the different tests

2
3 %clear all
4 %clc
5
6 % Load .mat file
7 %load(’logsout’)
8
9 % Retrive the results from the logout file

10 t = logsout.get(’theta’).Values.Time;
11 theta = logsout.get(’theta’).Values.Data/p.

num_elements_under_tip;
12 u = logsout.get(’U’).Values.Data;
13 x = logsout.get(’X’).Values.Data;
14 y = logsout.get(’Y’).Values.Data;
15 Fk = logsout.get(’Fk’).Values.Data(:);
16 Fc = logsout.get(’Fc’).Values.Data(:);
17 kj = logsout.get(’kj’).Values;
18 cj = logsout.get(’cj’).Values;
19 D = logsout.get(’D’).Values.Data;
20 Z = logsout.get(’Z’).Values.Data;
21 height = logsout.get(’height’).Values.Data;
22 t_ends = [t(1) t(end)];
23
24 % Real value
25 t1__ = [8.225 8.325]; % between these two times the first

real values exist
26 t2__ = [8.425 8.525]; % between these two times the second

real values exist
27
28 c1_ = mean(interp1(cj.Time, cj.Data(:), t1__)); % first

average real damper value between 8.225 and 8.325
29 c2_ = mean(interp1(cj.Time, cj.Data(:), t2__)); % second

average real damper value between 8.425 and 8.525
30
31 k1_ = mean(interp1(kj.Time, kj.Data(:), t1__)); % first

average real spring value between 8.225 and 8.325
32 k2_ = mean(interp1(kj.Time, kj.Data(:), t2__)); % second

average real spring value between 8.425 and 8.525

90

33
34 % The estimated values over the whole figure
35 t_ = linspace(8.15, 8.54999, 300);
36 theta_ = interp1(t, theta, t_);
37
38 % Estimated damper values
39 c_hat = theta_(:,1);
40 % Estimated spring values
41 k_hat = theta_(:,2);
42
43 %% Finding the bias
44 % Find the bias by taking the average over the estimated

parameters from
45 % the middle of the real values to the end. Then taking

this value minus
46 % the real value.
47
48 % Find the indices on the time axis where the real values

lies
49 idx1 = find(t_>=t1__(1) & t_<=t1__(2));
50 idx2 = find(t_>=t2__(1) & t_<=t2__(2));
51
52 % Values in c_hat and k_hat that correspond to the indices

in time1 and time2
53 c_hat1 = c_hat(idx1(1):idx1(end));
54 c_hat2 = c_hat(idx2(1):idx2(end));
55
56 k_hat1 = k_hat(idx1(1):idx1(end));
57 k_hat2 = k_hat(idx2(1):idx2(end));
58
59 % Calculate the bias from the middle of the real values
60 % Find c_hat and k_hat for these values
61 c_hat1_mid = c_hat1(end/2:end);
62 c_hat2_mid = c_hat2(end/2:end);
63
64 k_hat1_mid = k_hat1(end/2:end);
65 k_hat2_mid = k_hat2(end/2:end);
66
67 % Bias
68 bias_c1 = c1_ - mean(c_hat1_mid);
69 bias_c2 = c2_ - mean(c_hat2_mid);
70
71 bias_k1 = k1_ - mean(k_hat1_mid);
72 bias_k2 = k2_ - mean(k_hat2_mid);
73

91

74 %% Relative tolerance
75 % Relative tolerance (%) (bias/real value *100%)
76 rel_error_c1 = bias_c1/c1_ *100;
77 rel_error_c2 = bias_c2/c2_ *100;
78
79 rel_error_k1 = bias_k1/k1_ *100;
80 rel_error_k2 = bias_k2/k2_ *100;
81
82 %% Finding the rate of convergence
83
84 tid1 = t_(idx1(1:end));
85 tid2 = t_(idx2(1:end));
86
87 % 95% of the wanted values
88 c1_95 = c1_+(c1_*0.05);
89 c2_95 = c2_+(c2_*0.05);
90
91 k1_95 = k1_+(k1_*0.05);
92 k2_95 = k2_+(k2_*0.05);
93
94 % The estimated values converge between
95 conv_c1 = [c1_*0.95 c1_95]; %epsilon_c1
96 conv_c2 = [c2_*0.95 c2_95]; %epsilon_c2
97
98 conv_k1 = [k1_*0.95 k1_95]; %epsilon_k1
99 conv_k2 = [k2_*0.95 k2_95]; %epsilon_k2

100
101 % Indices where the estimated values are 95% or more of the

real values
102 c1_idx=find(c_hat1>=conv_c1(1) & c_hat1<=conv_c1(2));
103 c2_idx=find(c_hat2>=conv_c2(1) & c_hat2<=conv_c2(2));
104
105 k1_idx=find(k_hat1>=conv_k1(1) & k_hat1<=conv_k1(2));
106 k2_idx=find(k_hat2>=conv_k2(1) & k_hat2<=conv_k2(2));
107
108 % Time the estimated values crosses epsilon
109 t_eps_c1 = tid1(c1_idx(1));
110 t_eps_c2 = tid2(c2_idx(1));
111
112 t_eps_k1 = tid1(k1_idx(1));
113 t_eps_k2 = tid2(k2_idx(1));
114
115 % Rate of Convergence
116 RoC_c1 = t_eps_c1-t1__(1);
117 RoC_c2 = t_eps_c2-t2__(1);

92

118
119 RoC_k1 = t_eps_k1-t1__(1);
120 RoC_k2 = t_eps_k2-t2__(1);

93

ViljeJob.m

Listing B.4: Matlab code on Vilje

1 %% Simulating the model and extract the results in Vilje
with Instantaneous Cost

2 % Job number 1
3
4 % Simulating
5
6 p = init();
7 % Change p.Gamma and other variables from init.m
8
9 %Starting the simulation

10 sim(’cell_boop_xy’);
11
12 % Saving variables in .mat file
13 save(’ResVar1.mat’)

94

init.m

Listing B.5: init.m

1 function p = init()
2 % Initialize parameters
3
4 p = struct;
5
6 %p.SimNumPeriods = 500;
7
8 p.f0 = 20e3; % 10e3 cantilever osc. freq. [Hz]
9 p.zeta = 1/200;

10 p.M = 0.0075*9/20*125e-6*30e-6*4e-6*2330*100;
11 %p.LJ_sigma = 3.41e-10; %theta_2
12 %p.LJ_k_1 = -2/3*piˆ2*20e-21*(2.5e-3*1e-10ˆ-3)ˆ2*3.41e

-10ˆ4*200e-10;
13
14 p.K = p.M*(p.f0*2*pi)ˆ2;
15 p.C = 2*p.zeta*sqrt(p.M*p.K);
16
17 p.R = 100e-9;%6.4516e-08;% 50e-9;
18 %p.d0 = 300e-9;
19 p.X0 = 0e-9;
20 p.Y0 = 0e-9;
21 zi_max = 0.25e-6;
22
23 p.U0 = zi_max + p.R + 30e-9;
24 %p.u0 = p.R - 4e-7 - 100e-9;
25 p.Z0 = p.U0;
26
27 %p.omega0 = p.f0*2*pi;
28 %p.LJ_c_1 = p.LJ_k_1 * p.LJ_sigmaˆ2;
29 %p.LJ_c_2 = 1/30 * p.LJ_k_1 * p.LJ_sigmaˆ8;
30 %p.Spp = 2000; % Samples per cantilever period
31 %p.phi = 15*pi/180; % Measured signal phase [rad]
32
33 p.T0 = 1/p.f0; % cantilever oscillation period [s]
34 %p.Tend = p.SimNumPeriods * p.T0;
35 %p.Ts = p.T0 / p.Spp; % sample time [s]
36 %p.fs = 1/p.Ts;
37 %p.Soffset = round(p.phi*p.Spp/(2*pi)); % Num. samples to

offset signal
38
39
40 p.num_taps = 10; % per axis (for a total of num_tapsˆ2)

95

41 p.tap_period = 0.1; % Tapping period
42 %p.tap_period = 0.300;
43 p.tap_moving_time = 0.05;
44 p.x_scan_period = p.num_taps * p.tap_period;
45
46 p.Tend = p.x_scan_period * p.num_taps;
47
48
49 % Make random functions repeatable
50 rng(’default’);
51 rng(15);
52
53
54 %k = 0.05; % Spring constant [N/m]
55 k_B = 1.3806488e-23; %Boltzmann constant [m2 kg s-2 K-1]
56 T = 293.15; % Temperature [K]
57
58 %p.A = 10e-9; % Deflection amplitude [m]
59
60 p.w_z_sqr = k_B / p.K * T; % Thermal noise (Hutter and

Bechhoefer, 1993)
61 %p.w_a_sqr = (0.05*p.A)ˆ2;
62
63
64
65 N = 32; % Num. elements per axis
66 L = 1e-6; % length of cell [m]
67 dx = L/(N-1);
68 xi = -p.R:dx:L+p.R;
69 dy = L/(N-1);
70 yi = -p.R:dy:L+p.R;
71 p.num_elements_under_tip = (pi/4)*(2*p.R)ˆ2/(dx*dy);
72
73 [Xi,Yi] = meshgrid(xi,yi);
74
75 E = 5e3; % Typical Young’s modulus [Pa]
76 A0 = dx*dy; % Contact area / element area [mˆ2]
77 H0 = 1e-9;%0.5e-6; % Typical cell/element height [m]
78 k0 = E*A0/H0/4; % Typical spring constant [N/m]
79
80 xic = (Xi-L/2)/2;
81 yic = (Yi-L/2)/2;
82 Sphere = max(sqrt(Lˆ2 - xic.ˆ2 - 1.2*yic.ˆ2)*1e7-9.5, 0)*2;
83 InvSphere = 0.9*(1-Sphere).ˆ3+0.1;
84

96

85 Nk = imgaussfilt(randn(size(Xi)),4);
86 Nz = -imgaussfilt(randn(size(Xi)),8).*Sphere; rng(6);
87 Nc = imgaussfilt(randn(size(Xi)),6).*Sphere;% - 0.5*Sphere;
88 %surf(xic, yic, Nc);
89
90 z_unscaled = (-sin(1*pi*Xi/L)-0.5*sin(3.5*pi*Xi/L) -0.6*sin

(3*pi*Yi/L)+0.5*cos(1.0*pi*Yi/L-pi*0.35)-1.0*sin(4*pi*Xi
.*Yi/Lˆ2)+3 + 15.3*Nz).*Sphere;

91 k_unscaled = -(Nk+.5).*(Sphere+1.5);%(Nk.*Sphere +
InvSphere);

92 c_unscaled = Nc;
93
94 % Scale to min and max values
95 p.xi = xi; p.dx = dx; p.L = L;
96 p.yi = yi; p.dy = dy;
97 p.zi0 = scale(z_unscaled, 0, zi_max);
98 p.ki = scale(k_unscaled, k0*0.5, k0*2);
99 p.ci = scale(c_unscaled, 4e-7, 8e-7);

100
101 figure(1);clf;
102 %surf(xi, yi, p.zi0); axis equal;
103 surf(xi, yi, p.ki); hold on; imagesc(xi, yi, p.ki);
104 %surf(xi, yi, p.ci); hold on; imagesc(xi, yi, p.ci);%

imagesc(xi, yi, p.ci);
105 % xlabel(’x’); ylabel(’y’);
106
107 %plot(p.xi,p.zi0); grid on;legend(’z_0’);
108 %semilogy(p.xi,p.zi0,p.xi,p.ki,p.xi,p.ci); legend(’z_0’,’k

’,’c’); grid on;
109
110
111
112 % Parameter identification
113 p.filter_tau = 0.1*p.T0; % also used for d/dt filter 0.03
114 %p.filter_tau = 0.01*p.T0;
115
116 p.theta0 = [p.ci(1)*p.num_elements_under_tip; p.ki(1)*p.

num_elements_under_tip];
117 %p.Gamma = 1e-0*diag([10e8 10e18]); %real gamma matrix (2e8

Estimator gain)
118 p.Gamma = 1e-0*diag([4e8 10e14]);
119 p.alpha = 1e5;
120 p.beta = 3e1;%1e2;
121 p.R0 = 40*norm(p.Gamma); % 20
122 p.Lambda = [p.filter_tauˆ2 2*p.filter_tau 1];

97

123
124 [A, B, C, D] = tf2ss([p.M 0 0], [p.filter_tauˆ2 2*p.

filter_tau 1]);
125 p.f_A = A;
126 p.f_B = B;
127 p.f_C = C;
128 p.f_D = D;
129
130 % %% Asserts
131 % assert(mod(p.Spp, 4)==0, [’Samples per period should be

divisible by 4
132 % ’...
133 % ’to make sure cosine signal is exactly 90deg out of

phase from sine’]);
134 %
135
136 end

98

InstantaneousCost.m

Listing B.6: InstantaneousCost.m

1 function [theta_dot, w_hat] = fcn(w, phi, theta, p)
2 %#codegen
3
4 w_hat = theta’ * phi;
5
6 m_sqr = 1 + p.alpha*(phi’)*phi;
7
8 epsilon = (w - w_hat) / m_sqr;
9

10 theta_dot = p.Gamma * epsilon * phi;
11
12 end

99

run.m

Listing B.7: run.m

1 close all;
2 clear;
3 clc;
4 p = init();
5 close all;
6 %tic;
7 %logsout = sim(’cell_boop_xy’);
8 %toc;

100

plot short time.m

Listing B.8: Plot the estimated values

1 t = logsout.get(’theta’).Values.Time;
2 theta = logsout.get(’theta’).Values.Data/p.

num_elements_under_tip;
3 u = logsout.get(’U’).Values.Data;
4 x = logsout.get(’X’).Values.Data;
5 y = logsout.get(’Y’).Values.Data;
6 Fk = logsout.get(’Fk’).Values.Data(:);
7 Fc = logsout.get(’Fc’).Values.Data(:);
8 kj = logsout.get(’kj’).Values;
9 cj = logsout.get(’cj’).Values;

10 D = logsout.get(’D’).Values.Data;
11 Z = logsout.get(’Z’).Values.Data;
12 height = logsout.get(’height’).Values.Data;
13 t_ends = [t(1) t(end)];
14
15
16
17 %%
18 % First, find time indices just before raising cantilever
19 im = []; % Measurement indices
20 i = 0; n = 0;
21 for t1 = t’
22 i = i + 1;
23 if t1 > p.tap_period*n + p.tap_period-2*p.

tap_moving_time;
24 n = n + 1;
25 im = [im i];
26 end
27 end
28
29 %% Time dependent theta plot
30
31 figure(1); clf;
32 subplot(3,1,[1 2]);
33
34 t_ = linspace(8.15, 8.54999, 300);
35 theta_ = interp1(t, theta, t_);
36
37 [ax,h1,h2] = plotyy(t_,theta_(:,1), t_, theta_(:,2));
38 grid on;
39 xlabel(ax(1),’t [s]’) % label x-axis
40 ylabel(ax(1),’\widehat{c}’,’Interpreter’,’latex’) % label

101

left y-axis
41 ylabel(ax(2),’\widehat{k}’,’Interpreter’,’latex’) % label

right y-axis
42
43 ax1 = ax(1);
44 ax2 = ax(2);
45
46 ax1.XTick = 8.2:0.1:8.5;
47 ax1.XMinorTick = ’on’;
48
49 t__ = [8.225 8.325];% 8.45 8.5];
50 %t__ = [1.225 1.325];
51 k_ = interp1(kj.Time, kj.Data(:), t__);
52 c_ = interp1(cj.Time, cj.Data(:), t__);
53 h3 = line(t__, c_, ’Parent’, ax(1), ’Color’, h1.Color, ’

LineWidth’, 1, ’Marker’, ’s’, ’LineStyle’, ’--’);
54 h4 = line(t__, k_, ’Parent’, ax(2), ’Color’, h2.Color, ’

LineWidth’, 1, ’Marker’, ’s’, ’LineStyle’, ’--’);
55
56
57 t__ = [8.425 8.525];
58 %t__ = [1.425 1.525];
59 k_ = interp1(kj.Time, kj.Data(:), t__);
60 c_ = interp1(cj.Time, cj.Data(:), t__);
61 line(t__, c_, ’Parent’, ax(1), ’Color’, h1.Color, ’

LineWidth’, 1, ’Marker’, ’s’, ’LineStyle’, ’--’);
62 line(t__, k_, ’Parent’, ax(2), ’Color’, h2.Color, ’

LineWidth’, 1, ’Marker’, ’s’, ’LineStyle’, ’--’);
63
64 legend([h1 h2 h3 h4], ’\widehat{c}’,’\widehat{k}’,’c’

,’k’);
65
66 subplot(3,1,3);
67
68 t_ = linspace(t_(1), t_(end), 1000);
69 u_ = interp1(t, u, t_);
70 plot(t_,u_);
71 grid on;
72 xlabel(’t [s]’,’Interpreter’,’latex’) % label x-axis
73 ylabel(’u [m]’,’Interpreter’,’latex’) % label left y-axis
74 ax1 = gca;
75 ax1.XTick = 8.2:0.1:8.5;
76 ax1.XMinorTick = ’on’;
77
78

102

79
80 %toTikz(’theta_time’);

103

104

Appendix C
Figures From the Simulation

C1 Changing the Gain Matrix

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1.60433

1.604335

1.60434

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.1: Test 1 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

105

8.2 8.3 8.4 8.5

0

0.5

1

ĉ

×10
-6

1.60433

1.604335

1.60434

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.2: Test 2 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

-2

0

2

4

6

8

10

ĉ

×10
-7

1.604299

1.6042995

1.6043

1.6043005

1.604301

1.6043015

1.604302

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.3: Test 3 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

106

8.2 8.3 8.4 8.5

6.32973

6.32974

6.32975

6.32976

6.32977

6.32978

ĉ

×10
-7

1.60433

1.604332

1.604334

1.604336

1.604338

1.60434

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.4: Test 4 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5.75

5.8

5.85

5.9

5.95

6

ĉ

×10
-7

1.60433

1.604332

1.604334

1.604336

1.604338

1.60434

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.5: Test 5 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

107

8.2 8.3 8.4 8.5

-1

0

1

2

ĉ

×10
-6

1.6042915

1.604292

1.6042925

1.604293

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.6: Test 6 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.5

1.505

1.51

1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.7: Test 7 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

108

8.2 8.3 8.4 8.5

-1

-0.5

0

0.5

1

ĉ

×10
-6

1.51

1.52

1.53

1.54

1.55

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.8: Test 8 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.9: Test 9 in table A.1: The estimates of k̂ and ĉ using the gradient method using instanta-
neous cost, and the cantilever position input u over time.

109

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.10: Test 10 in table A.1: The estimates of k̂ and ĉ using the gradient method using
instantaneous cost, and the cantilever position input u over time.

110

8.2 8.3 8.4 8.5

0

0.5

1

ĉ

×10
-6

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.11: Test 11 in table A.1: The estimates of k̂ and ĉ using the gradient method using
instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.12: Test 12 in table A.1: The estimates of k̂ and ĉ using the gradient method using
instantaneous cost, and the cantilever position input u over time.

111

8.2 8.3 8.4 8.5

5.75

5.8

5.85

5.9

5.95

6

ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

1.8

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.13: Test 13 in table A.1: The estimates of k̂ and ĉ using the gradient method using
instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.14: Test 14 in table A.1: The estimates of k̂ and ĉ using the gradient method using
instantaneous cost, and the cantilever position input u over time.

112

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.15: Test 15 in table A.1: The estimates of k̂ and ĉ using the gradient method using
instantaneous cost, and the cantilever position input u over time.

113

C2 Changing the Simulation Solver

8.2 8.3 8.4 8.5

5

6

7

ĉ
×10

-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.16: Experiment 1, Job 1 (table 7.5): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.17: Experiment 1, Job 2 (table 7.5): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

114

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.18: Experiment 1, Job 3 (table 7.5): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.19: Experiment 1, Job 4 (table 7.5): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

115

8.2 8.3 8.4 8.5

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.20: Experiment 1, Job 5 (table 7.5): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.21: Experiment 1, Job 6 (table 7.5): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

116

C3 Simulation Solver and the Relative Tolerance

8.2 8.3 8.4 8.5

5

6

7
ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.22: Experiment 2, Job 1 (table 7.7): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.23: Experiment 2, Job 2 (table 7.7): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

117

8.2 8.3 8.4 8.5

4.5

5

5.5

6

6.5

7
ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

1.8

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.24: Experiment 2, Job 3 (table 7.7): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.25: Experiment 2, Job 4 (table 7.7): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

118

8.2 8.3 8.4 8.5

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.26: Experiment 2, Job 5 (table 7.7): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.27: Experiment 2, Job 1 (table 7.7): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

119

C4 Simulation Solver and Tap Period

8.2 8.3 8.4 8.5

5

6

7

ĉ
×10

-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.28: Experiment 3, Job 1 (table 7.9): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.29: Experiment 3, Job 2 (table 7.9): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

120

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.30: Experiment 3, Job 3 (table 7.9): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.31: Experiment 3, Job 4 (table 7.9): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

121

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.32: Experiment 3, Job 5 (table 7.9): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

5.5

6

6.5

7

7.5

8

ĉ

×10
-7

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.33: Experiment 3, Job 6 (table 7.9): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

122

C5 Changing the Damper Constant In the Gain

8.2 8.3 8.4 8.5

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.34: Experiment 4, Job 1 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.35: Experiment 4, Job 2 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

123

8.2 8.3 8.4 8.5

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.36: Experiment 4, Job 3 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.37: Experiment 4, Job 4 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

124

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.38: Experiment 4, Job 5 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

8

ĉ

×10
-7

1.2

1.4

1.6

1.8

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.39: Experiment 4, Job 6 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

125

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.40: Experiment 4, Job 7 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.41: Experiment 4, Job 8 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

126

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.42: Experiment 4, Job 9 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.43: Experiment 4, Job 10 (table 7.11): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

127

C6 Changing the Spring Constant In the Gain

8.2 8.3 8.4 8.5

5

5.5

6

6.5

7

ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.44: Experiment 5, Job 1 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

5.5

6

6.5

7

ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.45: Experiment 5, Job 2 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

128

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.46: Experiment 5, Job 3 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.47: Experiment 5, Job 4 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

129

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.48: Experiment 5, Job 5 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.49: Experiment 5, Job 6 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

130

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.50: Experiment 5, Job 7 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.51: Experiment 5, Job 8 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

131

8.2 8.3 8.4 8.5

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.52: Experiment 5, Job 9 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.53: Experiment 5, Job 10 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

132

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.54: Experiment 5, Job 11 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

ĉ

×10
-7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.55: Experiment 5, Job 12 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

133

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.56: Experiment 5, Job 1 (table 7.13): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

134

C7 Optimized Gain Matrix with Different Tunable Filter
Constants

8.2 8.3 8.4 8.5

2

4

6

8

ĉ

×10
-7

1.2

1.4

1.6

1.8

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.57: Experiment 6, Job 1 (table 7.15): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂
×10

-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.58: Experiment 6, Job 2 (table 7.15): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

135

8.2 8.3 8.4 8.5

5.5

6

6.5

7

7.5

8

ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

1.8

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.59: Experiment 6, Job 3 (table 7.15): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5.5

6

6.5

7

7.5

8

ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

1.8

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.60: Experiment 6, Job 4 (table 7.15): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

136

8.2 8.3 8.4 8.5

5.5

6

6.5

7

7.5

8

ĉ

×10
-7

1.3

1.4

1.5

1.6

1.7

1.8

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.61: Experiment 6, Job 5 (table 7.15): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

137

C8 Optimized Gain Matrix with Different Simulation Solvers

8.2 8.3 8.4 8.5

5

6

7

ĉ
×10

-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.62: Experiment 7, Job 1 (table 7.17): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.63: Experiment 7, Job 2 (table 7.17): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

138

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.64: Experiment 7, Job 3 (table 7.17): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.65: Experiment 7, Job 4 (table 7.17): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

139

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.66: Experiment 7, Job 5 (table 7.17): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

8.2 8.3 8.4 8.5

5

6

7

ĉ

×10
-7

1

1.5

2

k̂

×10
-3

ĉ

k̂

c

k

8.2 8.3 8.4 8.5

t [s]

-10

-5

0

5

u
[m

]

×10
-7

Figure C.67: Experiment 7, Job 6 (table 7.17): The estimates of k̂ and ĉ using the gradient method
using instantaneous cost, and the cantilever position input u over time.

140

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Listing
	List of Figures
	Abbreviations
	Introduction
	Problem Definition
	Outline

	Basic Theory
	Biological Cells
	Cell Types
	Eukaryotic Cells
	New Way to Study Cells

	Simulation Methods
	Basic Terms In the Simulation Solver
	Nonstiff and Stiff Ordinary Differential Equation Problems
	Explicit Runge-Kutta
	Implicit Runge-Kutta
	Rosenbrock Methods
	Modified Second Order Rosenbrock Method
	Trapezoidal Rule
	Adams-Bashforth-Moulton Method

	Mathematical Analysing Tools
	Mean
	Bias
	Relative Tolerance
	Rate of Convergence

	Transfer Functions

	Atomic Force Microscopy
	Operations
	Modes of Operation

	Cantilever Dynamics
	Problems with Atomic Force Microscopy Control
	Improvement of AFM

	Biological Advantages

	Parameter Estimation
	Gradient Method
	Method
	Parameter Estimator

	Least-Squares
	Base Model
	Cantilever-Sample Dynamics

	Parallel Computing
	Vilje
	Matlab on Vilje
	Running a Program on Vilje
	Challenges with Vilje

	Ways to Analyse the Results When Using Parallel Computing
	Bias
	Relative Tolerance
	Rate of Convergence
	Matlab Implementation

	Cantilever Dynamics
	Cantilever Dynamic Equation
	Defining Parameters for Simulation

	Simulation Results
	Simulation Setup
	Continuing Work From Final Year Assignment
	Overview
	Tuning the Gain Matrix
	Comparing the Gradient Method with the Least-Square Method

	Parallel Computing
	Changing the Simulation Solver
	Combining Changes
	Optimize the Gain Matrix
	Optimized Gain Matrix and Changing the Tunable Positive Filter Constant
	Optimized Gain Matrix with Different Simulation Solvers

	Discussion
	Cantilever Dynamics
	Continuing Work From Final Year Assignment
	Tuning the Gain Matrix
	Comparing the Two On-Line Parameter Estimation Methods

	Parallel Computing
	Changing the Simulation Solver
	Combining Changes
	Optimizing the Gain Matrix

	Working With Vilje

	Conclusion
	Achievements
	Continuing Work From Final Year Assignment
	Experiments on Vilje
	Cantilever Dynamics

	Using Vilje
	Future Work

	Bibliography
	Tables
	Code
	Figures From the Simulation
	Changing the Gain Matrix
	Changing the Simulation Solver
	Simulation Solver and the Relative Tolerance
	Simulation Solver and Tap Period
	Changing the Damper Constant In the Gain
	Changing the Spring Constant In the Gain
	Optimized Gain Matrix with Different Tunable Filter Constants
	Optimized Gain Matrix with Different Simulation Solvers

