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Abstract

The topic of this thesis is attitude control of a micro-satellite. Due to their physical size, micro-
satellites have fairly limited power supply, data storage, and computational resources, hence
making it crucial to have a simple and reliable control system. A reasonable approach is to
evaluate the controller off-line, and consequently reducing the need for CPU speed drastically
as real-time effort in space can be restricted to a table-lookup. In many circumstances it may
also be desirable to prevent the different components from operating near their thresholds, ei-
ther the design focus is to keep power consumption within some limits or to keep the rate of
wear as low as possible. It is shown in this thesis that all these concerns can be dealt with by
formulating a Model Predictive Control problem (MPC).

It is shown that explicit solutions to constrained linear MPC problems can be computed by
solving multi-parametric quadratic programs (mpQP), where the parameters are the compo-
nents of the state vector. The solution to the mpQP is a piecewise affine (PWA) function, which
can be evaluated at each sample to obtain the optimal control law. In addition to reducing the
on-line effort, the controller can be implemented on inexpensive hardware as fixed-point arith-
metics can be used. A simple second order system is included to illustrate the procedure.

An explicit MPC (eMPC) controller is derived for the SSETI/ESEO micro-satellite, initiated
by the European Space Agency (esa). The structural data is based on the the latter, and the
spacecraft is modelled as an ideal rigid body. Various topics within spacecraft and astrody-
namics are included to provide a thorough insight in how the model is derived. To represent its
attitude, the well known Euler parameters are utilized, while the dynamic equations are based
on the Newton-Euler formulation. An important thing to keep in mind is that the thrusters on
the satellite are on-off by nature. An attempt to solve this problem is done using a preliminary
bang-bang modulation scheme.

The controller is connected in closed-loop with the nonlinear plant, and the effectiveness is
demonstrated through simulations. With purpose of comparing the performance to other con-
trol schemes, we also derive and simulate PD-control and stationary LQR. As familiar to the
author, the eMPC approach has not yet been applied for attitude control of satellites. A paper
based on the work in this thesis is to be submitted to the American Control Conference (ACC)
2005. A preprint is given in the appendix.

Keywords:Predictive control; Constraints; Piecewise linear controllers; Linear quadratic reg-
ulators; PD-control; Spacecraft and astrodynamics; Attitude Control; Bang-bang modulation;
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Chapter 1

Introduction

Orientation control of rigid bodies has attracted many researchers in recent years. This is due to
the broad range of applications and the theoretical challenges it offer. Many real-life mechan-
ical systems, including aircrafts, helicopters, spacecrafts, underwater vehicles, surface vessels
and robots are examples of such systems. In the case of spacecrafts, we formally say that we
deal with the problem ofattitude control. More precisely, this is the process of orienting the
spacecraft in a specified, predetermined direction. The problem consists of two areas called
attitude stabilization and attitude maneuver (tracking) control. The first is the process of main-
taining an exciting orientation, while the latter has to do with controlling the reorientation of
the spacecraft from one attitude to another. The two areas are not totally distinct however, and
in many cases the problem to be solved deals with both.

The purpose of this thesis is to establish and investigate a reasonable model of a micro-satellite,
and then finally propose a strategy to solve the problem of attitude control. However, unlike
preceding work, typically solved using PD- or LQ-control, Lyapunov design procedures, slid-
ing mode, adaptive- or quaternion feedback techniques,H∞ orH2/H∞, the work in this thesis
will be on explicit Model Predictive Control. As familiar to the author, this approach has not
yet been applied for attitude control of spacecrafts. When doing implementation, an important
thing to keep in mind is that the actuating thrusters are on-off by nature. An attempt to solve
this problem is done using a preliminary bang-bang scheme.

The satellite model and technical data is based on the SSETI project initiated by the Euro-
pean Space Agency (esa), and the thesis is a contribution to this project. Note that whenever
referred to, the Phase B documents can be found on the official SSETI/ESEO homepage1.

1.1 Student Space Exploration & Technology Initiative

The Student Space Exploration & Technology Initiative, from now on called SSETI, was
founded by esa’s education office in hope of improving young people’s interest in space re-
lated technology. Through the project, students from different European universities partici-
pate in designing, building and operating a micro satellite. The European Student Earth Orbiter,
ESEO, is to be suitable to circle and take pictures of the Earth. Having reached this aim, further
assignments are intended.

1References and general information can be found on the official website -http://www.sseti.org

http://www.sseti.org
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The project is structured into different missions, each with different complexity level. One
reason for this layered structure is that students as well as teachers, professors and space pro-
fessionals can gain more experience and knowledge of the requirements for thedistributed
development2 concept by taking one step after another. The missions can be further divided
into different phases, ranging from Phase 0 to Phase F. The latter contains mission operations
after launch, while the first phases can be described as design phases which are necessary for
further development and manufacture of the satellite. The overall SSETI project structure is
illustrated in Figure 1.1, where Mission 1, Mission 2 and Mission 3 are Earth Orbiter (ESEO),
Moon Orbiter (ESMO) and Moon Rover (ESMR), respectively.

Figure 1.1: SSETI missions

In addition to the satellite, the whole system consists of the payload carried by the spacecraft
and the associated ground systems. The different universities have one or several teams, each
responsible for one particular subsystem. Also, for some of the subsystems there are numer-
ous teams working together. At the time of writing there are nineteen subsystems, which are
summarized in Table 1.1. Since the main focus in this thesis will be on attitude control, further
details on the ESEO-AOCS subsystem will be given shortly.

2By the term distributed development we denote a new and unconventional kind of communication, where all the
teams communicate using modern communication tools such as the internet, chat sessions, e-mails and telephone
conferences. In the end, all the different contributions are put together to make up the final product.
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ESEO subsystems

Attitude and Orbit Control System [AOCS] Propulsion [PROP]
Mechanisms [MECH] Mission analysis [MIAS]
On-board data handling [OBDH] Electrical Power Supply [EPS]
Thermal Control [TCS] Structures-Configuration [CONF]
SSETI Infrastructure [INFR] Systems [SYS]
Communication [COMM] Structures-Calculations [STRU]
Harness [HARN] Public Relations [PR]
Simulations [SIMU] Ground stations [GROU]
Risks analysis [RISK] Payload [PAY]
Operations [OPER]

Table 1.1: SSETI/ESEO subsystems

1.1.1 SSETI/ESEO-AOCS

The following information is taken from the Phase B report, which gives the major design
and performance requirements for all the subsystems, including ESEO-AOCS. Some technical
specifications, such as specific structural data, will be omitted at this point as they will be
repeated in Chapter 5. Also, for more in-depth details the reader should refer to the report.

ESEO mission objectives

In addition to the human aspects of the SSETI project, the high level operational goals or
mission objectives for ESEO can be summarized as

1) Acquire and uphold the required attitude during operational phases.

2) Perform required attitude maneuvers.

3) Perform required orbit maneuvers.

4) Compensate attitude perturbations created by orbit maneuver operations.

The satellite should be able to execute these tasks through its whole lifetime. The nominal
mission duration is set to be 28 days, while the orbit maneuver window is 18 days.

In terms of attitude and control requirements, the above mentioned goals are specified ac-
cording to the diversified situations the satellite is expected to face during its lifetime. We
denote these situations asattitude mission modes, and they include launch-, initialization-,
stabilization-, nominal-, safe-, failure- and transfer mode. Further details will be given shortly,
when discussing AOCS requirements.

ESEO-AOCS architecture

The AOCS is one of the subsystems needed to fulfill the high level objectives mentioned above.
It makes up a complex system which comprises the attitude sensors, a dedicated processor and
the software for attitude and orbit determination and control. All actuators belong to the AOCS
subsystem with exception of the thrusters, which are components of the propulsion subsystem.
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In terms of controlling the satellite it was decided to have 8 attitude thrusters, using a cold
gas system. Four of these are to be used for theAttitude Control System3 (ACS) and the other
four for theReaction Control System4 (RCS). A reaction wheel will also be included in the
ESEO satellite. The orbital thruster, which makes up part of theOrbit Control System(OCS),
is the only mean of achieving the orbital transfer.

A short summary of the sensors and actuators onboard ESEO is given as

Actuators Sensors

8 Attitude thrusters (AT) 1 Magnetometer (MAG)
1 Orbital thruster (OT) 1 Star tracker (STAR)
1 Reaction wheel (RW) 2 Horizon sensors (EHS)

4 Sun sensors (SUN1, SUN2)

Table 1.2: ESEO actuators and sensors

Further details on actuator placement and constructional aspects will be given later.

Performance requirements

Closely related to the mission objectives, we state the high level AOCS requirements as

1) The AOCS should control the satellite in order to allow the solar panels to get maximum
energy.

2) The AOCS should allow communication to Earth via the high gain antenna.

2) The AOCS should be able to perform a transfer maneuver.

3) The AOCS should be able to perform attitude maneuvers in order to take pictures, using
either wide angle camera (WAC) or narrow angle camera (NAC).

4) The AOCS should have redundancy at the system level, which means that no component
failure should be critical.

As mentioned earlier we have attitude mission modes associated with the performance require-
ments. Even though they are all relevant, only the nominal mode will be considered in this
thesis.

The nominal mode refers to general spacecraft operations when in orbit. It includes the task of
maintaining a stable attitude, i.e. the satellite is nadir5 pointing, as well as pointing the onboard
camera towards a desired location. The latter is controlled by the OBDH subsystem. During
the nominal phase, attitude estimation must be within0.1◦ accuracy (2σ).

3Is to be used for general attitude control operations. System is redundant to RCS.
4Is to be used for reaction control on orbit control perturbations. System is redundant to ACS.
5According to Wertz (1999), nadir is the direction towards the center of the Earth
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The accuracy depends mainly on the status of the sensors. As for the control algorithms,
there will be a need for precise maneuvering and the algorithms used will consequently have to
guarantee low errors. At the time of writing, the choice of control scheme is not definite for the
general ESEO-AOCS. However, it is most likely that a nonlinear controller would be desirable
for large angle maneuvers and tracking, while for precision and set-point control a linearized
model, and consequently also a linear controller, could be adequate. This will be investigated
further, when deriving the controllers in later chapters.

For details on the remaining operation modes, the reader should refer to the Phase B report.

We now give a summary of some specific pointing and stability requirements. In our case
the values in Table 1.5 are to be used as a reference for the remainder of this thesis.

Axis of rotation

x, y (roll, pitch) z (yaw)

Absolute pointing error 16◦ No constrain
Absolute measurement error No constrain No constrain
Stability error 0.12◦/s 0.0055◦/s
Absolute rate error 0.01◦/s 0.0006◦/s

Table 1.3: Satellite pointing requirements during WAC operation

Axis of rotation

x, y (roll, pitch) z (yaw)

Absolute pointing error 6◦ No constrain
Absolute measurement error 3◦ No constrain
Stability error 0.12◦/s 0.0055◦/s
Absolute rate error 0.01◦/s 0.0006◦/s

Table 1.4: Satellite pointing requirements during NAC operation

Axis of rotation

x, y (roll, pitch) z (yaw)

Absolute pointing error 1◦ 5◦

Absolute measurement error 0.1◦ 1◦

Stability error No constrain No constrain
Absolute rate error No constrain No constrain

Table 1.5: Satellite pointing requirements during normal operations



6 Introduction

Axis of rotation

x, y (roll, pitch) z (yaw)

Absolute pointing error 1◦ 1◦

Absolute measurement error 0.1◦ 0.1◦

Stability error No constrain No constrain
Absolute rate error No constrain No constrain

Table 1.6: Satellite pointing requirements during orbit maneuvers

Axis of rotation

x, y (roll, pitch) z (yaw)

Absolute pointing error 1◦ No constrain
Absolute measurement error No constrain No constrain
Stability error No constrain No constrain
Absolute rate error No constrain No constrain

Table 1.7: Satellite pointing requirements during communications

Based on the high level requirements and the specific requirements, it is possible to calculate
torque requirements for the attitude thrusters. We also note that ACS failure is considered a
worst-case scenario. This is due to the fact that the RCS consumes more fuel, and it does not
offer the same accuracy as ACS. ACS and RCS torque values and boundaries are given in Table
1.8, which are the values for the thrusters manufactured by the propulsion team.

τx [Nm] τy [Nm] τz [Nm]

ACS

Min 0.0306 0.0306 0.0252
Nominal 0.0484 0.0484 0.0398
Max 0.0510 0.0510 0.0420
RCS

Min 0.1000 0.1000 0.1000
Nominal 0.1580 0.1580 0.1195
Max 0.1661 0.1661 0.1256

Table 1.8: Required torque supply from attitude thrusters

1.2 Previous work

There exist numerous research articles on the problem of attitude control for spacecrafts. Most
of these deals with the case of complete control actuation using either momentum exchange
devices, thrusters or magnetic actuators, while some also deal with the underactuated case. For
the latter the reader should refer to Tsiotras and Doumtchenko (2000) and references therein.

The following summary gives an overview of some of the work that has been done on fully
actuated attitude control for spacecrafts. Since the model to be derived later utilizes thrusters
and a momentum exchange device, focus will be on similar configurations.
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Controllability criterions of a rigid body equipped with thrusters and momentum wheels are
addressed in Crouch (1984), while a general analytic framework for the stability analysis for a
large family of globally stable tracking control laws is presented in Wen and Kreutz-Delgado
(1991). For the same paper, various errors are corrected in Fjellstad and Fossen (1994).

A new class of globally asymptotically stabilizing feedback control laws is presented in Tsio-
tras (1994). By utilizing a non-quadratic Lyapunov function, together with stereographic pro-
jection, a linear controller is proposed for the case of three kinematic parameters. According to
the author, only nonlinear controllers were known prior to this work. In Hall (1995) attention
is given to the spinup dynamics of gyrostats containing a single axisymmetric rotor. It is also
indicated how to apply the theory for multiple rotor gyrostats. This theory is later utilized in
Hall et al. (1998), when developing tracking control laws for a rigid spacecraft using N-rotor
gyrostats and thrusters. In Hall (2000) a subset of the equilibrium attitudes of a satellite with N
rotors in a central gravitational field is studied. This is done using a non-canonical Hamiltonian
formulation. Local stability for the equilibriums is also discussed.

Robust attitude control is addressed by means of a wide range of different schemes. In Chen
and Lo (1993) this is implemented for multiaxial tracking, the actuators being pairs of oppos-
ing thrusters, using a sliding-mode design technique. Similar techniques are used together with
singular perturbations and nonlinear quaternion feedback in Cavallo and Maria (1996). Non-
linear large angle robust attitude control is also obtained usingH∞ methods. This is the case
in Show et al. (2001), where the satellite has fully coupled body fixed cantered thrusters. A
mixedH2/H∞ approach, together with LMI (linear matrix inequality) design, is utilized in
Sun and Yang (2002) to overcome inertia matrix uncertainty and unbalanced thruster torques.
In Show et al. (2003) theH∞ controller contains linear terms for stabilization and nonlinear
terms for performance enhancement. The nonlinear controller parameters are designed using
a LMI method. The proposed controller is applicable to wheel controlled systems as well as
thruster controlled systems.

Some work has also been done on integrated power/attitude control systems (IPACS). In Hall
(1997) a cluster of four or more high-speed flywheels was used to provide large angle attitude
control and energy storage, by using a singular value decomposition to decouple the wheels.
Integrated attitude control and power tracking was also addressed in Tsiotras et al. (2001).
For the latter, four or more energy/momentum wheels in a non-coplanar configuration and a
set of three thrusters were used to implement the torque inputs. Prior to this work, exact non-
linear equations of motion had not been considered in sense of IPACS, according to the authors.

The above mentioned contributions were done using rigid body models. In the case of flex-
ible spacecrafts, the complexity increases. This could for instance be the case for satellites
with large flexible solar arrays. In Wie and Plescia (1984) a nonlinear microprocessor-based
reaction jet controller is presented. To reduce vibrations, and the fact that thrusters are on-off
by nature, makes the use of signal modulation necessary. The aid of both static and dynamic
Pulse-Width Pulse-Frequency (PWPF) modulators is also addressed in this paper. The same
issues are discussed in Wie and Barba (1985), as well as comparing PWPF with the more tradi-
tional bang-bang control scheme. Some stability and control analysis are also given, by means
of quaternion feedback. In addition to PWPF, Song and Agrawal (1999) use smart materials
for active vibration suppression.
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1.3 Outline of the thesis

The thesis is organized as follows:

• Chapter 2: Different parametrizations of the attitude and their properties are described.
Our choice of attitude parametrization is discussed in the end.

• Chapter 3: An introduction to spacecraft dynamics, actuators and astrodynamics is
given. The satellite model to be used later is derived based on the theory in this chapter.

• Chapter 4: A complete model of the satellite is presented and some important control
properties are discussed.

• Chapter 5: A review on PD-control and LQR, together with an introduction to explicit
Model Predictive Control, is given. Based on this theory, and the model in Chapter
4, attitude controllers are designed. The performance of the explicit MPC approach is
compared with the other schemes, which are both well known in the literature. This is
done by means of simulations in MATLAB and Simulink. Since the actuating thrusters
in the model are on-off by nature, a continuous control sequence will not be applicable.
A suggestion on how to solve this problem, using bang-bang modulation, is given.

• Chapter 6: Conclusions and recommendations for further work are given.

• Appendix A: Based on the work done in this thesis, a paper is to be submitted to the
24th American Control Conference (ACC) 2005, Portland, Oregon. A preprint is given
in this appendix.

• Appendix B: During the process of this thesis extensive communication and information
flow have been done within the SSETI project and esa. Some examples can be found in
this appendix.

• Appendix C: Includes different printouts of source code and block diagrams from MAT-
LAB and Simulink, respectively.

• Appendix D: Newton-Euler equations of motion for a rigid body are derived.

• Appendix E: An overview of important topics within celestial mechanics is given. Ce-
lestial mechanics underlies all the dynamical aspects of the orbital motion of a spacecraft
and the motion of the mass center.

• Appendix F: The relatively new(w, z) parametrization is derived in detail.



Chapter 2

Attitude parametrization

Rigid body dynamics is important for a wide range of control applications, and is essential in
robot control, ship control, control of aircrafts and satellites, and vehicle control in automotive
systems. In the case of describing the dynamics of a rigid spacecraft, the Newton-Euler equa-
tions of motion are commonly used to provide a complete and well defined framework. For the
kinematics the situation is different, due to the fact that the rotation matrix, which describes
the relative orientation between two reference frames, can be parameterized in more than one
way. Which parametrization to use is clearly dependent on the problem to be solved. This
chapter gives an overview of different attitude parametrizations, including the relatively new
(w, z) parametrization. A brief discussion can be found in the end, explaining our choice of
parametrization.

2.1 The rotation matrix

The rotation matrix, also called thedirection cosine matrix, has three interpretations;

• Describes the mutual orientation between two coordinate frames, where the column vec-
tor are cosines of the angles between the two frames.

• Transforms vectors represented in one reference frame to another.

• Rotates a vector within a reference frame.

The rotation matrixR from framea to frameb is denotedRa
b . A matrixR is a rotation matrix

if and only if it is an element of the set denoted bySO(3), that is,

SO(3) =
{
R ∈ R3×3 : RTR = I and detR = 1

}
, (2.1)

whereI is the3× 3 identity matrix.

A useful parametrization of the rotation matrix is the angle-axis parametrization corresponding
to a rotationθ ∈ R about a unit vectork ∈ R3. Rodrigues’ formula(Murray et al., 1994) gives

R(k, θ) = I + S(k) sin θ + S2(k)(1− cos θ) (2.2)

whereS(·) is a skew-symmetric matrix operator and member of the set denoted byso(3);

so(3) =
{
S ∈ R3×3 : ST = −S

}
(2.3)
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In coordinate vector notation we introduce theskew-symmetric formof the vectorω defined by

ω× , S(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , ω =

ωx

ωy

ωz

 (2.4)

2.1.1 Kinematic differential equation

From the properties ofSO(3), it can be shown that the kinematic differential equation for the
rotation matrix can be given by the two alternative forms (Egeland and Gravdahl, 2002)

Ṙa
b = (ωa

ab)
×Ra

b (2.5a)

Ṙa
b = Ra

b (ω
b
ab)

×
(2.5b)

whereωa
ab is the instantaneous angular velocity of frameb relative to framea as seen from the

a frame. Similar,ωb
ab is the angular velocity of frameb relative to framea as seen from theb

frame. Using (2.4) we can rewrite (2.5) as

Ṙa
b = S(ωa

ab)R
a
b = Ra

bS(ωb
ab) (2.6)

2.1.2 Attitude deviation

Let the framea define a reference orientation and let frameb be a body fixed frame. Then the
rotation matrixR , Ra

b will describe the orientation of the body. Suppose that the desired
orientation of the body is given by a rotation matrixRd.

In the case of rotation matrices it does not make sense to subtractRd from R as the result
would not be a valid rotation matrix. Instead the deviation between the desired and the actual
orientation is described by the rotation matrixR̃b ∈ SO(3) defined by

R̃ , RT
dR (2.7)

It can be shown (Egeland and Gravdahl, 2002), by using composite rotations, that the kine-
matic differential equations for the attitude deviation can be calculated as

ω̃b = ωb − ωb
d (2.8a)

d

dt
R̃ = R̃S(ω̃b) (2.8b)

Clearly, from (2.7) we se that whenR ≡ Rd ⇒ R̃ = I.

2.2 Euler angles

The Euler angles parametrization gives a rather physical interpretation of the orientation of one
coordinate frame relative to another. When describing the motion of rigid bodies that move
freely, like aeroplanes and satellites, the yaw-pitch-roll (ZYX) type is commonly used. The
rotation matrix froma to b can be found by post-multiplying three composite rotation matrices,
which are all obtained from simple rotations about the axes fixed in theb-system. The resulting
rotation matrix is given as

Ra
b = Rz(ψ)Ry(θ)Rx(φ) (2.9)
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where

Rx(φ) =

1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)

 , Ry(θ) =

 c(θ) 0 s(θ)
0 1 0

−s(θ) 0 c(θ)

 , Rz(ψ) =

c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1


and we have used thatc(·) ands(·) denotescos(·) andsin(·), respectively. The final rotation
matrix froma to b can then be found from (2.9) as

Ra
b =

c(ψ)c(θ) c(ψ)s(θ)s(φ)− s(ψ)c(φ) c(ψ)c(φ)s(θ) + s(ψ)s(φ)
s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)c(φ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

 (2.10)

Without any further explanation we conclude that we get a singularity in (2.10) forθ = ±π
2 .

Note that many possible permutations of the Euler angles parametrization exist, depending
on how the composite rotations are done. An overview can be found in Kane et al. (1983).

2.3 Euler parameters

The Euler parameters, also calledunit quaternions, are attractive due to their nonsingular
parametrization and linear kinematic differential equations if the angular velocities are known.
The quaternion representation requires less computations than for instance the Euler angles
representation, and is therefore useful in applications where computer resources are limited.

The Euler parameters are defined in terms of the angle-axis parametersθ andk, briefly dis-
cussed in regards to (2.2). The mapping is defined as

η = cos
θ

2
, ε = k sin

θ

2
(2.11)

which gives the corresponding rotation matrix

R(η, ε) = I + 2ηS(ε) + 2S2(ε) (2.12)

By definingε , [ε1, ε2, ε3]
T we can write the rotation matrix froma to b by means of (2.12) as

Ra
b =

1− 2(ε22 + ε23) 2(ε1ε2 − ηε3) 2(ε1ε3 + ηε2)
2(ε1ε2 + ηε3) 1− 2(ε21 + ε23) 2(ε2ε3 − ηε1)
2(ε1ε3 − ηε2) 2(ε2ε3 + ηε1) 1− 2(ε21 + ε22)

 (2.13)

It is found in Egeland and Gravdahl (2002) that the derivatives of the Euler parameters can be
given as functions of the angular velocity, which gives the kinematic differential equations

η̇ = −1
2
εTωb

ab (2.14a)

ε̇ =
1
2

[ηI + S(ε)]ωb
ab (2.14b)
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By definingωb
ab , [ω1, ω2, ω3]

T, (2.14) can be written in component form as

η̇ = −1
2
(ε1ω1 + ε2ω2 + ε3ω3) (2.15a)

ε̇1 =
1
2
(ηω1 − ε3ω2 + ε2ω3) (2.15b)

ε̇2 =
1
2
(ε3ω1 + ηω2 − ε1ω3) (2.15c)

ε̇3 =
1
2
(−ε2ω1 + ε1ω2 + ηω3) (2.15d)

Finally, we note thatη2 + εTε = 1. The latter is known to be a redundancy.

2.4 Rodrigues parameters

The classical and modified Rodrigues parameters can be interpreted as the coordinates resulting
from a stereographic projection of the four-dimensional Euler parameter hypersphere onto a
three-dimensional hyperplane (Schaub et al., 1995). The difference between them is how the
projection point and mapping hyperplane is chosen.

2.4.1 The classical Rodrigues parameters

The classical Rodrigues parameters can be derived from the Euler parameters with the trans-
formation

q =
ε

η
(2.16)

Combining (2.16) and (2.11) yields

q = k tan
θ

2
(2.17)

Clearly, the classical Rodrigues parameters have a singular condition forθ = ±π, where|q| →
∞. The kinematic differential equation is derived from (2.14)

q̇ =
d

dt

ε

η
=
ηε̇− η̇ε

η2
(2.18)

which gives the quadratic nonlinear differential equation for the kinematics, that is

q̇ =
1
2

[
I + S(q) + qqT]

ωb
ab (2.19)

By definingωb
ab , [ω1, ω2, ω3]

T, (2.19) can be written in component form as

q̇1 =
1
2

[
(1 + q21)ω1 + (q1q2 − q3)ω2 + (q1q3 + q2)ω3

]
(2.20a)

q̇2 =
1
2

[
(q1q2 + q3)ω1 + (1 + q22)ω2 + (q2q3 − q1)ω3

]
(2.20b)

q̇3 =
1
2

[
(q3q1 − q2)ω1 + (q3q2 + q1)ω2 + (1 + q23)ω3

]
(2.20c)

Unlike the Euler parameters, the Rodrigues parameters are numerically unique. They uniquely
define a rotation on the open range of(−π, π). As is evident in (2.16), reversing the sign of the
Euler parameters has no effect onq.
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2.4.2 The modified Rodrigues parameters

The modified Rodrigues parameters can be derived from the Euler parameters with the trans-
formation

σ =
ε

1 + η
(2.21)

Combining (2.16) and (2.21) yields

σ = k tan
θ

4
. (2.22)

Clearly, the the modified Rodrigues parameters have a singular condition forθ = ±2π, which
allow twice the principal rotation angle compared to the classical Rodrigues parameters. From
(2.16) and in (2.14) we get the differential kinematic equations

σ̇ =
1
4

[
(1− σTσ)I + 2S(σ) + 2σσT]

ωb
ab (2.23)

By definingωb
ab , [ω1, ω2, ω3]

T, (2.23) can be written in component form as

σ̇1 =
1
4
(1 + σ2

1 − σ2
2 − σ2

3)ω1 +
1
2
(σ1σ2 − σ3)ω2 +

1
2
(σ1σ3 + σ2)ω3 (2.24a)

σ̇2 =
1
2
(σ2σ1 + σ3)ω1 +

1
4
(1− σ2

1 + σ2
2 − σ2

3)ω2 +
1
2
(σ2σ3 − σ1)ω3 (2.24b)

σ̇3 =
1
2
(σ3σ1 − σ2)ω1 +

1
2
(σ3σ2 + σ1)ω2 +

1
4
(1− σ2

1 − σ2
2 + σ2

3)ω3 (2.24c)

The equations display a similar degree of nonlinearity as do the corresponding equations in
terms of the classical Rodrigues parameters. However, unlike the classical Rodrigues parame-
ters, the modified Rodrigues parameters are not unique. This can be seen in (2.21).

2.5 The(w, z) parametrization

The three-dimensional(w, z) parametrization is a relatively new formulation for describing
the relative orientation of two reference frames using two perpendicular rotations. Although it
uses three parameters to describe the motion, two of the parameters can be combined to a single
complex variable. The complex variable is used to designate the second of the two rotations
and it is derived using stereographic projection (Conway, 1978). Since this parametrization is
quite new and not very well known it is derived in detail in Appendix F. The main results are
given in the following.

The differential kinematic equations for the(w, z) parametrization are

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (2.25a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (2.25b)

ż = ω3 − ω1w2 + ω2w1 (2.25c)

Alternatively they can be written more compactly as

ẇ = −iω3w +
ω

2
+
ω̄

2
w2, (2.26a)

ż = ω3 +
i

2
(ω̄w − ωw̄) (2.26b)
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Properties

The(w, z) parametrization has some unique properties that makes it useful in attitude control
problems.

• The kinematic equations are compact and have a clear physical interpretation. It can be
realized using two rotations about perpendicular axes.

• Thez parameter does not appear in (2.25a) and (2.25b). This means that in some appli-
cations the control problem can be decomposed into one of controlling onlyw and one
of controllingz.

• A three dimensional parametrization will always involve singularities. A singularity
appears in the(w, z) parametrization when the body is upside down and consequently
w → ∞. The equilibrium(w1,w2, z) = (0, 0, 0) is nevertheless as far away from the
singularity as possible.

• The(w, z) parametrization can easily be connected to other well known parametrizations
like Euler angles, Rodrigues parameters and angle-axis parametrization.

2.6 Discussion

The previous sections have shown that there are many attitude parametrizations to choose from.
Some differences exist however, and which parametrization to use is clearly dependent on the
problem to be solved.

The Euler angles may seem intuitive but they can introduce complicated nonlinear expression
with inherent singularities. To avoid the singularities we would have to stay in the open range
(−π

2 ,
π
2 ). The Rodrigues parametrizations also suffer from singularities. It has been shown

however (Schaub et al., 1996), in the case of modified Rodrigues parameters, that the singular-
ities can be dealt with using a kind of switching technique. Nevertheless, in the general case it
is a well known fact that a three dimensional parametrization always will involve singularities.
This is also the case for the(w, z) parametrization. The equilibrium(w1,w2, z) = (0, 0, 0)
is nevertheless as far away from the singularity as possible, which occurs when the body is
in upside down configuration. The parametrization using Euler parameters on the hand, is
the only four dimensional parametrization discussed sofar, and consequently it does not suffer
from any singularities. This makes it a popular choice in many applications and in the literature.

Despite the singularity problem, the(w, z) parametrization has some unique properties that
would make it useful in attitude control problems. The reason why we choose the Euler param-
eters instead is partly due to singularity avoidance, but mostly because the latter is more known
in literature, and also due to the fact that the Euler parameters have been used extensively in
earlier phases of the SSETI project.



Chapter 3

Spacecraft and astrodynamics

The study of the dynamics of objects in interplanetary or interstellar space is called astrody-
namics and has two major divisions.Celestial mechanicsor orbit dynamics is concerned with
the motion of the center of mass of objects in space, whereasattitude dynamicsis concerned
with the motion about the center of mass. Since the attitude dynamics is the main focus of
this thesis, only a brief review will be given on the celestial mechanics. For the interested
reader, Sellers (2000) is highly recommended as an introduction to astrodynamics. For more
in-depth information see Hughes (1986), Wertz (1978, 1999) and Vallado (1997). The work in
this chapter is based on these references.

3.1 Coordinate reference systems

As described in Chapter 2, we have already established the mathematics needed to describe the
relative orientation between to coordinate reference frames. Obviously, to utilize these strong
results it is necessary to have well defined reference frames. In the following we define suitable
coordinate systems, which will be used throughout this thesis. We adopt the notation in Hughes
(1986), by letting a reference frame be denoted byFa, where the indexa denotes which system
we consider. The three unit vectors forming the basis, are given the same index. Furthermore,
all the systems to be defined are right-handed, and described by their origins, fundamental
planes, and their preferred directions. Positive rotation in a system is when rotating counter
clockwise about positive axis, when seen towards the origin.

Earth-centered inertial frame

This system originates at the center of the Earth, and is designated by the letters ECI. The
fundamental plane is the Earth’s equator. Thexi axis points towardsvernal equinox, Υ, the
yi axis is90◦ east in the equatorial plane, and thezi axis extends through the North Pole, as
shown in Figure 3.1 This coordinate system is non-rotating, and assumed fixed in space, hence
we call it an inertial reference frame. For the remainder we useFi to denote the ECI system.

Remark 3.1.1. Thegeocentric equatorial coordinate system, denoted IJK, is often used inter-
changeably with the ECI system. This is often confusing, and in fact, the IJK system is usually
what people mean when they use the term ECI. The IJK is thereal inertial system, while the
ECI system is slightly moving by means ofprecessionandnutation. However, we will not
pursue this problem any further, and for our purposes we assume that the ECI system coincide
with the IJK system, at all time.
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Figure 3.1: The ECI frame,Fi

Earth-centered Earth-fixed frame

As for the ECI system, the Earth-centered Earth-fixed system, denoted by ECEF,Fe, originates
at the center of the Earth, and the fundamental plane is the Earth’s equator. The basis is spanned
by the unit vectorsxe, ye andze, wherexe is fixed and aligned with the particular meridian. A
brief discussion on the rotation of the Earth, and consequently the rotation ofFe relative toFi

will be given shortly.

Satellite orbit-fixed frame

The orbit frame has its origin located in the satellite’s center of mass. Its basis is defined by
the unit vectorsxo, yo andzo. Thezo axis isalwaysnadir pointing (center of the Earth), while
thexo axis is perpendicular tozo and pointing in the direction of the velocity. Both vectors lie
in the orbit plane. Theyo axis completes the right-hand coordinate system. An illustration can
be seen in Figure 3.2. For the remainder we letFo denote the orbit frame.

Remark 3.1.2. In the SSETI/ESEO phase B report they use the termattitude reference frame
(ARF), apposed to our orbit-fixed frame.

Figure 3.2: Satellite orbit frame,Fo
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Satellite body-fixed frame

The body frame,Fb, has its origin located in the satellite’s center of mass, and is spanned by
the unit vectorsxb, yb, zb, respectively denoted as roll, pitch and yaw axis. Thezb axis is such
that it points in the direction of positive orbit maneuver thrust. The fundamental plane is then
the plane perpendicular tozb. Theyb axis lies in the fundamental plane, and points parallel to
both solar panels. Thexb axis completes the coordinate system. UnlikeFo, Fb is fixed to the
satellite body, hence rotating with the satellite.

Remark 3.1.3. In the SSETI/ESEO phase B report they use the termsatellite reference frame
(SRF), apposed to our body-fixed frame.

Figure 3.3: Satellite body frame,Fb

3.1.1 Transformations between reference frames

In the following we give rotation matrices between some of the different coordinate reference
frames defined above. We note that if{Ra

b : Fb → Fa} ⇔ {(Rb
a) = (Ra

b )
−1 : Fa → Fb}.

Transformation from Fi → Fe

The relative rotation and movement of the Earth is very complex, and a lot of the prediction is
based on empiric data.

In the most general form, thus also the most complex, it is useful to consider the transformation
of position of a stellar object inFi intoFe as two rotations, that is

re = T3×3U3×3 ri (3.1)

whereU includes the rotations of the Earth caused by external torques, andT the rotations to
which the Earth would be subjected to if all external torques would be removed. This formula-
tion is approximately realized in practice by the transformation consisting of the 9 rotations

re = [Ry(xp)Rx(yp)Rz(−GAST ) . . .
Rx(ε+4ε)Rz(4ψ)Rx(−ε)Rz(zA)Ry(−θA)Rz(ζA) ] ri

(3.2)
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Without any further explanations of the terms in (3.2), we easily see that the equation would
involve rigorous calculations. For more details on (3.2), refer to Teunissen (1998).

When ignoring nutation, precession, polar motion and change in vernal equinox, the equatorial
plane is identical forFi andFe. It is then assumed thatFe rotates aboutzi with a constant
angular velocity. In terms of the rotation matrices given in Section 2.2, we can write this as

Re
i = Rz(−α) =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 1

 , whereα = ωi
ie · t (3.3)

The mean angular velocity to the Earth is equal toωi
ie , ω⊕ = 7.2921158 · 10−5 [rad/s],

while t in (3.3) is the elapsed time since a definedepoch1.

Transformation from Fi or Fe → Latitude and Longitude

Representing the position of the target in eitherFi or Fe gives a distinct description, but it
is often convenient to convert to latitude and longitude, and sometimes also the height of the
target above the Earth reference ellipsoid. Given the cartesian coordinates there are many
different algorithms in performing this task. Figure 3.4 shows the definitions and parameters
needed for the transformation.µc andµ are the geocentric and geodetic latitudes respectively.

Figure 3.4: Definitions of the ellipsoidal parameters

Furthermorer is the geocentric radius,r0 is the geocentric radius of the user position projected
onto the surface of the Earth, h is the ellipsoidal height, and N is the radius of curvature in the
prime vertical obtained from

N =
r2e√

r2e cos2(µ) + r2p sin2(µ)

where the equatorial and polar radii,re andrp, are the semiaxes of the Earth ellipsoid.

1The epoch designates a particular instant, or moment of occurrence.
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The longitudeλ is easily computed as

λ = arctan(y/x)

while latitudeµ and heighth above the Earth’s surface are implicitly defined by

tan(µ) =
z

p

(
1− e2

N

N + h

)−1

, h =
p

cos(µ)
−N

Finally we note thatp ande are given as

p =
√
x2 + y2, e =

√
1− (rp/re)2

Without pursuing these equations any further, we see that they can be solved iteratively forλ,
µ andh. The input parameters would be the radius vector of the target, i.e.rt = [x, y, z]T.

Transformation from Fo → Fi

In Vallado (1997) the transformation from what he calls the RSW frame to the ECI frame is
given in terms of classical orbit elements orKeplerian orbit elements (COE). More information
about COE can be found in Appendix E. However, the RSW frame does not coincide withFo

as we define it, hence we have to include the rotation from RSW→ Fo, i.e. we have to find the
rotation matrixRRSW

o . The latter is easily found to be given as

RRSW
o = Rz(π/2)Rx(−π/2) (3.4)

whereRz(·) andRx(·) are similar to the Euler angle rotation matrices given in Section 2.2.

The transformation fromFo → Fi can then be written as

ri = Ri
RSWRRSW

o ro = Ri
oro

whereRi
RSW is given in Vallado (1997). The rotation matrixRi

o is given in terms of COE as

Ri
o =

−c(i)s(Ω)c(u)− c(Ω)s(u) −s(i)s(Ω) −c(Ω)c(u) + c(i)s(Ω)s(u)
c(i)c(Ω)c(u)− s(Ω)s(u) s(i)c(Ω) −s(Ω)c(u)− c(i)c(Ω)s(u)

s(i)c(u) −c(i) −s(i)s(u)

 (3.5)

whereu = ω + ν and we have used thatc(·) ands(·) denotecos(·) andsin(·), respectively.

Transformation from Fb → Fo

Based on the discussion in Chapter 2, we chose to represent this rotation by means of Euler
parameters. As in (2.13), we can write the rotation matrix fromFb → Fo as

Ro
b =

1− 2(ε22 + ε23) 2(ε1ε2 − ηε3) 2(ε1ε3 + ηε2)
2(ε1ε2 + ηε3) 1− 2(ε21 + ε23) 2(ε2ε3 − ηε1)
2(ε1ε3 − ηε2) 2(ε2ε3 + ηε1) 1− 2(ε21 + ε22)

 (3.6)
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3.2 Attitude dynamics

The following section considers Newton-Euler equations of motion for rigid bodies, as well as
giving an overview of disturbance and control torques. Some of the equations found in this
chapter, together with the differential kinematic equations that were found earlier, make up the
system to be investigated in later chapters. Unless otherwise is stated, the principal axes in the
equations will coincide with the body reference system.

3.2.1 Newton-Euler equations of motion for rigid bodies

The angular motion of a spacecraft can be modelled as an ideal rigid body. However, most
spacecrafts have flexible parts like for instance antennas and solar panels. Also, internal effects
like fuel sloshing and thermal deformations are not accounted for using a rigid body model.
Nevertheless, for many problems the rigid body model is a good approximation, especially for
small spacecrafts.

Since only rotational motion will be considered throughout, the translational case will not be
taken into account at this stage. However, a detailed derivation of the equations of motion for
both cases is given in Appendix D. For the rotational case, when referred to the center of mass
and the body reference system, the well known equations for a rigid body can be written as

Iω̇b
ib + S(ωb

ib)Iω
b
ib = τ =

∑
k

τk (3.7)

whereI is the inertia matrix for the rigid body, referred to the center of mass,τ , [τx, τy, τz]T

is the total torque acting on the body, andωb
ib , [ω1, ω2, ω3]T is the angular velocity as ex-

plained in Chapter 2. The torquesτk, acting on the individual mass elements in the body, are
due to both forces between individual mass elements and externally applied forces. Usually
the internal torques sum to zero and the resultant torque is simply the torques due to external
forces. The external torquesτe can be divided into two groups, calleddisturbance torquesand
control torques. The first case is caused by environmental effects such as aerodynamic drag
and gravity gradient torque, while the latter is deliberately applied torques from devices such
as thrusters, wheels, or magnetic coils. Both cases will be discussed in the following.

Assuming a diagonal inertia matrix,I = diag{i11, i22, i33}, the dynamics in (3.7) can eas-
ily be found to be given in component form as

i11ω̇1 + (i33 − i22)ω2ω3 = τx (3.8a)

i22ω̇2 + (i11 − i33)ω3ω1 = τy (3.8b)

i33ω̇3 + (i22 − i11)ω1ω2 = τz (3.8c)

Remark 3.2.1. By defining the angular momentumh , Iωb
ib, and assuming only external

torques, (3.7) can be rewritten as

dh
dt

= τe − S(ωb
ib)h (3.9)

From this equation it can easily be seen that the angular momentumh, and henceωb
ib, is not

constant in the body frame, even when the external torqueτe is equal to zero. The resulting
motion is callednutation. Rotational motion without nutation only occurs whenωb

ib ‖ h, that
is, only if the rotation is about a principle axis of the rigid body.
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Remark 3.2.2. A spacecraft equipped with reaction or momentum wheels is not a rigid body
in the sense that they cause a redistribution of the angular momentum between the wheels and
the spacecraft body. The wheels do not change the total angular momentum of the spacecraft,
hence they can not be external torques.

However, in the case of using reduction or momentum wheels in the spacecraft body, the equa-
tions above can still be used with one minor modification. To encounter for the angular mo-
mentum of the wheels, we redefine the total angular momentum for the spacecraft, that is

hb = Iωb
ib + hw (3.10)

where the inertia matrixI includes the mass of the wheels and the vectorhw , [h1, h2, h3]T

is the net angular momentum due to the rotation of the wheels relative to the body. Using a
similar procedure as when deriving (3.7) we get the following equation of motion

Iω̇b
ib + S(ωb

ib)(Iω
b
ib + hw) = τ − dhw

dt
(3.11)

The quantitydhw/dt is the net torque applied to the wheels from the spacecraft body, so by
Newton’s 3rd law of motion, -dhw/dt , [τwx, τwy, τwz]T is the torque applied to the spacecraft
body by the wheels. Writing (3.11) in component form in the body system, referred to the
center of mass, yields

i11ω̇1 + (i33 − i22)ω2ω3 + h3ω2 − h2ω3 = τx + τwx (3.12a)

i22ω̇2 + (i11 − i33)ω3ω1 + h1ω3 − h3ω1 = τy + τwy (3.12b)

i33ω̇3 + (i22 − i11)ω1ω2 + h2ω1 − h1ω2 = τz + τwz (3.12c)

Remark 3.2.3. A rigid body with one or more spinning wheels is commonly called agyrostat.

An alternative representation of the multi-spin system described in (3.11) is derived in Hughes
(1986), in the case of using only one wheel. In Hall (1995) the representation is expanded to
include any number of wheels, which makes it quite practical to use. The rotational equations
of motion for aN -wheel gyrostat can be written as

ḣb = τ −
[
J−1(hb −Aha)

]
× hb (3.13a)

ḣa = τa (3.13b)

whereha is theN × 1 vector of the axial angular momenta of the wheels,τ is the3× 1 vector
of the total torque acting on the body, not including wheel torques,τa is theN×1 vector of the
internal axial torques applied by the platform to the wheels, andA is the3×N matrix whose
columns contain the axial unit vectors of theN momentum exchange wheels. The vectorhb is
the total angular momentum for the spacecraft in the body frame, given by

hb = Jωb
ib + Aha (3.14)

J is the inertialike matrix defined as

J , I−AIsAT (3.15)



22 Spacecraft and astrodynamics

whereI is the moment of inertia matrix for the spacecraft, including wheels, and the matrix
Is = diag{Is1, Is2, ..., IsN} contains the axial moments of inertia of the wheels on the diag-
onal. The axial angular momenta of the wheels can be written in terms of the body angular
velocity and the wheels’ axial angular velocities relative to the body,ωs, as

ha = IsATωb
ib + Isωs (3.16)

Note thatωs = [ωs1,ωs2, ...,ωsN ]T is aN × 1 vector, and that these relative angular ve-
locities are those that would for instance be measured by tachometers fixed to the platform.
We denote the resultant axial angular velocity of the wheels, relative to the inertial frame as
ωc = [ωc1,ωc2, ...,ωcN ]T. Using this notation we can write (3.16) as

ha = Isωc (3.17)

whereωc = ωs + ATωb
ib. Note that because typically the wheels spin at a much higher speed

than the spacecraft itself,ωs � ωb
ib and we have thatωc ≈ ωs.

It is also possible to write (3.13) in terms of angular velocities. By definingµ , [hb,ha]T

andυ , [ωb
ib,ωs]T, we can write (3.14) and (3.16) in the compact form

µ = Λυ, whereΛ =
[

I AIs

IsAT Is

]
(3.18)

Clearly, we can findωb
ib andωs from υ = Λ−1µ, or equally, we can writėυ = Λ−1µ̇.

Lemma 3.1 (Matrix inversion lemma). SupposeA andD are square,D invertible,B, C
compatible dimensions. If(A−BD−1C) is invertible then

[
A B
C D

]−1

=
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1C(A−BD−1C)−1BD−1 + D−1

]
By utilizing Lemma 3.1 together with (3.18), we get that[

ω̇b
ib

ω̇s

]
=

[
J−1 −J−1A

−ATJ−1 ATJ−1A + I−1
s

] [
ḣb

ḣa

]
(3.19)

3.2.2 Disturbance torques

As mentioned above, the environmental disturbances contribute as torques on the spacecraft
body, making them noneligible when doing attitude prediction in real life. If they were to be
added to the equations of motion they would have to be modelled as functions of time as well
as of the orientation of the spacecraft. Worth noticing is that external torques will change the
angular momentum of the spacecraft, while the internal torques only will affect the distribution
of momentum between the moving parts. Some disturbance torques are given in Table 3.1,
indicating at what height above the surface they are most likely to dominate. In the following
an overview of the most important disturbance torques is given. This could contribute as a
good starting point, if advanced models or robustness issues are to be considered.



3.2 Attitude dynamics 23

Table 3.1: Environmental disturbance torques

External torque Region of space where
source dominant∗

Aerodynamic < 500km†

Gravity gradient 500km to 35000km
Magnetic 500km to 35000km
Solar pressure > 700km†

Thrust misalignment all heights

Internal torque
source

Mechanical and electrical devices
Fuel sloshing
General mass movement
Flexible appendages

∗The specific altitude at which the various torques
dominate are highly spacecraft dependent
†Value depends upon the level of solar activity

Aerodynamic torque

The interaction of the upper atmosphere with a spacecraft’s surface produces a torque about the
center of mass. The effect is clearly dependent on the area and shape of the exposed surface. In
general the impact of the atmospheric molecules can be modelled as an elastic impact without
reflection. For low orbit spacecrafts the air density is high enough to influence the attitude
dynamics of the body. Calculating the aerodynamic torques and forces can be done in several
ways, and more or less all approaches lead to rather complicated expressions. Use of empiric
data is also common.

If the spacecraft surface comprises a collection of small incremental areasdA, each with out-
wards unit normal̂n, then the force on a surface element is given by

dfaero = −1
2
ρv2CD(n̂ · v̂)v̂dA (3.20)

wherev is the translational velocity of the surface element relative to the incident stream, andv̂
is the unit vector in the same direction. The coefficientsρ andCD are the atmospheric density
and the drag coefficient, respectively. Performing a summation over all such areas gives the
simplified expression for the aerodynamic torque, that is

τaero =
∫

rs×dfaero (3.21)

wherers is the position vector from the center of mass of the body to the surface element
dA. Usually this integral is not amenable to simple solutions for a surface associated with a
complex structure. A commonly used alternative is to represent the spacecraft as a collection
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of simple geometrical elements. The torque about the center of mass of the spacecraft is then
the vector sum of the individual torques for each of these geometrical simplifications, that is

τ̄aero =
∑

k

rk × Faero,k (3.22)

The vectorrk is in this case the vector distance from the center of mass of the spacecraft to
the center of pressure of the the specific geometric shape andFaero,k is the force acting on the
component. Aerodynamic forces for some simple geometric figures are listed in Table 3.2.

Geometric figures Faero,k

Sphere of radius R −1
2ρv

2CDπR
2v̂

Plane with surface area A and
normal unit vector̂n

−1
2ρv

2CDA(n̂ · v̂)v̂

Table 3.2: Aerodynamic force for some simple geometric figures

Gravity gradient torque

As a result of the nonuniform gravitational field surrounding the Earth, any nonsymmetrical
object in orbit is subject to a gravitational torque. It is important to emphasize that this can
only occur as long as there are variations in the specific gravitational force over the spacecraft.

The unit vectorzo that appears in (3.23) is called thelocal vertical and by definition it is
always nadir pointing. We also defined it when describingFo.

τg =
3µ
R3

c

[zo × (I zo)] (3.23)

The parameters in (3.23) are summarized in the following table

Symbol Explanation

µ Gravitational coefficient,µ = 3.986 · 1014 Nm2/kg

Rc Distance to center of the Earth (m)
I Spacecraft inertia matrix
zo Unit vector toward nadir

Remark 3.2.4. The expression in (3.23) is rather simplified due to the four assumptions

a) Only one celestial primary is considered. In most cases the primary will be the Earth.
b) The primary possesses a spherically symmetrical mass distribution.
c) The spacecraft is small compared to its distance from the mass center of the primary.
d) The spacecraft consists of a single body.

Note that in most spacecraft situations these are realistic assumptions.

Remark 3.2.5. There is no gravitational torque about the local vertical, that is

τg · zo = 0
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As can be seen from (3.23), the vector equation is given in the local orbiting frameFo. How-
ever, in most cases it would be useful to represent the torque in the body fixed reference frame.
By letting the rotation matrixRb

o = (Ro
b)
−1 represent the rotation matrix from the body frame

to the orbit frame, we get the following expression for the gravitational torque, as referred to
the body frame

τ b
g =

3µ
R3

c

[c3 × (Ic3)] (3.24)

wherec3 , [c13, c23, c33]T is the third column in the rotation matrixRb
o. Independent of

the attitude parametrization we use to represent this rotation matrix, and assuming a diagonal
inertia matrixI = diag{i11, i22, i33}, the gravitational torque in (3.24) simplifies to

τ b
g =

3µ
R3

c

(i33 − i22)c23c33
(i11 − i33)c33c13
(i22 − i11)c13c23

 (3.25)

Solar pressure torque

Solar radiation pressure produces a force on a surface, which depends upon its distance to the
sun. Since light carries momentum, it represents an exchange of momentum with the surface
when it is reflected. For most applications, the forces may be modelled adequately by assum-
ing that the incident radiation is either absorbed, reflected specularly, reflected diffusely, or in
some combination of these.

If the spacecraft surface comprises a collection of small incremental areasdA, each with out-
wards unit normal̂n, andŝ is the unit vector from the spacecraft to the sun, then the force on a
surface element due to solar radiation is given by

dfsolar = −P cos θ
[
(1− fs)ŝ + 2(fs cos θ +

1
3
fd)n̂

]
dA (3.26)

where P is the mean momentum flux (∼ 4.67 · 10−6Nm2 at the Earth), andfs andfd are the
coefficients of specular and diffuse reflection, respectively. The angle of incidence radiation is
given asθ = cos−1(ŝ · n̂). Performing a summation over all such areas gives the expression
for the solar pressure torque, that is

τsolar =
∫

rs×dfsolar (3.27)

wherers is the position vector from the center of mass of the body to the surface element
dA. This integration is in general difficult to solve for a surface associated with a complex
structure. However, as for the aerodynamic torque, a commonly used alternative is to represent
the spacecraft as a collection of simple geometrical elements. The total torque about the center
of mass of the spacecraft is then the vector sum of the individual torques for each of these
geometrical simplifications.

τ̄solar =
∑

k

rk × Fsolar,k (3.28)

The vectorrk is in this case the vector distance from the center of mass of the spacecraft to
the center of pressure of the the specific geometric shape andFsolar,k is the force acting on the
component. Solar radiation forces for some simple geometric figures are listed in Table 3.3.
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Geometric figures Fsolar,k

Sphere of radius R −P (4πR2)
(

1
4 + fd

9

)
ŝ

Plane with surface area A
and normal unit vector̂n :
θ = cos−1(ŝ · n̂)

−PA cos θ
[
(1− fs)ŝ + 2

(
fs cos θ + fd

3

)
n̂
]

Table 3.3: Solar radiation force for some simple geometric figures

Magnetic torque

The residual magnetic field generated by a spacecraft interacts with the local field from the
Earth and thereby exerts a couple on the body. The effect of the magnetic torque is altitude
dependent and strongest at low altitudes. The instantaneous magnetic disturbance torqueτmag

due to the spacecraft effective magnetic momentm is given by

τmag = m×B (3.29)

whereB is the geocentric magnetic flux density andm is the sum of the individual magnetic
moments caused by permanent and induced magnetism and spacecraft generated current loops.

Internal torques

Internal torques are defined as torques exerted on the spacecraft body by such internal moving
parts as reaction and momentum wheels, fuels or liquids inside partially filled containers or
flexible constructions. The reaction and momentum wheels are usually not to be considered as
disturbances, but are included in this section for consistency. In a highly hypothetical scenario,
the internal torques would also exist if the spacecraft was to be removed entirely from all ex-
ternal influences in space.

As mentioned earlier the external torques will change the angular momentum of the space-
craft, while the internal torques only will affect the distribution of momentum between the
moving parts. However, even though the angular momentum remains constant in the absence
of external torques, the kinetic energy for the body could change and in most cases would the
redistribution of the angular momentum between the moving parts lead to a change in the dy-
namic characteristics.

In general the internal disturbance torques are undesired, hence must be encountered for using
external torques. Also, when designing a spacecraft the effects of internal disturbances could
be tried encountered for in the sense of placing the different devices in a clever manner.

3.2.3 Control torques and actuators

Deliberately applied torques can be generated using various approaches, and commonly as a
combination of several different actuators. The types of actuators that can be used to control
the orientation of a spacecraft can usually be divided into three categories. These are thrusters,
momentum exchange devices and magnetic actuators. The actuator can also be categorized to
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Type Advantages Disadvantages

External torque Control momentum build-up

Thrusters Insensitive to altitude Requires fuel
Suit any orbit On-Off operation only
Create torque about any axis Minimum impulse

Exhaust plume contaminants

Gravity No fuel or energy needed No torque about the local vertical
gradient Low accuracy

Low torque, altitude sensitive
Libration mode needs damping

Magnetic No fuel required No torque about local field direction
Control torque magnitude Altitude and latitude sensitive

Can cause magnetic interference

Solar radiation No fuel required Needs controllable panels
Very low torque

Internal torque No fuel required Uncontrollable momentum build-up
Can store momentum
Control torque magnitude

Reaction wheels Continuous Nonlinearity at zero speed
Fine-pointing capability

Momentum wheels Provide momentum bias

Control moment Suitable for three-axis control Complicated
gyroscope Provide momentum bias Potential reliability problems

Table 3.4: Control torques

be either active or passive. Some control torques, and their properties, are given in Table 3.4.
A short explanation of some of the different designs is also given subsequently.

An important part of the design of a spacecraft is to decide the size and properties of the actu-
ators since it is crucial to have enough control to overcome the disturbances discussed above,
as well as getting the spacecraft into its desired configuration. However, as the topic is not
discussed any further in this thesis, the reader should consult to Wertz (1999) for details.

In later chapters the control actuation for the system is achieved using thrusters and a reac-
tion wheel. More details about this matter will be given shortly.

Gravity gradient

As mentioned earlier any nonsymmetrical object in orbit is subject to a gravitational torque.
Although this effect often is considered as a disturbance, it can also be utilized as a passive
control torque. This is commonly done using a gravitational boom. However, in the sense of
stabilizing a spacecraft, the body will only be in a stable equilibrium if its axis of minimum



28 Spacecraft and astrodynamics

inertia is aligned with the local vertical. Due to low accuracy and the need for damping makes
the use of other control torques necessary as well. In the Danish satelliteØrsted (Wísniewski
and Blanke, 1999) the gravity gradient was utilized together with magnetic actuators to archive
complete three-axis stabilization.

Solar radiation

In the previous section on disturbance torques, it was explained how the solar radiation causes
a passive torque on an exposed spacecraft. This can be utilized with controllable panels or solar
sails. The torques achieved are nevertheless low.

Thrusters

Thrusters or reaction jets produce torque by expelling mass, and are potentially the largest
source of force and torque on a spacecraft. They are highly active sources, and being external
they will affect the total momentum. They can be used both for attitude and position control. In
fact, they are the only actuators that can increase the altitude of a spacecraft in orbit. When used
for attitude control a pair of thrusters on opposite sides of the spacecraft is activated to create
a couple. The main advantage of using thrusters is that they can produce an accurate and well
defined torque on demand, as well as being independent of altitude. The main disadvantage is
that a spacecraft can only carry a limited amount of propellant.

Reaction wheels

Torquers associated with momentum storage such as reaction wheels are essentially active
internal torquers, suitable for attitude control but not for controlling the angular momentum.
By definition, a reaction wheel is aflying wheelwith a body fixed axis designed to operate at
zero bias. A flying wheel is any rotation wheel or disk used to store or transfer momentum.
When the spacecraft is exposed to a perturbation or it is accelerated, so are the wheels mounted
inside, and the result is generated torques from the wheels in the opposite direction, that is

Irwω̇rw = −Iω̇b
ib (3.30)

As seen from (3.30) the wheels have to be accelerated in order to create a torque. Neglecting
friction effects, the torque applied to a set of reaction wheels can be written as (Kaplan, 1976)

τbw =
dh
dt

+ ωb
ib × h (3.31)

whereh = Irwωrw , [h1, h2, h3]T is the total angular momentum of the wheels, andτbw

denote the torque applied to the wheels by the spacecraft body. By Newton’s 3rd law, the
torque employed to the spacecraft body from the wheels is therefore given byτwb = −τbw. By
defining -dh/dt , [τwx, τwy, τwz]T we get the following equation

τwb =

τwx − h3ω2 + h2ω3

τwy − h1ω3 + h3ω1

τwz − h2ω1 + h1ω2

 (3.32)

This is consistent with the results derived earlier, as (3.12) can be obtained by substituting the
torque in (3.32), in addition to some external torque, for the torque in (3.7).
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Remark 3.2.6. When the wheels reach their maximum speed, the storage of momentum will
be at its maximum as well. Therefore, it will be necessary to restore the nominal values, using
external torques. This process is known asmomentum dumping.

Momentum wheels

Momentum wheels are very similar to reaction wheels, but in contrast to the reaction wheels
they are designed to operate atbiased, or nonzero, momentum. As for the reaction wheels they
need to be used in conjunction with other external actuators.

Magnetic actuators

An active magnetic actuator takes advantage of the natural torque caused by the magnetic field
surrounding the Earth. The magnetic disturbance that was described earlier is exploited by
installing magnetic coils or torquers inside the spacecraft. The principle can best be explained
with the well known compass needle that attempts to align itself with the local field.

Magnetic actuators offer a cheap, reliable and robust way to control a spacecraft’s attitude.
Unfortunately they are only effective for low Earth orbit (LEO) spacecrafts and requires a
complex model of the geomagnetic field surrounding the Earth.

Electromagnets may be used to provide an external torque, which can be modelled as

τmag = m×B = niA (ĉ×B) (3.33)

wherem is the magnetic dipole moment generated by the coils in the magnet. The other
parameters are listed in the following table.

Symbol Explanation

B Local geomagnetic field vector
ĉ Unit vector in the direction of the coil’s axis
i Control current in the coil
n Number of coil windings
A Cross-sectional area of the coil

3.3 Celestial mechanics

As mentioned at the very beginning of this chapter, the study of astrodynamics can be divided
into celestial mechanics and attitude dynamics. Sofar we have only considered the latter, in
the sense of giving an overview of different topics considering the motion about the center of
mass. Only a brief discussion on celestial mechanics will be given at this point. Even though
the effects of the celestial mechanics are almost assumed negligible throughout this thesis, the
motion of the center of mass of objects in space is highly relevant, and for a real-life system to
be revealing, these effects should be taken into account when designing the control systems.

In general, the theory of celestial mechanics underlies all the dynamical aspects of the orbital
motion of a spacecraft. Different approaches exist to provide the necessary equations needed
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to calculate orbital elements from position and velocity, or vica verca, and to predict the future
position and velocity of the spacecraft. In the case of circular orbits and spherical Earth it
is relatively easy to determine these relations by the use of gradients, combined with rotation
matrices. In a more general case the use of classical orbit elements,Keplerian orbit elements
(COE), is adequate. Some information about COE can be found in Appendix E. Combined
with perturbation theory this provides an excellent reference. Since the equations concerning
perturbations are rather extensive, they are not considered here. For further details on this topic,
the reader should refer to any textbook about spacecraft geodesy, e.g. Vallado (1997).

3.3.1 A simple orbit propagator

An orbit propagator is a mathematical algorithm for predicting the future position and veloc-
ity (or orbital elements) of an orbit, given some assumptions and initial conditions. There are
many techniques and methods available, with widely different accuracy and applications.

In the following we describe a simple propagator, which is valid under the assumptions that
there are no acting perturbations. Furthermore, the orbit is either circular or elliptic.

One way to describe the motion of a satellite is to use (E.2). An alternative approach is to
describe the motion by means of Kepler’s equation, that is

M = E − e sinE = n (t− T ), wheren =
√
µ

a3
(3.34)

Themean anomaly Mcorresponds to the uniform angular motion on a circle,E is theeccen-
tric anomaly, n is the mean motion,e is the eccentricity of the orbit,T is the time of periapsis
passage (closest approach to the central body) andt is the time of flight.

There are several methods for finding the solution ofE in (3.34), such as Newton-Raphson,
which approximates the solution by using a root-finding iterative process until a desired con-
vergence tolerance is reached. Based on this technique, it is shown in Vallado (1997) that the
iteration can be written as

Ek+1 = Ek +
M − Ek + e sinEk

1− e cosEk
(3.35)

The iterative approximation can then be utilized to determine thetrue anomalyν and the dis-
tance to the satelliter. These relations are given as

cos ν =
cosE − e

1− e cosE
(3.36)

r = a(1− e cosE) (3.37)

Based on the above mentioned equations, we can write an algorithm to solve for future COEs,
given some initial conditions. From the calculated COEs we can then find the cartesian coor-
dinates inFi by utilizing (E.7) and (E.9). The MATLAB code and Simulink blocks are given
in Appendix C.



Chapter 4

Model and control properties

Sofar the main focus has been on different approaches to model the kinematic and dynamic
differential equations for describing the configuration of a rigid body. The purpose of this
chapter is to choose an adequate model based on these equations, and describe some of its
most important properties. In our special case, the rigid body model is used to describe the
ESEO satellite, as introduced in Chapter 1. The actuation will be by means of one reaction
wheel about the satellite’s principal y-axis, as well as thruster torque couples about all its axes.
All physical parameters are taken from the SSETI/ESEO Phase B report.

4.1 Satellite model

To simplify the analysis it is important to choose a reasonable model that is not too compli-
cated. Therefore, because of its useful properties, the Euler parameters presented in Chapter
2 are chosen to characterize the kinematics, while the dynamic equations are based on the
Newton-Euler representation in Chapter 3. In the following the model to be used is derived.

A preliminary and rather complex model can be written as1

ω̇b
ib = J−1

[
−S(ωb

ib)(Iω
b
ib + AIsωs) + τe

]
− J−1Aτa (4.1a)

ω̇s = −ATJ−1
[
−S(ωb

ib)(Iω
b
ib + AIsωs) + τe

]
+

[
ATJ−1A + I−1

s

]
τa (4.1b)

η̇ = −1
2
εTωb

ob (4.1c)

ε̇ =
1
2

[ηI + S(ε)]ωb
ob (4.1d)

whereτe =
∑

τcontrol+
∑

τdisturbance. The model arises immediately from (3.19) and (2.14),
and both control and disturbance torques were discussed in Chapter 3. As mentioned earlier, it
is important to emphasize that torques related to the wheels should not be included inτe since
these are already accounted for. We also note that (4.1) represents a generalN -wheel gyrostat.

1Let Q be anm × n matrix of rankk. If k = m = n, thenQ is nonsingularand has a uniqueinverse, Q−1.
The inverse is both left and right inverse, that is

QQ−1 = Q−1Q = I
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As indicated, the model is later to be used to control and simulate the ESEO satellite, equipped
with a reaction wheel and several thrusters, and also including the gravity gradient as a distur-
bance. The idea is to use thrusters to implement the torques for large and fast (slew) maneuvers
during attitude initialization and target acquisition phases, while providing momentum man-
agement when necessary. The wheel could be used to supply reference torque in the sense of
overcoming the disturbances. It would also be desirable to use the wheel as much as possible,
since this would save propelant for the thrusters, hence increasing the lifetime of the satellite.

However, even though the model in (4.1) is somewhat simplified compared to a real-life sce-
nario, it is still considered too rigorous for our purpose. For that reason, different assumptions
will be regarded subsequently to obtain even further simplifications.

a) All the states in the model are given inFb.

b) The origin ofFb coincides with the center of gravity of the satellite.

c) The inertia matrix for the satellite is diagonal,I = diag{i11, i22, i33}.

d) The satellite has one reaction wheel, which creates an internal control torque
about the satellite’s principal y-axis. The axial inertia of the wheel isIs , is,
and the axis of rotation inFb is given asA = [0, 1, 0]T.

e) The external control torques
∑

τcontrol , τ = [τ1, τ2, τ3]T are provided by
pairs of thrusters, and they can implement angular velocities about the
satellite’s principal axes directly.

f) The only disturbance torque to be considered is the gravity gradient, as
described in (3.25).

g) Neither the wheel nor the thrusters are assumed to have any dominant
dynamics, by means of having much quicker dynamics than the satellite body.

Table 4.1: Model assumptions

As can be seen from (4.1), the angular velocities are given inFb and relative toFi, while the
kinematics are relative toFo. However, we would like our model to represent the attitude of
Fb relative toFo. As will be shown, this can easily be done by exploiting the relation

ωb
ib = ωb

ob + Rb
oω

o
io and ω̇b

ib = ω̇b
ob + Ṙb

oω
o
io = ω̇b

ob − S(ωb
ob)R

b
oω

o
io (4.2)

whereωo
io = [0,−ω0, 0]T is assumed constant, and equal to the mean angular velocity ofFo,

given inFi. This implies a circular orbit. By utilizing (4.2), we rewrite our nonlinear model as

ω̇b
ob = f̂inert + f̂τ + f̂g + f̂add (4.3a)

ω̇s = f̄inert + f̄τ + f̄g (4.3b)

η̇ = −1
2
εTωb

ob (4.3c)

ε̇ =
1
2

[ηI + S(ε)]ωb
ob (4.3d)
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The different terms in (4.3) are given as

f̂inert = J−1
[
−S(ωb

ob − ωoc2)
(
I [ωb

ob − ωoc2] + AIsωs

)]
(4.4a)

f̄inert = ATJ−1
[
S(ωb

ob − ωoc2)
(
I [ωb

ob − ωoc2] + AIsωs

)]
(4.4b)

f̂τ = J−1τ − J−1Aτa (4.4c)

f̄τ = −ATJ−1τ +
[
ATJ−1A + I−1

s

]
τa (4.4d)

f̂g = J−1
[
3ω2

0 S(c3)Ic3

]
(4.4e)

f̄g = −ATJ−1
[
3ω2

0 S(c3)Ic3

]
(4.4f)

f̂add = ωoċ2 (4.4g)

wherecj , [c1j , c2j , c3j ]T is the j’th column of the rotation matrixRb
o. In the following we

also denote each element inRb
o by cij , i, j = 1, 2, 3. From the assumptions in Table 4.1, and

by definingωb
ob , [ω1, ω2, ω3]T, we can write the terms in (4.4) in their final form, that is

f̂inert =


−(is ωs + (i22 − i33)(ω2 − ω0c22)) (−ω3 + ω0c32)

i11
(i11 − i33)(ω1 − ω0c12)(−ω3 + ω0c32)

i22 − is

−(is ωs − (i11 − i22)(ω2 − ω0c22)) (ω1 − ω0c12)
i33

 (4.5a)

f̄inert =
(i11 − i33)(ω1 − ω0c12)(ω3 − ω0c32)

i22 − is
(4.5b)

f̂τ =


τ1
i11

(i22 − is) τ2 − τa
(i22 − is)2

τ3
i33

 (4.5c)

f̄τ =
i22 τa − is τ2
(i22 − is) is

(4.5d)

f̂g = 3ω2
0

(i33 − i22)c23c33
(i11 − i33)c13c33
(i22 − i11)c13c23

 (4.5e)

f̄g =
3ω2

0(i11 − i33)c13c33
is − i22

(4.5f)

f̂add = ω0

ω3c22 − ω2c32
ω1c32 − ω3c12
ω2c12 − ω1c22

 (4.5g)
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4.1.1 Linearized model

To derive a linearized model of the satellite attitude, the nonlinear model in (4.3) has to be
differentiated with respect to the total state vector, which for the the time being is chosen asx =
[ω1, ω2, ω3, ωs, η, ε1, ε2, ε3]T. Similar, the control vector is denoted byu = [τ1, τ2, τ3, τa]T.
The linearized system can then be written as

∆ẋ = A∆x + B∆u (4.6)

where the matricesA andB are found from

A =



∂f1

∂x1

∂f1

∂x2
. . .

∂f1

∂x8

∂f2

∂x1

∂f2

∂x2
. . .

∂f2

∂x8

...
...

...

∂f8

∂x1

∂f8

∂x2
. . .

∂f8

∂x8



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p

B =



∂f1

∂u1

∂f1

∂u2
. . .

∂f1

∂u4

∂f2

∂u1

∂f2

∂u2
. . .

∂f2

∂u4

...
...

...

∂f8

∂u1

∂f8

∂u2
. . .

∂f8

∂u4



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p

(4.7)

By letting the nonlinear model be denoted byf(x,u) = [ω̇b
ob, ω̇s, η̇, ε̇]T , [f1, . . . , f8]T, and

choosing the equilibrium pointp equal toxp = [04, 1,03]T,up = 04, the matrices in (4.7) are

A =



0 0 (1−kx)ω0 0 0 −8kx ω2
0 0 0

0 0 0 0 0 0 −6 kyi22 ω2
0

κ 0

(kz−1)ω0 0 0 0 0 0 0 −2kzω2
0

0 0 0 0 0 0 6 kyi22 ω2
0

κ 0

0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0


(4.8a)

B =



1
i11

0 0 0

0 1
κ 0 − 1

κ

0 0 1
i33

0

0 − 1
κ 0 i22

κ is

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(4.8b)

where we used the notationkx = i22−i33
i11

, ky = i11−i33
i22

, kz = i22−i11
i33

andκ = i22 − is.
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4.2 Controllability

Investigating controllability is rather trivial when it comes to a linearized system, while for a
nonlinear one it might be a rigorous task. The latter will therefore be omitted at this point,
and we end the discussion by saying that we could have utilizedLie bracketsandLie algebraic
rank conditions (LARC)to show accessibility of the nonlinear system. If accessibility was to be
found, we could have investigated the system further to obtain a conclusion on controllability.

In case of a linear system we can easily conclude the same by using the following definition

Definition 4.1 (Controllability). The state and input matrix(A,B) must satisfy the control-
lability condition to ensure that there exists a controlu(t) which can drive an arbitrary state
x(t0) to another arbitrary statex(t1) for t1 > t0. The controllability condition requires that
then× n matrix

C =
[
B |AB | . . . |An−1B

]
(4.9)

must be of rankn. A sufficient and necessary condition is thatC has an inverse.

From the system matrix in (4.8a), we can immediately conclude that the linearized system is
uncontrollable. This is a direct consequence in that all the terms corresponding toη are equal
to zero. In fact,η turns out to be the only uncontrollable state, and the linearized system, omit-
ting η, is controllable. As will be discussed subsequently, in order for the whole system to be
stabilizable, the mode corresponding to the uncontrollable state needs to be stable.

Note that, even thoughη is uncontrollable, we can utilize the theory related to the Euler param-
eters, that were used earlier for describing the kinematics. From Chapter 2 we recall that they
satisfyη2 + εTε = 1. This is an interesting observation, which makes us able to updateη in an
open-loop manner. In Simulink this is later done by utilizing a normalization block.

4.3 Stabilizability

As briefly mentioned above, for an uncontrollable system to be stabilizable, all the eigenval-
ues corresponding to the uncontrollable modes must be stable. A reasonable approach is to
use aKalman canonical decomposition, where the original linear system is decomposed into
controllable and uncontrollable subspaces. A theorem on the topic is given in Chen (1999).

Theorem 4.1. Consider an-dimensional linear state equation

ẋ = Ax + Bu, y = Cx + Du (4.10)

with rank(C) = n1 < n, whereC is given as in(4.9). We form then × n matrix P−1 ,
[p1, . . . ,pn1 , . . . ,pn], where the firstn1 columns are anyn1 linearly independent columns of
C, while the remaining columns can be arbitrarily chosen as long asP is nonsingular. Then
the similarity transformationx = P−1x̄ transforms(4.10)into[

˙̄xc

˙̄xuc

]
=

[
Āc Ā12

0 Āuc

] [
x̄c

x̄uc

]
+

[
B̄c

0

]
u, y =

[
C̄c C̄uc

] [
x̄c

x̄uc

]
+ Du (4.11)

whereĀc andĀuc aren1×n1 and(n−n1)× (n−n1), and controllable and uncontrollable,
respectively. The transfer function of the controllable subsystem is equal to that of(4.10).
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Based on Theorem 4.1 we then investigate the complete linearized system, followed by the
eigenvalue of the uncontrollable subsystem corresponding toη. The physical parameters used
in this analysis, and for the remainder of this thesis are given in Table 5.1.

The outline described above is implemented in the functionctrbf in MATLAB, except that
the order of the columns inP−1 is reversed. After plugging in the model equations, we find
thateig(Āuc) = 0, hence being stable in sense of Lyapunov, or equally, marginally stable.

Based on this analysis we conclude that the complete linearized system is uncontrollablebut
stabilizable. This is for instance a necessary condition to guarantee a bounded performance
index, or cost function, when implementing LQR.

4.4 Summary

In this chapter a reasonable nonlinear model for describing the SSETI/ESEO satellite was de-
veloped, based on theory discussed in earlier chapters. A linearized model was also derived,
which is later to be used when designing and implementing various attitude control schemes.

General properties for the nonlinear model were not discussed at this point due to complex-
ity. On the other hand, the linearized model was found to be uncontrollable, but stabilizable by
means of the available control torques. Also, even though we do not have any direct control of
η, the state can be updated by utilizing the properties of the Euler parameters. Observability
was not discussed in this chapter, but it is assumed that this is fulfilled.

Finally we note that since all values corresponding toη turned out to be zero in the linearized
model, we will for the remainder discard this state, hence reducing the order of the model to 7
states, as apposed to 8. The reduced size model is both controllable and observable.



Chapter 5

Attitude control and simulations

As mentioned in the introduction, the purpose of this thesis is to establish and investigate a
reasonable model of a micro-satellite, and then finally propose a strategy with hopes of solving
the problem of attitude control and stabilization. The system to be studied has three degrees
of freedom and four available controls, which makes it an overactuated system. As discussed
earlier, the model and its operation modes are based on the SSETI/ESEO satellite.

In the following we start off by giving a summary of some physical parameters for the satellite,
as well as performing some open-loop simulations. Afterwards, we continue by discussing
some well known control strategies, followed by the main topic of this thesis, attitude control
by means of explicit MPC, via multi-parametric quadratic programming (mpQP). Since the ac-
tuating thrusters are on-off by nature, input modulation is an important implementation aspect.
Some attempts are done in solving this problem, utilizing a simple bang-bang scheme.

The signal modulation scheme, and all the control strategies, are simulated together with the
satellite plant in closed-loop. A thorough discussion of the results is given at the end.

5.1 SSETI/ESEO parameters

Some major physical parameters are summarized in Table 5.1. The values were used in earlier
analysis, and are to be used throughout the remainder of this thesis. As earlier, all values are
based on different documents in the Phase B report.

Short Explanation Value

I = diag(i11, i22, i33) Satellite inertia matrix diag(4.250, 4.337, 3.664) [kg m2]
is Axial wheel inertia 4 · 10−5 [kg m2]

τn = [τ1n, τ2n, τ3n]T Nominal thruster torque [0.0484, 0.0484, 0.0398]T [Nm]
ωsmax Maximum wheel velocity 527 [rad/s] ≈ 5032 rpm
ωo Mean angular velocity ofFo Arbitrary, yet fixed

Table 5.1: SSETI/ESEO parameters
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5.2 Open-loop simulations

Some simple open-loop simulations are given in the following with the purpose of showing the
functionality of the orbit propagator, as well as discussing a simplification by means of using
circular orbits, apposed to elliptical ones.

The distance from the origin ofFi to Fo is given in (E.8), in which we can easily find the
average distance from the center of the Earth to the satellite by evaluating the integral

r̄ =
1
2π

∫ 2π

0

a(1 + e2)
1 + e cos ν

dν ⇒ r̄ = a
√

1− e2 (5.1)

When we later do control design we will assume circular orbits, according to (5.1), while inter-
preting a varying distance as a disturbance when doing closed-loop simulations. In fact, when
we derived our nonlinear model, we assumed thatω̇o = 0, which implies circular orbits.

For the rest of this thesis, initial COE for SSETI/ESEO will be given as;i = 7 [deg], a =
24603.14 [km], e = 0.718, Ω0 = −10 [deg],$0 = 178 [deg] andν0 = 0 [deg].

Using these initial conditions, the orbit propagator gives the results in Figure 5.1 and 5.2.

Figure 5.1: Results from orbit propagator, showingFo andFi

General open-loop simulations of the model are not included at this point. We also note that all
the Simulink blocks that make up the system, as well as various MATLAB functions, are given
in Appendix C.

5.3 Control design

The open-loop simulations of both the system and the orbit propagator gave reasonable results,
and will therefore not be analyzed any further. The remainder of this section is on closed-loop
control, where we begin with a discussion on the well known PD control scheme, as well as
the Linear Quadratic Regulator (LQR). A more detailed discussion is given on explicit Model
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Figure 5.2: Difference between original and mean orbit

Predictive Control, since this is a less known approach.

Simulations for all cases are given at the end of this chapter. For clarity, we note that when
utilized, the term linearized model means the reduced size model, omittingη.

5.3.1 PD-control

As mentioned earlier, Euler parameters are widely used for describing attitude orientations,
and they are also well suited for onboard real-time computations. A simple, yet reliable control
scheme can be implemented using a linearquaternion feedback control, which is a realization
of the more familiar PD control approach. The control torques can easily be found from

τ = −
[
Kp Kd

] [
qe

ω

]
(5.2)

whereqe is the attitude error quaternion vector, andω is short forωb
ob. We recall that in the

case of rotation matrices it does not make sense to subtract one matrix from another as the result
would not be a valid rotation matrix. Therefore, as in (2.7) we defineR(q̃) , RT(qd)R(q) =
R(q̄d)R(q), whereq , [η, εT]T = [η, ε1, ε2, ε3]T according to Section 2.3. Similarly, the
desired Euler parameters are defined asqd , [ηd, ε

T
d]

T = [ηd, ε1d, ε2d, ε3d]T, while q̄d denotes
the complex conjugate ofqd. Further more, since we are dealing with successive rotations, we
know thatR(q̄d)R(q) = R(q̄d ⊗ q), where⊗ is the quaternion product operator. The error
in Euler parameters can then be written as (Egeland and Gravdahl, 2002)

q̃ , q̄d ⊗ q =
[
ηd εT

d

−εd ηdI3×3 − S(εd)

]
q (5.3)
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or equally, if we definẽq , [η̃, ε̃ T]T = [η̃, ε̃1, ε̃2, ε̃3]T, in component form
η̃
ε̃1
ε̃2
ε̃3

 =


ηd ε1d ε2d ε3d

−ε1d ηd ε3d −ε2d

−ε2d −ε3d ηd ε1d

−ε3d ε2d −ε1d ηd



η
ε1
ε2
ε3

 (5.4)

The attitude error quaternion vector in (5.2) consists of the last three errors, i.e.qe = [ε̃1, ε̃2, ε̃3]T.

Remark 5.3.1. The error in the Euler parameters in (5.3) is a valid unit quaternion, that is,q̃
satisfies̃η+ ε̃ Tε̃ = 1. The latter would not have been the case if we were to defineq̃ = q−qd.

As is evident from (5.2), the PD control law does not utilize any information about the wheel.
Also, the calculated control torques can be interpreted as generalized torques about the satel-
lite’s principal axes. Due to the fact that we have redundancy about the principal y-axis, the
above mentioned issues lead us to a new problem in sense of doing torque allocation. A pre-
liminary and simple way of solving this problem can be implemented using a simple dead-zone
approach. In short, this means that the calculated torque about the y-axis is applied only to the
wheel, whenever the torque is within a specific range, specified by the dead-zone. A more com-
prehensive discussion on control allocation for ships and marine vessels, though applicable for
satellites, is given in Fossen (2002). It is shown that in its most simple form, a solution to the
unconstrained1 allocation problem can be found by solving a least-squares (LS) optimization
problem, that is

J =min
f

{
fTWf

}
subject to: τ −Tf = 0

(5.5)

whereW is a positive definite matrix, weighting the control actuators, and the actuator config-
uration matrixT is defined in terms of a set of column vectors, one for each actuator. Further-
more, it is shown that an explicit solution to (5.5) can be found as

f = W−1TT (
TW−1TT)−1

τ = T†
ωτ

whereT†
ω is recognized as thegeneralized inverse. The final controlu is then applied to the

different actuators according to the following expression

u = K−1T†
ωτ (5.6)

whereK is the torque coefficient matrix, andτ is the generalized torque.

In industrial systems it may be necessary to minimize power consumptions or take actuator
limitations into account. Other limitations may also exist, and in general this leads to a con-
strained allocation problem. This will not be pursued any further at this point, and the reader
should refer to Fossen (2002) for details. Note that an explicit solution to latter has been
developed by Johansen, Fossen and Tøndel (2003), based on multi-parametric quadratic pro-
gramming. This is a similar approach, yet less complex, as will be used later in this thesis when
doing explicit MPC. More information on this topic will be given subsequently.

1Unconstrained, as apposed to constrained, means that there are no bounds on the elements to be investigated.
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5.3.2 LQR

Using state feedback allows one to assign any closed-loop system eigenvalues if the system is
controllable. This is indeed the case when solving the Linear Quadratic (LQ) optimal control
problem. The LQ problem is one of the most frequently appearing optimal control problems,
and is the basis of many modern robust control system design methods. A fundamental design
issue is the regulator problem, where it is necessary to regulate the outputs or the states of
the system to zero while ensuring that they exhibit desirable time-response characteristics. A
Linear Quadratic Regulator (LQR) can be designed for this purpose.

The continuous-timelinear system to be controlled is described by the state-space model

ẋ(t) = A(t)x(t) + B(t)u(t) and y(t) = Cx(t) (5.7)

and the LQR is sought to minimize the quadratic performance index, or cost function, given as

J =
1
2
xT(tf )Sx(tf ) +

1
2

∫ tf

t0

{
xT(t)Q(t)x(t) + uT(t)R(t)u(t)

}
dt (5.8)

whereS = P(tf ) > 0, Q > 0, R > 0, andt0 andtf indicate initial and final time, respectively.

Remark 5.3.2. The problem statement is given for the general case whereA,B,Q andR are
time-varying. In most cases however, they are time-invariant, as is the case for our system.

It can easily be found that forJ to be minimized the control must be given as

u(t) = −K(t)x(t) = −R−1(t)BT(t)P(t)x(t) (5.9)

whereP(t) is the solution of the Riccati differential equation, that is

dP(t)
dt

= AT(t)P(t) + P(t)A(t)−P(t)B(t)R−1(t)BT(t)P(t) + Q(t), P(tf ) = S

A practical and useful case is obtained by lettingtf → ∞. If the system in (5.7) is control-
lable or stabilizable the performance index in (5.8) remains bounded, andP(t) converges to a
stationary solution of the Riccati differential equation when integrated backward in time. If we
now assume a time-invariant system, the stationary solution,P∞, is obtained by solving the
continuous-time algebraic Riccati equation (ARE), that is

ATP∞ + P∞A−P∞BR−1BTP∞ + Q = 0 (5.10)

The optimal control in (5.9) now simplifies to

u(t) = −Kx(t) = −R−1BTP∞x(t) (5.11)

and the closed-loop system is given as

ẋ(t) = (A−BK)x(t) = Ac x(t) (5.12)

If the system is observable or detectable, the optimal state feedback is asymptotically stable,
or equally,Ac is Hurwitz. The steady-state LQR feedback control law can be computed in
MATLAB by applying the commands
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Q = diag([q11,q22,...,qnn]);
R = diag([r11,r22,...,rnn]);
[K,P,E] = lqr(A,B,Q,R);

whereK is the optimal gain,P is the stationary solution to the ARE andE contains the eigen-
values for the closed-loop system.

Given some weight matrices, the optimality of the state feedback control gain is measured
in sense of the performance index. Whether it defines a good system in any engineering sense
depends on the choice ofQ andR. Even though finding these matrices is usually an iterative
procedure, there are some rules of thumb. Without discussing these any further in this thesis,
the reader should refer to Bryson and Ho (1975) for details.

To be shown later when doing simulations, the LQR approach achieves reasonable results.
As mentioned above however, the performance is closely related to our choice of weight ma-
trices. Also, even though the LQR is a robust control scheme, in sense of gain and phase
margins, we can not directly include any constraints on the states nor the inputs for the system.
As discussed earlier, a constrained allocation problem would be applicable, and together with
the LQR, this would most likely provide a good solution. In fact, as will be shown later, the
LQR is highly relevant when doing explicit MPC. Finally we note that, unlike the PD control,
the LQR utilizes the information about the wheel, as well as rendering the angular velocity of
the wheel to zero.

5.3.3 Explicit MPC

As already announced, the main topic of this thesis is on attitude control by means ofexplicit
Model Predictive Control, from now on called eMPC. In the following we start by giving a
brief review on the traditional MPC scheme, while continuing with an explanation on how
this approach can be extended to eMPC, via multi-parametric quadratic programming (mpQP).
Some pros and cons of eMPC, as well as implementation aspects, are also briefly discussed.
To illustrate the whole procedure, a simple second order system is used, while when doing
simulations at the end, the similar approach is applied for the linearized satellite model. The
following discussion is based on Tøndel (2003) and Bemporad et al. (2002).

Model Predictive Control

Roughly speaking, MPC refers to a class of algorithms that compute a sequence of manipulated
variable adjustments in order to optimize the future behavior of the plant. More specifically
this means that the control action is obtained by computing an open-loop optimal sequence of
control moves on a predefined horizon, once for each time sample. The first control input in
the sequence is then applied to the plant, and the optimization is repeated with the new initial
conditions and on the new horizon, shifted one step ahead. Due to the shifted horizon, the term
receding horizon controlis commonly used interchangeably with MPC. We also note that due
to the repeated optimization, MPC is considered a closed-loop approach.

The ability to include process input and output constraints directly in the problem formula-
tion, so that future constraint violations are anticipated and prevented, is probably the most
important reason for the success of MPC in the industry. An excellent survey of successful use
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of traditional on-line MPC can be found in Qin and Badgwell (1997).

For the remainder of the discussion on MPC and eMPC, the process to be controlled can be
described by adiscrete-time, deterministic linear state-space model, that is

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(5.13)

wherex(k) ∈ Rn is the state variable,u(k) ∈ Rm is the input variable,A ∈ Rn×n, B ∈
Rm×m, and(A,B) is a stabilizable pair. If we now consider the regulator problem, that is, the
problem of rendering the state vector to the origin, the MPC solves the following optimization
problem for the currentx(k)

min
U
{J(U,x(k))}

subject to: ymin ≤ y(k + i|k) ≤ ymax , i = 1, . . . , N
umin ≤ u(k + i) ≤ umax , i = 1, . . . ,M − 1
x(k|k) = x(k)
x(k + i+ 1|k) = Ax(k + i|k) + Bu(k + i) , k ≥ 0
y(k + i) = Cx(k + i|k) , k ≥ 0
u(k + i) = Kx(k + i|k) ,M ≤ k ≤ N − 1

(5.14)

whereU , [uT(k), . . . ,uT(k+M−1)]T, ymin < 0 < ymax, umin < 0 < umax, R = RT > 0,
Q = QT≥ 0, P = PT > 0, x(k + i|k) is the prediction ofx(k + i) at timek, M andN are
input and constraint horizons, and the cost function that we try to minimize is given as

J = xT(k +N |k)Px(k +N |k) +
N−1∑
i=0

{
xT(k + i|k)Qx(k + i|k) + uT(k + i)Ru(k + i)

}

As is evident from the cost function above, we see that it resembles the continuous-time cost
function of the LQR in (5.8). In fact, when the final cost matrixP and gain matrixK in (5.14)
are calculated from thediscrete-timeversion of the ARE in (5.10), under the assumptions that
the constraints are not active fork ≥ M , (5.14) exactly solves the constrained infinite horizon
LQR problem for (5.13).

To ensure stability the final state vector should enter an invariant set in which no constraints
are active. That way, oncex(k) is a member of the invariant set, the LQR is optimal for all
time. This will not be investigated any further in thesis however, and we end the discussion
by nothing that several modifications to MPC have been suggested to guarantee stability of the
resulting controller. Also, as will be shown later, in sense of finding explicit solutions to the
MPC problem, the solution turns out to be a piecewise affine (PWA) function. Consequently, a
potential approach to guarantee stability in case of eMPC is to search for piecewise quadratic
Lyapunov functions by solving a convex optimization problem. In Ferrari-Trecate et al. (2001)
this was done by utilizing linear matrix inequalities (LMIs).
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From linear MPC to mpQP

By substitutingx(k+i|k) = Aix(k)+Σi−1
j=0A

jBu(k+i−1−j) , it can be shown (Bemporad
et al., 2002) that the linear MPC problem in (5.14) can be rewritten as

V (x(k)) = min
U

{
1
2
UTHU + xT(k)FU

}
subject to: GU ≤ W + Ex(k)

(5.15)

The optimization problem in (5.15) is a quadratic program (QP). However, since we usually say
that a mathematical program containing a vector of parameters, as apposed to a scalar value, is
a multi-parametric program, we can reefer to (5.15) as a multi-parametric quadratic program
(mpQP) inU.

From the relationz , U+H−1FTx(k), and by completing squares, (5.15) can be transformed
further, into an equivalent mpQP inz, that is

Vz(x(k)) = min
z

{
1
2
zTHz

}
subject to: Gz ≤ W + Sx(k)

(5.16)

wherex(k) is the current state vector, which can be treated as a vector of parameters. Note that
H > 0 sinceR > 0. The latter is a strong result, in which the problem formulated in (5.16)
is strictly convex, and the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient
conditions for optimality, giving an unique solution (Nocedal and Wright, 1999). As shown in
Bemporad et al. (2002), the mpQP in (5.16) can be solved by applying the KKT conditions

Hz + GTλ = 0, λ ∈ Rq

λr (Grz−Wr − Srx(k)) = 0, r = 1, . . . , q,
λ ≥ 0,

Gz−W − Sx(k) ≤ 0.

(5.17)

where the subscriptr on some matrix denotes therth row, whileq is the number of inequalities
in the optimization problem, and the number of free variables isnz = m·N . Matrix dimensions
are then given asz ∈ Rnz , H ∈ Rnz×nz , G ∈ Rq×nz , W ∈ Rq×1, andS ∈ Rq×n.

Implementation aspects and properties of eMPC

Since the problem in (5.15) depends on the current statex(k), the implementation of a tra-
ditional MPC requires an on-line solution of a QP at each time step. Although efficient QP
solvers are available, computing the inputu(k) requires significant on-line computation effort.
For this reason, the application of traditional MPC has only been suitable to processes with
relatively slow dynamics.

Though limited to reasonable small problems, the idea behind eMPC is to divide the state-
space or parameter space into a manageably small number of (convex) polyhedra or regions, in
which one can pre-compute (off-line) different optimal control laws, to be applied according to
a specific region. The key observation is that in the case of eMPC, the statex(k) is interpreted
as a parameter and the problem in (5.15) is solved off-line forall x. It is shown in Bemporad
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et al. (2002) that the solutionz∗(x(k)) of (5.16), henceU∗(x(k)), is a continuouspiecewise
affine(PWA) function defined over a polyhedra partition. Consequently, the on-line effort is
limited to evaluating this PWA function. In particular, the MPC algorithm to be implemented in
real-time will then simply consist of reading the appropriate control law from a table look-up,
depending on the current state estimate. This is particularly useful in high-bandwidth applica-
tions, when high control update rates are required.

In addition to the advantages mention above, eMPC can easily be implemented on inexpensive
hardware, as fixed point arithmetics can be used. Also, the overhead in the table look-up ap-
proach is minimal, in that a few lines in software is sufficient. As mentioned earlier however, a
disadvantage is that the method is limited to fairly small problems, since memory requirements
and off-line computation times seems to increase more or less exponentially with problem di-
mension. It is reasonable to say that the number of polyhedra regions gives an indication of the
complexity of the eMPC. The number of regionsNr is closely related to the number of con-
straintsq, which in turn depends on the number of statesn, the constraint horizonN , and the
number of inputs and outputs,m andp, respectively. The higher value ofq the higher value of
Nr. Some complexity reduction techniques exist however, using for instance traditional input
parametrization (input blocking). This approach is well known from traditional MPC. Another
approach is to represent the calculated PWA optimal control law as a binary search tree for ef-
ficient on-line evaluation. For further information the reader is referred to Tøndel and Johansen
(2002) and references therein.

We also note that even though the incorporation of input and output constraints in the prob-
lem formulation is the major advantage in MPC, is can also lead to infeasibility problems. This
can happen because of unexpected disturbances, or due to model uncertainties. There are many
ways in which the predictive control problem can become infeasible, and usually they are diffi-
cult to predict. Obviously, the consequence could be an unacceptable behavior and a situation
where the controller is unable to find an input that keeps the plant within its constraints. Be-
cause of this, it is important to have a strategy for dealing with the possibility of infeasibility. A
common approach is tosoftenthe constraints, allowing one or more constraints to be violated
if necessary for finding a solution to the optimization problem. A straightforward way to do
this is to add new variables in the problem, so calledslack variables, which are defined in such
a way that they are non-zero only if the constraints are violated. On the other hand, if non-zero,
they are heavily penalized in the cost function, so that the optimizer has a strong incentive to
keep them zero if possible. When softening constraints we note that this is in most cases only
possible with output or state variables, as input from actuators commonly suffer fromhard
constraints, e.g. saturation in hardware, and there is no way in which they can be softened.
More information on slack variables will be given subsequently.

An mpQP toolbox in MATLAB

As explained above, explicit solutions to constrained linear MPC problems can be obtained
solving multi-parametric quadratic programs, where the parameters are the components of the
state vector. In the case of single parameter problems, as well as multi-parametric linear pro-
grams (mpLP), numerous work exist. When dealing with mpQP problems however, the con-
tribution is limited. The work done by Bemporad et al. (2002) is one of the few dealing with
general linear MPC problems. Another major contribution on the topic is given in Tøndel et al.
(2003a), in which computation speed is greatly improved. For the remainder of this thesis, the
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optimization solver to be used for solving the mpQP problem is based on Tøndel et al. (2003a),
and the necessary algorithms are implemented in a non-commercial software package. The
toolbox, which is implemented in MATLAB, was developed by Dr. Petter Tøndel and Profes-
sor Tor Arne Johansen, at the Department of Engineering Cybernetics, Norwegian University
of Science and Technology. Without going into details, the toolbox contains functionality for
completing the following tasks:

• Formulation of mpQP. By giving the linear discrete-time model, constraints, slack vari-
able costs, cost matrices etc. of a linear MPC problem, the toolbox has functionality to
reformulate this into an mpQP.

• mpQP solver. The mpQP problem is solved, giving a PWA control law.

• Generating binary search tree. The PWA control law can be represented as a binary
search tree for efficient on-line evaluation.

• Generating C code. A stand alone application in ANCI C code is generated for the
controller, based on the binary search tree.

Applying eMPC - an example

By means of visualizing the theory and procedure discussed above, a simply double integrator
is considered. The exactly same approach is applicable for systems of higher order though, but
visualization becomes harder in these cases. The eMPC controller will as mentioned earlier be
generated using the mpQP toolbox by Tøndel and Johansen.

Consider the continuous-time double integrator (Johansen et al., 2000)ẋ = Acx+Bcu, where

Ac =
[
0 1
0 0

]
, Bc =

[
0
1

]
, x =

[
x1

x2

]
(5.18)

The continuous-time system in (5.18) can easily be converted into an equivalent discrete form
by utilizing the MATLAB functionc2d(sysc,T,method) . For the remainder, the method
used for discretizing the continuous-time system is a triangle approximation (modified first-
order hold), and control inputs are assumed piecewise linear over the sampling periodT.

If x1 is interpreted as position,x2 as speed and u as force, the objective is to control the
position under constraints on the speed and force, that is

−0.5 ≤ x2 ≤ 0.5
−1 ≤ u ≤ 1

(5.19)

If we chose the sampling timeT equal to 0.05 and do not include any slack variables, the MPC
problem in (5.14), over the horizonN = M = 2, with cost matrices

R = 1, Q =
[
1 0
0 0

]
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is associated with the mpQP problem in (5.16) with

H =
[
1.0786 0.0759
0.0759 1.0733

]
,F =

[
1.1092 1.0360
1.5728 1.5174

]
GT =

[
1 0 −1 0 1 1 −1 −1
0 1 0 −1 0 1 0 −1

]
WT =

[
1 1 1 1 10 10 10 10

]
ST =

[
0 0 0 0 0 0 0 0
0 0 0 0 −20 −20 20 20

]
Some internal scaling is done within the mpQP toolbox, but this is not relevant in sense of un-
derstanding the procedure. Note that the matrices above are different from the scaled matrices
used when doing the numerics. However, after finding the solutions, they are re-scaled such
that they are representative for the original problem, as stated above.

The solution to the mpQP is shown in Figure 5.3, for different horizons. As can be seen,
the complexity of the solution space increases with the optimization horizon. As discussed
earlier though, the horizon is just one single factor that needs to be taken into consideration.
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Figure 5.3: Regions in parameter space for the double integrator, using hard constraints
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For the remainder of the discussion on the double integrator we useN = 2.

The explicit MPC controller that was computed above can be connected to the plant, estab-
lishing the closed-loop system. As we remember, the parameters used for determining which
optimal control gain to use are equal to the state variables. By letting the initial conditions for
the double integrator bex0 = [−2, 0]T, we get the response shown in Figure 5.4.
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Figure 5.4: Set point control of the double integrator,N = 2

We can investigate the solution space further, by looking at the data for each region, e.g.

>> region{1}

poly: [6x3 double]
feas: 1

actset: [0 0 0 0 0 0 0 0]
solution: [2x3 double]
lagrange: [0x3 double]

chebyx: [2x1 double]
chebyr: 3.0473

As can be seen fromregion{1}.actset there are no active constraints for this region. By
looking at Figure 5.4(b) this makes sense, as the solution is closely related to the stationary
discrete-time LQR. In fact, by investigatingregion{1}.solution further we find that the
optimal control law in this region is identical to the stationary discrete-time LQR gain,−K.

�

As mentioned in the beginning, only the first input is applied to the plant. In the general
case, the input corresponding to the first time step is given asu∗(k) = Krx(k) + kr, where
the indexr indicates the active region. Clearly, the latter represents an affine function. As
region{r}.solution holdsKr andkr for every time step on the horizon, the input above
corresponds to the first time step. Omitting details, the complete input sequence, and solution
to (5.15) is given asU∗ = [(u∗(k))T, (u∗(k + 1))T, . . . , (u∗(k +N − 1))T]T.
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We end this section by discussing the use of slack variables. As before the results in the fol-
lowing, using the double integrator as an example, are applicable for systems of higher order,
and the double integrator is only used by means of visualizing the procedure.

Based on the theory discussed sofar, the MPC formulation in (5.14) can be rewritten to a new
MPC problem, also including slack variables, that is

min
U,s

{
J(U,x(k)) + ρ‖s‖22

}
subject to: ymin − s ≤ y(k + i|k) ≤ ymax + s , i = 1, . . . , N

umin ≤ u(k + i) ≤ umax , i = 1, . . . ,M − 1
x(k|k) = x(k)
x(k + i+ 1|k) = Ax(k + i|k) + Bu(k + i) , k ≥ 0
y(k + i) = Cx(k + i|k) , k ≥ 0
u(k + i) = Kx(k + i|k) ,M ≤ k ≤ N − 1

(5.20)

where‖s‖2 is theL2-norm of s andρ is the penalty weight of the slack variables. We note
that using theL2-norm is only one way of including slack variables. As mentioned earlier,ρ
is chosen such that‖s‖2 is kept as small as possible. The solution to (5.15) is now given as
U∗ = [(u∗(k))T, (u∗(k + 1))T, . . . , (u∗(k +N − 1))T]T, s∗ = [sT(k), . . . , sT(k +N − 1)]T.

Applying eMPC - an example, continued

When we defined the eMPC problem for the double integrator the aim was to find optimal
solutions for the parameter space|x1| ≤ 3 and|x2| ≤ 3. As can be seen from Figure 5.5(a)
however, we did not obtain this goal in the case of using hard constraints. More precisely, the
mpQP solver did succeed in solving the problem, but without including any slack variables, it
turned out the be infeasible for part of the parameter space. The way to interpret this is that
there exists no actuation, within its limit, such thatx2 is rendered within the chosen constraint
for every time step, during the defined horizon. As discussed earlier this can in some cases
lead to infeasibility. This can for instance be the case if the initial conditions are outside the
feasible parameter space, if noise causes the output to go outside the solution space in the next
time step, or if there are serious model uncertainties. Obviously this needs to be dealt with in
real applications, and as mention above one way of doing this is to include slack variables. The
direct consequence of this can be seen in 5.5(b), where when including softening techniques,
the mpQP solver found feasible solutions for the whole parameter space.

Another interesting way to illustrate the effect of introducing slack variables can be seen in
Figure 5.6. From the case when hard constraints are applied, we see that no input exists for
|x2| & 0.55, while inputs exist for the desired parameter space in case of soft constraints. Also,
we see that the input saturates, or is kept within the constraints at±1, as defined in the problem.

Plotting an input as function of two states can of course be a reasonable way to represent
the optimal control, wether we use slack variables or not.

�
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Figure 5.5: Regions in parameter space for the double integrator, using hard and soft constraints
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Figure 5.6: Input as function of states for the double integrator, using hard and soft constraints

5.4 Signal modulation

As mentioned in the introduction, it is important to keep in mind that the thrusters are on-off
by nature. A fixed integer controller could have been useful in this case. However, since this
approach is not considered in this thesis, and the fact that input sequences calculated from a
wide range of controllers are continuous, this leads to problems in terms of implementation.
An the other hand, sometimes a system utilizes both on-off actuators as well as continuous
ones. Therefore, an attempt to solve this problem is done by keeping the continuous input
to the wheel unchanged, while using a preliminary bang-bang approach for the thrusters. We
note that it would also be interesting to investigate the use of Pulse-Width Pulse-Frequency
(PWPF) modulation, since this is a more sophisticated technique than the simple bang-bang
scheme. It has also in some cases been shown to be a more efficient approach in sense of fuel
consumption. When we now do not pursue this any further this is due to time constraints, and
we end the discussion by referring to the work on PWPF mentioned in the introduction.
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In its most simple form, the bang-bang control consists of a signum module, as shown in Figure
5.7(a). If we denote the continuous inputu, we get a modified signal according to

u∗ : signum(u) =


−1 if u < 0,
0 if u = 0,
1 if u > 0.

(5.21)

In sense of having a less aggressive actuation we can include a dead-zone together with the the
signum function. The result of doing this is seen in Figure 5.7(b). The consequence is usually
less accuracy, but more importantly, fuel usage is heavily reduced. Obviously, the accuracy can
be adjusted by choosing an appropriate dead-zone.

Either we include a dead-zone or not, the modified signal is an integer, according to (5.21).
As can be seen in Figure 5.7, we have also included a gainKnom, which is simply the nominal
thruster torques for SSETI/ESEO satellite, as described in Table 1.8.

(a) Bang-bang (b) Bang-bang with dead-zone

Figure 5.7: Signal modulation

5.5 Simulations of the SSETI/ESEO satellite

We again turn our attention to the SSETI/ESEO satellite. The previous sections were included
with purpose of explaining and visualizing some control techniques which are all applicable
for our system. Since the focus in this thesis is on eMPC, the other schemes are only included
by means of comparing the different methods and their performances.

A thorough discussion on the different results is given in the end of this chapter.

Hardware and software

The simulations to follow were all carried out on a Windows XP platform, using MATLAB ver-
sion 6.5. As mentioned earlier, the toolbox by Tøndel and Johansen was used throughout. Note
that instead of using the optimization toolbox in MATLAB, the Tomlab Optimization toolbox
was utilized to solve LP/QP subproblems within the mpQP software. As far as hardware goes,
the computer was equipped with a 2GHz Pentium 4 CPU and 512Mb RAM.

SSETI/ESEO - a recap

For clarity, a short recap on the satellite model that will be used when deriving the eMPC con-
troller will be given. All the control schemes we will use in the following are linear control
techniques, in contrast to our nonlinear model. As will be shown later though, the results ob-
tained when simulating the closed-loop system are by all means satisfactory.
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The nonlinear model was derived in Chapter 4, together with its linearized version in (4.6).
The linear model was then reduced from 8 to 7 states, forming the new state and input vectors
x = [ω1, ω2, ω3, ωs, ε1, ε2, ε3]T, u = [τ1, τ2, τ3, τa]T, where the terms are summarized as

States Input
ω1 Angular velocity about the x-axis

in Fb relative toFo, [rad/s]
τ1 Thruster torque about the x-axis

in Fb, [Nm]
ω2 Angular velocity about the y-axis

in Fb relative toFo, [rad/s]
τ2 Thruster torque about the y-axis

in Fb, [Nm]
ω3 Angular velocity about the z-axis

in Fb relative toFo, [rad/s]
τ3 Thruster torque about the z-axis

in Fb, [Nm]
ωs Angular velocity of the wheel

about its axial axis [rad/s]
τa Torque applied on wheel from

DC motor, [Nm]
ε1, ε2, ε3 Euler parameters (3 out of 4)

As before it is assumed that the output matrixC is equal to the identity matrix. Without any
further explanation we claim that the states in the linear system vary in magnitude with a factor
10000, e.g. the wheel’s angular velocity can be400 [rad/s], while the angular velocity about
the y-axis can be0.04 [rad/s]. Due to numerical sensitivity in the mpQP solver, we therefore
choose to scale the states, using a similarity transformation. We prefer to normalize the system
using a diagonal scaling matrixNx, where the nonzero elements are chosen based on their
maximum deviation, that is

Nx = diag {max|ω1|,max|ω2|,max|ω3|,max|ωs|,max|ε1|,max|ε2|,max|ε3|} (5.22)

For the remainder we assume thatmax|ω1| = max|ω2| = max|ω3| = 0.04 [rad/s],max|ωs| =
527 [rad/s], andmax|ε1| = max|ε2| = max|ε3| = 1.

By definingxn , N−1
x x, the normalized system is given as

ẋn = Anxn + Bnu (5.23)

whereAn = N−1
x ANx andBn = N−1

x B. The eigenvalues forAn are equal to those ofA.

As with the double integrator example, the continuous-time linear (normalized) model is con-
verted into an equivalent discrete-time form by utilizing a modified first-order hold routine in
MATLAB. The sampling time for the discretization is chosen asT = 0.1 [sec].

We finally note that the discretized model is only applied when designing the eMPC con-
troller. When applying LQR, the stationary gain is found by utilizing the continuous-time
model, though with the same weight matrices as in the discrete-time case.

5.5.1 Controller settings

Unless otherwise stated the controllers are designed according to Table 5.2. As will be shown
later, the only parameter to be adjusted is the slack variable weightρ. Note that the controllers
were all based on either thenormalizeddiscrete-time linear model or its continuous-time ver-
sion. They are all valid for the original linear model though, since the similarity transformation
only changes the scaling of the states, and not the behavior of the model.
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Controller
Parameter eMPC LQR PD

Q diag{50, 50, 50, 1, 100, 100, 100} -
R diag{200, 300, 200, 0.1} -
Kp - diag{10, 10, 10}
Kd - diag{7, 7, 7}

N (horizon) 2 ∞ -
ρ (slack) ∞ - -

Table 5.2: Summary of tuning parameters

When designing the eMPC controller, the parameter space, in which we search for feasible so-
lutions of the mpQP, is chosen as[−3,−3,−3,−3,−3,−3,−3]T ≤ xn ≤ [3, 3, 3, 3, 3, 3, 3]T.
Furthermore, when applicable, the constraints that will be used for the remainder of this the-
sis are[−0.0484,−0.0484,−0.0398,−0.002]T ≤ u ≤ [0.0484, 0.0484, 0.0398, 0.002]T, and
−527 ≤ ωs ≤ 527. A summary of states and units for the linear model was given above.
Note that by means of visualizing the results, the Euler parameters will be transformed into
Euler angles [deg], while the angular velocity of the body will be converted into [deg/s]. As
mentioned earlier, torque allocation for the PD-control is done using the dead-zone approach,
i.e. torque is applied to the wheel whenever the commanded torque about the y-axis is within
some limits. The chosen limits are similar to the constraints onτa, when using eMPC.

5.5.2 eMPC compared to LQR and PD-control

The first simulations are done with purpose of comparing the performance of the different
control schemes. All simulations are carried out on the nonlinear model, on an average orbit
according to (5.1), and with the SSETI/ESEO parameters and initial orbit conditions described
in Section 5.1 and 5.2, respectively. Initial conditions, and set-points for the simulations in-
cluded in this section are summarized in Table 5.3.

Case 1 Initial condition Set-point Unit

ωb
ob {0, 0, 0} {0, 0, 0} deg/s

ωs 0 0 rad/s
Euler angles (XYZ) {60,−45, 30} {0, 0, 0} deg

Case 2 Initial condition Set-point Unit

ωb
ob {0, 0, 0} {0, 0, 0} deg/s

ωs 0 0 rad/s
Euler angles (XYZ) {60,−45, 30} {0, 0, 90} deg

Case 3 Initial condition Set-point Unit

ωb
ob {1,−1, 1} {0, 0, 0} deg/s

ωs −500 0 rad/s
Euler angles (XYZ) {60,−45, 30} {0, 0, 0} deg

Table 5.3: Summary of simulations
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Simulations of the three cases summarized in Table 5.3 are given subsequently, and in the
same order as they appear above. Through Case 1 and 2 we investigate the performance of the
respective controllers for two different set-points. In both cases we assume no spin on neither
the wheel nor the satellite body. In Case 3 we want to render all states to the origin, but in this
case we have an initial spin for both wheel and body. This allows us to illustrate the efficiency
and effect of including a hard constraint on a state in the eMPC formulation. Finally, in the
modified case at the end, we have the same aim as in Case 3, but now we apply saturation on
the actuation for both the PD-control and the LQR. The saturation values are similar to the
input constraints for the eMPC.

Case 1: set-points at the origin, no spin
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(a) Euler angles: PD
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(b) Euler angles: LQR
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(c) Euler angles: eMPC
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(d) Angular velocity: PD
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(e) Angular velocity: LQR
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(f) Angular velocity: eMPC
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(g) Wheel velocity: PD
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(h) Wheel velocity: LQR
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(i) Wheel velocity: eMPC

Figure 5.8: Case 1
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Figure 5.8: Case 1, continued
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Case 2: set-points different from the origin, no spin
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(d) Angular velocity: PD
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(e) Angular velocity: LQR
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(f) Angular velocity: eMPC
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(h) Wheel velocity: LQR
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Figure 5.9: Case 2
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Figure 5.9: Case 2, continued
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Case 3: set-points at the origin, spin, and hard constraints
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(d) Angular velocity: PD
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(e) Angular velocity: LQR
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(f) Angular velocity: eMPC
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(g) Wheel velocity: PD
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(h) Wheel velocity: LQR
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Figure 5.10: Case 3
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Figure 5.10: Case 3, continued
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Case 3 (modified): including actuator saturation on PD and LQR
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(c) Angular velocity: PD
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(d) Angular velocity: LQR
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(e) Wheel velocity: PD
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(f) Wheel velocity: LQR
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Figure 5.11: Case 3 (modified)
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5.5.3 eMPC when exposed to extreme initial conditions

As mentioned earlier the mpQP solver may result in infeasible solutions, hence making the
eMPC controller unable to find an applicable input. This can for instance be the case if the
initial conditions are outside the feasible parameter space.

In the following, simulations are done to show the effects of including slack variables in the
eMPC formulation. Only simulations of the eMPC approach will be included at this point. As
before, simulations are carried out on the nonlinear model and with the SSETI/ESEO parame-
ters and initial orbit conditions described in Section 5.1 and 5.2, respectively. Initial conditions,
and set-points for the simulations included in this section are summarized in Table 5.4.

Case 4 Initial condition Set-point Unit

ωb
ob {−2, 2, 2} {0, 0, 0} deg/s

ωs 1250 0 rad/s
Euler angles (XYZ) {60,−45, 30} {0, 0, 0} deg

Case 5 Initial condition Set-point Unit

ωb
ob {1,−1, 1} {0, 0, 0} deg/s

ωs −500 0 rad/s
Euler angles (XYZ) {60,−45, 30} {0, 0, 0} deg

Table 5.4: Summary of simulations

Through Case 4 we show how slack variables allow one to have extreme initial conditions,
while Case 5 highlights the effects of penalizing the slack variables differently.

The eMPC tuning parameters for both cases are taken from Table 5.2, except for using either
ρ = 3000 orρ = 500 when including slack variables. We note that we have only included slack
variables associated to the stateωs, since this is the only state suffering from constraints. Since
we have an optimization horizonN of two time-steps, we get two additionalfree variables,
one for each step. Furthermore, we assume that the actuator constraints are hard constraints,
while the velocity constraints of the wheel can be violated for a short period. This is a realistic
assumption as the maximum allowed velocity is chosen based on energy consumption, and not
on a physical limitation.

As was shown in the example using the double integrator we can visualize the polyhedra re-
gions in the parameter space. Obviously, it is impossible to do this for more than three dimen-
sions, and in fact it is hard to visualize the solution for more than two. If we do not regard
the order, we know from basic mathematics that from our linear SSETI/ESEO state vector we
can plot

(
7
2

)
= 21 different phase-planes, e.g. theω2ωs-plane. As we do not have room for all

of these, only a selection will be included here. When plotting one input as a function of two
states this can be done in

(
7
2

)(
4
1

)
= 84 different ways. Different offsets can also be included in

both, increasing the number of combinations arbitrarily.

Similar to the cases simulated earlier, the eMPC controller without slack variables is designed
based on Section 5.5.1. A selection of the polyhedra regions can be seen in Figure 5.12. In the
case of not including slack variables in the SSETI/ESEO eMPC controller, the mpQP solver
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returned infeasible solutions for part of the desired solution space. Furthermore, as can be seen
from Figure 5.12(c) and 5.12(d), only the phase-planes includingωs show infeasible solutions
in the parameter space. This is intuitive, sinceωs suffers from hard constraints.
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Figure 5.12: Polyhedra regions for the SSETI/ESEO satellite, N=2 andρ = ∞

The total number of regions in the parameter space when not including slack variables was
1205. However, we immediately see from Figure 5.12(c) and 5.12(d) that the eMPC controller
without slack variables is not robust in terms of extreme initial conditions. If we letρ = 3000
we obtain the robustness we are seeking, and since we use a relatively high penalty, potential
violation of the constraints will remain low. As can be seen from Figure 5.13, the new con-
troller is rather robust, in terms of disturbances and large start conditions. The total number of
regions when usingρ = 3000 was 1725. It is emphasized that since we normalized the system,
the values in the parameter space are different from the values of the original state vector. As
mentioned earlier however, the results are valid for the original system as well. For instance,
in Figure 5.13(a),[ω2, ωs]normalized = [1, 2] ⇔ [ω2, ωs]original = [0.04, 1054]. Recall that the
constraints onωs in the original system was±527 [rad/s].

Similar to the double integrator, the effect of the slack variables can also easily be visual-
ized by plotting an input as a function of two states. As can be seen from Figure 5.14(a), there
do not exist inputs for the whole parameter space in the case of using hard constraints. The
opposite is true, in the case of including softening techniques.
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Figure 5.13: Polyhedra regions for the SSETI/ESEO satellite,N = 2 andρ = 3000
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Figure 5.14: Input as function of states for the SSETI/ESEO, using hard and soft constraints

Case 4: extreme initial conditions,ρ = 3000
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Figure 5.15: Case 4
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Figure 5.15: Case 4, continued

Case 5: penalizing slack variables differently,ρ = 3000/500
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Figure 5.16: Case 5
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5.5.4 eMPC in combination with bang-bang modulation

As mentioned in the introduction, it is important to keep in mind that the thrusters are restricted
to on-off mode only. As will be shown shortly, one way of dealing with this problem is to use a
bang-bang approach. This is only meant to be a preliminary design, and further analysis should
be done. However, it is considered appropriate to include these simulations to illustrate how
to apply a modulation scheme. The following simulations are done with a varying distance
to the Earth, i.e. elliptical orbit. Initial conditions are equal toCase 1, as described earlier,
and with controller parameters as in Table 5.2, except for havingρ = 3000. The first case to
be studied is the bang-bang scheme in Figure 5.7(a). Afterwards is it shown that in sense of
having a less aggressive actuation, we can include a dead-zone together with the the signum
function. The latter is simulated for a duration of more than two full orbits to show efficiency
of the controller, at least in sense of overcoming time-varying gravity gradient torques. Also to
be illustrated, the weighting matrixQ has a huge impact on the accuracy when the controller
is implemented together with the modulation block.
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Figure 5.17: Bang-bang without dead-zone

Obviously, as can be seen from the actuation in Figure 5.17(d), the inputs are not under any
circumstances satisfactory. In Figure 5.18, a similar case is simulated, but now including the
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dead-zone, as in Figure 5.7(b). The output from the bang-bang is in this case defined as

τ1∗ =


0 if |τ1| < 0.0035
1 if τ1 ≥ 0.0035
−1 if τ1 ≤ 0.0035

, τ2∗ =


0 if |τ1| < 0.001
1 if τ1 ≥ 0.001
−1 if τ1 ≤ 0.001

, τ3∗ =


0 if |τ1| < 0.0035
1 if τ1 ≥ 0.0035
−1 if τ1 ≤ 0.0035

The resulting actuation from this change is clearly seen in Figure 5.18(e).
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(g) Wheel velocity (magnified)
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Figure 5.18: Bang-bang with dead-zone, simulated over two orbits

The final plots in Figure 5.19 show the response if we chose to weight the states differently. The
controller is based on Table 5.2, except for havingR = diag(50, 50, 50, 0.001, 100, 100, 100).
In the latter we even changed to dead-zone slightly, to allow more actuation. Nevertheless, as
can be seen from comparing Figure 5.19(c) and 5.18(d), the performance is different in sense
of keeping the wheel velocity close to zero. In case of decreasing the weight of the stateωs,
we care less about its transient. We can interpret this as if the controller is more interested in
driving the other states to the origin, and when this aim is achieved it is too costly to drive the
wheel to zero as well, i.e. the other states are weighted much higher than the angular velocity
of the wheel. This will discussed further in the next section, together with other design issues.
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Figure 5.19: Bang-bang with dead-zone, different weight matrix

5.5.5 Discussion

Throughout this thesis focus has been on attitude control and the motion about the center of
mass of a satellite. Part of the contents has been on different ways of modelling the spacecraft
as a rigid body, as well as giving an overview of potential disturbances and various actuators.
The equations describing the dynamics were derived based on the Newton-Euler formulation,
making up the equations in (3.19). The reader may notice that these differ from the classical
equations in (3.11). The reason for choosing the first alternative is that they were considered
more intuitive and easier to use as a basis for the SSETI/ESEO structure. In (3.11) all the
torques and the wheel angular momentum is generalized, which makes it necessary to calcu-
late the net angular momentum due to the rotation of the wheels relative to the body, as well
as the net torque applied to the wheels from the spacecraft. In case of only having one wheel
this may not be a huge concern, but in general systems including thrusters and momentum ex-
change devices it may turn out to be a cumbersome task. Also, in this thesis it has been an aim
to investigate an alternative approach as the standard formulation is already well understood.
As far as describing the kinematics, it was chosen to use Euler parameters due to their nonsin-
gular characteristics. The complete nonlinear model has been implemented in MATLAB and
Simulink with purpose of doing various simulations.

The controllers that were utilized are all linear, hence making it necessary to linearize the
nonlinear model about an equilibrium point. As described in the introduction the are many
attitude mission modes. However, as the nominal mode is the most common, it was the only
one considered in this thesis. Recall that it includes the task of maintaining a stable attitude,
i.e. keeping the satellite nadir pointing. More specifically this means that the best obtainable
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result is wheneverFb coincides withFo, which resembles the equilibrium point at the origin.
In some cases it may be reasonable to linearize about several equilibrium points, and then use
a kind of scheduling between different modes. This was not considered here however, and the
model was linearized at the origin only. Obviously, the linearized model was only used when
deriving the controllers, and during final simulations the nonlinear plant was utilized.

As described, a similarity transformation was used for normalizing the linear model. Intu-
itively this may seem unreasonable, but due to numerics in the mpQP solver it turned out to be
necessary. The obvious drawback from dealing with a scaled system is that there is no simple
way of including noise in the model. A small contribution in the original system may become
huge when scaled, or visa versa. This can easily be seen from Figure 5.20, were the noise was
realized as uniform white noise, sampled at 10 Hz. It was also assumed that RMS estimation
errors obtained from for instance an Ext. Kalman filter were given as in Table 5.5. Clearly, the
undesired effect of noise will be higher in the the scaled case than for the unscaled.
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Figure 5.20: Unscaled and scaled feedback for a random simulation

As mentioned earlier though, the transient response of both systems remains similar, and inves-
tigating one of them gives an indication of what to expect from the other. The results achieved
in this thesis are therefore likely to be applicable for the original system as well. In fact, simu-
lations were done based on the original (unscaled) system, and in the example given at the end,
the results obtained indicate a desired behavior in closed-loop.

Estimates Errors Unit

ωb
ob {0.2, 0.3, 0.2} deg/s

ωs 0.5 rad/s
Euler angles (XYZ) {0.1, 0.1, 0.1} deg

Table 5.5: RMS errors in state estimates

The results obtained through simulations show that there exists a range of regulator schemes
suitable for controlling a satellite. Similar for the ones discussed here is that they are all lin-
ear techniques, and as both the LQR and PD-controller are well known, they were natural
choices to use as references for the eMPC. As was shown throughCase 1-3, the response of
the schemes varied slightly. In terms of orienting the satellite in a specified direction, according
to the quaternions, the performance did not differ. As is evident though, the major difference
between the LQR, eMPC and the PD-controller is that in the latter no information about the
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wheel is utilized, hence making it impossible to control. In Figure 5.9(g) for instance, the angu-
lar velocity of the wheel is way pass the physical saturation. Obviously, the stationary value of
the wheel velocity is arbitrary in this case. For the LQR and eMPC the situation is different, as
they both render the angular velocity of the wheel to zero. Not surprisingly, the eMPC was the
only one keeping it within the desired limits, as evident in Figure 5.10(j). Another difference
between the schemes is how the actuation occurs. Both the PD-controller and the LQR apply
high torques initially, as apposed to the eMPC where the constraints on the actuation in most
cases are active at the beginning. Physically this is desirable, as the high torques of the other
schemes cannot be realized on a micro-satellite. Physical saturation on the actuation on both
the PD-controller and the LQR was simulated in the modified version of Case 3. The actuation
for the PD-controller became smoother in this case, but it was oscillating heavily. The reason
for the oscillation, which in fact was even more severe without the saturation, is most likely
due to the wheel, as it for the PD-controller only contributes as a passive damper. The LQR
with saturation on the other hand gave an almost similar response to the eMPC. However, the
torque applied to the wheel was actuating heavily, due to the low weighting in theR matrix,
i.e. the wheel is almost applied without any cost.

As mentioned earlier, the ability to include input and state constraints directly in the problem
formulation, so that future constraint violations are anticipated and prevented, is probably the
most important reason for the success of MPC. Being able to solve the MPC problem explicit
makes it even more applicable. In sense of comparing PD-control, LQR and eMPC, applied
for attitude control, it is difficult to say which is the better as design issues have to be taken
into consideration as well. This will be discussed shortly. However, from the results obtained
in this thesis, the eMPC approach has shown to be an alternative that should be considered if
constraints need to be taken into account. Also, as shown, the actuation was smooth, as ap-
posed to the oscillating ones of the PD-controller and the LQR.

Further analysis was also done on the eMPC controller to highlight the effect of including slack
variables in the problem formulation. In systems to be implemented in real life, this should be
done, as it would be unacceptable to have a situation where no input exists. Depending on
how the slack variables are penalized, i.e. how expensive it is to violate any of the constraints,
the performance may differ. This can easily be seen in Figure 5.16(b). Also as shown, when
including slack variables, the controller can allow extreme initial conditions. In the general the
introduction of slack variables also increase the robustness in terms of measurement noise. As
mentioned above, the latter is not applicable for a scaled system.

When it comes to general design issues, the first thing to sort out is wether it is desired or
necessary to have the wheel converge to zero angular velocity. As it was discussed above,
both the LQR and eMPC includes this functionality directly. The cost in fuel consumption
for doing this was not investigated in this thesis though, but in the end, the amount of fuel
used for doing this operation should be lower than fuel usage during detumbling. The latter
is necessary whenever the wheel reaches saturation, and no more angular momentum can be
provided. The second major design problem is to chose the weighting matrices in the LQR and
eMPC controllers, since the optimality of the state feedback control is measured in sense of
the performance index. Whether it defines a good system in any engineering sense depends on
the choice ofQ andR. Obviously, no universal solution exists for this problem, and usually it
is an iterative procedure, as it was here. The weight matrices were equal for the LQR and the
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eMPC. Additional choices need to be taken for the eMPC controller as well. If the constraints
are too strict there may not be a solution to the problem, or if the prediction horizon is too long
then the solution may become too complex. As for the weight matrices, the procedure of find-
ing appropriate eMPC parameters is highly iterative. In the end the gains for the PD-controller
were chosen sought to match the performance of the other two schemes.

The final issue to be discussed is the input modulation. As repeated earlier, the thrusters are on-
off only. As was shown in Figure 5.18, using a bang-bang modulation scheme with dead-zone
gave good results. Furthermore, the accuracy, and consequently the fuel usage can be adjusted
by varying the limits of the dead-zone. However, in many cases it would be useful to have a
Pulse-Width Pulse-Frequency (PWPF) modulation instead. This would especially be desirable
when the input signals are heavily oscillating or if contaminated with noise. Without going
into details, the PWPF consists of aSchmitt-trigger, which is similar to the bang-bang with
dead-zone, but also implementing hysteresis. A feedback and a lead-lag filter is also utilized,
allowing both frequency and width of the modulated pulses to change. Due to time constraints
this topic was unfortunately not considered in this thesis.

Utilizing unscaled model for deriving eMPC

As mentioned above, most of the work done in thesis was based on a scaled model. In the
following, it is shown that the results are applicable for the unscaled system as well. The
horizon and constraints were similar to the ones used for the scaled system, while choosing
Q = diag(200, 200, 200, 5 · 10−7, 1, 1, 1), R = diag(100, 200, 100, 1), andρ = 8 · 10−5. For
the remainder measurement noise is included according to Table 5.5, and the orbit is assumed
elliptical, hence causing additional disturbance. Initial conditions are equal toCase 3in Table
5.3. Note that further work has been carried out on the mpQP toolbox. However, due to time
constraints, a thorough analysis of the outcome was not possible, and additional simulations to
the ones in Figure 5.22 and 5.23 were therefore omitted in this thesis.

The parameter space,[−1,−1,−1,−1500,−1,−1,−1]T ≤ x ≤ [1, 1, 1, 1500, 1, 1, 1]T, was
chosen to cover any physical values. As in the scaled case, a selection of the polyhedra regions
can be seen in Figure 5.21.
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Figure 5.21: Polyhedra regions for unscaled model, N=2 andρ = 8 · 10−5
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eMPC based on unscaled model, no input modulation
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(b) Angular velocities
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(c) Wheel velocity
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Figure 5.22: Case 3, unscaled model, no modulation



72 Attitude control and simulations

eMPC based on unscaled model, bang-bang with dead-zone
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(b) Angular velocities
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(c) Wheel velocity
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Figure 5.23: Case 3, unscaled model, bang-bang modulation with dead-zone



Chapter 6

Conclusions

A detailed and general model for a satellite has been derived, including topics related to distur-
bances and different actuators. In sense of representing the kinematics, the Euler parameters
were chosen due their nonsingular characteristics. As for the dynamics, these were described
by an alternative version of the Newton-Euler formulation.

After taking numerous simplifications into account, several properties of the satellite model
have been presented. Among others, the most important being the fact that the model was
uncontrollable, yet stabilizable. Also, due to the properties of the Euler parameters it is pos-
sible to keep track of and update the varyingη, which otherwise would have remained constant.

In systems suffering from limited power supply, data storage, and computational resources,
a reasonable approach is to evaluate a controller off-line, and consequently reducing the need
for CPU speed drastically as real-time effort can be restricted to a table-lookup. Also, in many
circumstances it may be desirable to prevent the different components from operating near their
thresholds, either the design focus is to keep power consumption within some limits or to keep
the rate of wear as low as possible. It has been illustrated that all these concerns can be dealt
with by formulating a Model Predictive Control problem (MPC).

It has been shown that explicit solutions to constrained linear MPC problems can be com-
puted by solving multi-parametric quadratic programs (mpQP), where the parameters are the
components of the state vector. The solution to the mpQP, which is a piecewise affine (PWA)
function, can be evaluated at each sample to obtain the optimal control law.

Using special made software, an explicit MPC (eMPC) controller has been derived for the
SSETI/ESEO micro-satellite project, initiated by the European Space Agency (esa). Due to
numerical sensitivity, most of the work was done on a normalized system. It was shown how-
ever, that the results were applicable for the original (unscaled) system as well, making it a
very interesting control scheme for attitude control. The eMPC approach has shown to be an
highly potential alternative to PD-control and LQR, and it should be considered if constraints
need to be taken into account.

An important thing to keep in mind is that the thrusters on the satellite are on-off by nature. A
preliminary solution to this problem was established using a bang-bang modulation scheme.



74 Conclusions

6.1 Further work

Even if the results in this thesis show that an explicit MPC controller can be applicable for
attitude control of a satellite, there is definitely more to do on the subject. The first natural
steps would be as follows;

• Continue the studies on an unscaled system with purpose of verifying the results ob-
tained in this thesis. If necessary, work should be done on the mpQP solver to improve
numerical robustness.

• A stability proof was not included in this thesis. Several modifications to the MPC
problem have been suggested in the literature. However, as the solution to the mpQP
problem is a piecewise affine function, a potential approach is to search for piecewise
quadratic Lyapunov functions by solving a convex optimization problem using linear
matrix inequalities (LMIs). The idea is to find a valid Lyapunov function for each region
in the parameter space, separately yielding asymptotic stability.

• The weight matricesR andQ were picked using an iterative procedure. Based on a well
defined mission mode, seek to find suitable costs matrices.

• As with the weight matrices, the tuning parameters for the MPC problem were picked for
performance. Further studies should be done on the effects of increasing the prediction
horizon, and of using a different sampling frequency when discretizing the nonlinear
continuous-time model.

• Do a detailed study on fuel consumption for the thrusters with aim of defining suitable
mission priorities. This could for instance be wether it is desired to render the angular
velocity of the wheel to zero during the transient, or if subsequent detumbling should be
applied instead.

• The problem of input modulation is still considered unsolved. As an alternative to bang-
bang modulation, utilize Pulse-Width Pulse Frequency (PWPF) modulation instead.
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Abstract— Explicit solutions to constrained linear MPC
problems can be computed by solving multi-parametric
quadratic programs (mpQP), where the parameters are the
components of the state vector. The solution to the mpQP is
a piecewise affine (PWA) function, which can be evaluated
at each sample to obtain the optimal control law. The on-
line effort is restricted to a table-lookup, and the controller
can be implemented on inexpensive hardware as fixed-point
arithmetics can be used. This is highly desirable on systems
suffering from limited power supply and CPU resources,
being for instance micro-satellites. In this paper the explicit
MPC (eMPC) approach is applied to the SSETI/ESEO micro-
satellite, initiated by the European Space Agency (ESA). The
controller is connected in closed-loop with the nonlinear plant,
and the effectiveness is demonstrated through simulations.

I. INTRODUCTION

The purpose of this paper is to establish a nonlinear
model of a micro-satellite, utilizing thrusters and one re-
action wheel, and then finally propose a strategy to solve
the problem of attitude control. However, unlike preceding
work, typically carried out using PD- or LQ-control [12],
Lyapunov design procedures [2]-[3], sliding mode [4]-[5],
adaptive- or quaternion feedback techniques [6]-[8], H∞ or
H2/H∞ [9]-[11], the topic of this paper will be on explicit
Model Predictive Control. It is shown in this paper to be
a highly potential scheme, and it should be considered if
constraints need to be taken into account, while real-time
optimization is impossible due to computational limitations.
As familiar to the authors, this approach has not yet been
exploited for attitude control of spacecrafts.

Stability proofs are omitted at this point, but a potential
approach is to search for piecewise quadratic Lyapunov
functions by solving a convex optimization problem. In [13]
this was done using linear matrix inequalities (LMIs).

When doing implementation, an important thing to keep
in mind is that the actuating thrusters are on-off by nature. A
preliminary bang-bang modulation scheme with dead-zone
will be utilized to deal with this problem.

The structural data and satellite model is based on the
SSETI micro-satellite project, initiated by the European
Space Agency. Further information will be given shortly.

The results in this paper are based on the work in [1].

�Graduate student, e-mail: hegrenas@stud.ntnu.no
†Associate Professor, e-mail: tommy.gravdahl@itk.ntnu.no
‡Postdoctoral Fellow, e-mail: petter.tondel@itk.ntnu.no

A. Explicit Model Predictive Control

When solving a MPC problem the control action, or
equally, the solution, is obtained by computing an open-loop
optimal sequence of control moves on a predefined horizon,
once for each time sample. The first control input in the
sequence is then applied to the plant, and the optimization
is repeated with the new initial conditions and on the
new horizon, shifted one step ahead. Due to the shifted
horizon, the term receding horizon control is commonly
used interchangeably with MPC. For the remainder of this
section, the process to be controlled can be described by a
discrete-time, deterministic linear state-space model, that is

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(1)

where x(k) ∈ R
n is the state variable, u(k) ∈ R

m is
the input variable, A ∈ R

n×n, B ∈ R
m×m, and (A,B)

is a stabilizable pair. If we now consider the regulator
problem, that is, the problem of rendering the state vector
to the origin, the traditional MPC solves the following
optimization problem for the current x(k)

min
U,s

{J(U, s,x(k))} subject to:

ymin − s ≤ yk+i|k ≤ ymax + s, i = 1, . . . , N
umin ≤ uk+i ≤ umax, i = 1, . . . , M − 1
uk+i = Kxk+i|k, M ≤ k ≤ N − 1
xk|k = x(k)
xk+i+1|k = Axk+i|k + Buk+i, k ≥ 0
yk+i = Cxk+i|k, k ≥ 0

(2)

where the cost function we seek to minimize is given as

J = ρ‖s‖22 + xT
k+N |kPxk+N |k

+ ΣN−1
i=0

{
xT

k+i|kQxk+i|k + uT
k+iRuk+i

} (3)

and U � [uT
k, . . . ,uT

k+M−1]
T, s �

[
sT
k, . . . , sT

k+N−1

]T
,

R = RT > 0, Q = QT≥ 0, P = PT > 0, xk+i|k is the
prediction of x(k + i) at time k, M and N are input and
constraint horizons. When the final cost matrix P and
gain matrix K are calculated from the algebraic Riccati
equation, under the assumptions that the constraints are not
active for k ≥ M , (2) exactly solves the constrained infinite
horizon LQR problem for (1), with weight matrices R and
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Q. The additional variable s ∈ R
ns is a vector containing

slack variables, while the term ‖s‖2 is the L2-norm of s,
and ρ is the penalty weight of the slack variables. Note
that using the L2-norm is only one way of including slack
variables. The slack variables are defined in such a way
that they are nonzero only if the output constraints are
violated, yet heavily penalized in the cost function, so that
the optimizer has a strong incentive to keep them zero if
possible. If we have ρ = ∞, or equally s = 0, the MPC
problem in (2) obtains its most simple form, only involving
hard constraints. In some situations this may be necessary,
but the optimization problem becomes more difficult so
solve, and infeasibility may occur. This can for instance be
the case if initial conditions are infeasible to start with, if
noise causes the output to go outside the feasible solution
space in the next time step, or if there are serious model
uncertainties. Obviously this needs to be dealt with in real
applications, and as mention above one way of doing this
is to include slack variables.

1) From linear MPC to mpQP: It is shown in [14], in
case of having ρ = ∞, that the MPC problem in (2) can
by some algebraic manipulation be reformulated as

Vz(x(k)) = min
z

{
1
2
zTHz

}

subject to: Gz ≤ W + Sx(k)
(4)

where z � U + H−1FTx(k), U is given as in (2), and
x(k) is the current state, which can be treated as a vector
of parameters. Dimensions are given as z ∈ R

nz , H ∈
R

nz×nz , G ∈ R
q×nz , W ∈ R

q×1, and S ∈ R
q×n. Note

that H > 0 since R > 0. The latter is a strong result, as the
problem formulated in (4) is strictly convex, and the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient
conditions for optimality, giving an unique solution.

As shown in [14], the mpQP in (4) can be solved by
applying the KKT conditions

Hz + GTλ = 0, λ ∈ R
q

λr (Grz−Wr − Srx(k)) = 0, r = 1, . . . , q,

λ ≥ 0,

Gz−W − Sx(k) ≤ 0.

(5)

where the subscript r on some matrix denotes the rth row,
while q is the number of inequalities in the optimization
problem, and the number of free variables is nz = m ·N .

The key observation is that (4) is solved explicitly for
all x. It is shown in [14] that the solution z∗(x(k)), hence
U∗(x(k)), is a continuous piecewise affine (PWA) function
defined over a polyhedra partition. Consequently, the on-
line effort is limited to evaluating this PWA function.

Even though not derived for the case of including slack
variables, both (4) and (5) can easily be extended to cover
this situation, by defining the augmenting matrices H̃ ∈
R

ñz×ñz , G̃ ∈ R
q×ñz , and z̃ � [U, s]T ∈ R

ñz . The number
of free variables now becomes ñz = nz + ns.

B. SSETI/ESEO

We then turn our attention to the Student Space Ex-
ploration & Technology Initiative (SSETI). The specific
satellite to be studied in this paper is the European Student
Earth Orbiter (ESEO). Through the project, students from
different European universities participate in designing,
building and operating a micro-satellite. In addition to the
satellite, the whole system consists of the payload carried
by the spacecraft and the associated ground systems. The
main author has been fortunate to participate on the work
related to the attitude control system (ACS).

In terms of attitude and control requirements, these are
specified according to the diversified situations the satellite
is expected to face during its lifetime. Only the nominal
mode will be considered in this paper when doing attitude
control, which includes the task of maintaining a stable at-
titude. More specifically this means that the best obtainable
result is whenever the body frame coincides with a defined
orbit frame. This will be explained subsequently.

A short summary of structural data is given in Table I.

TABLE I

SSETI/ESEO PARAMETERS

Parameter Value

Satellite inertia matrix, I diag(4.250, 4.337, 3.664) [kg m2]
Axial wheel inertia, Is 4 · 10−5 [kg m2]
Axial wheel placement, A [0, 1, 0]T

Nominal thruster torque, τn [0.0484, 0.0484, 0.0398]T [Nm]
Maximum wheel velocity 527 [rad/s] ≈ 5032 rpm

II. MODELLING

Equations describing a satellite with thrusters and an N -
wheel cluster are derived. The notation is based on [17].

A. Kinematics

The Euler parameters are chosen to represent the kine-
matics due to their nonsingular parametrization and linear
differential equations if the angular velocities are known.
The Euler parameters are defined in terms of the angle-axis
parameters θ and k, and the mapping is defined as

η = cos
θ

2
, ε = k sin

θ

2
(6)

which gives the corresponding rotation matrix

R(η, ε) = 1 + 2ηε× + 2ε×ε× (7)

From the properties of the rotation matrix, it can be
shown that its differential equation can be written as

Ṙb
o = (ωb

bo)
×
Rb

o = −(ωb
ob)

×
Rb

o (8)

where ωb
ob is defined as the angular velocity of the body

frame Fb relative the orbit frame Fo, measured in Fb, and
Rb

o is the rotation matrix from Fb to Fo. The orbit frame has
its origin located at the center of mass of the satellite, and its
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z-axis is always nadir pointing (center of the Earth), while
the the x-axis is pointing in the direction of the velocity. The
y-axis completes the right-hand coordinate system. From (7)
and (8) the kinematic differential equations for the Euler
parameters can be found to be given as

η̇ = −1
2
εTωb

ob (9a)

ε̇ =
1
2

[
η1 + ε×

]
ωb

ob (9b)

B. Dynamics

The rotational equations of motion for a N -wheel gyro-
stat can be written as

ḣb = τe −
[
J−1(hb −Aha)

]× hb (10a)

ḣa = τa (10b)

where ha is the N ×1 vector of the axial angular momenta
of the wheels, τe is the 3× 1 vector of the external torque
acting on the body, not including wheel torques, τa is the
N × 1 vector of the internal axial torques applied by the
platform to the wheels, and A is the 3×N matrix whose
columns contain the axial unit vectors of the N momentum
exchange wheels. If we let ωb

ib denote the angular velocity
of the body frame Fb relative an inertial frame Fi, measured
in Fb, then the vector hb is the total angular momentum for
the spacecraft in the body frame, given as

hb = Jωb
ib + Aha (11)

where J is the inertialike matrix defined as

J � I−AIsAT (12)

I is the moment of inertia matrix for the spacecraft, in-
cluding wheels, and the matrix Is = diag{Is1, Is2, ..., IsN}
contains the axial moments of inertia of the wheels on the
diagonal. The axial angular momenta of the wheels can
be written in terms of the body angular velocity and the
wheels’ axial angular velocities relative to the body, ωs, as

ha = IsATωb
ib + Isωs (13)

Note that ωs = [ωs1,ωs2, ...,ωsN ]T is an N×1 vector, and
that these relative angular velocities are those that would for
instance be measured by tachometers fixed to the platform.

Equation (10) can also be written in terms of angular
velocities. By defining µ � [hb,ha]T and υ � [ωb

ib,ωs]T

we can write (11) and (13) in the compact form

µ = Λυ, where Λ =
[

I AIs

IsAT Is

]
(14)

Clearly, we can find ωb
ib and ωs from υ = Λ−1µ, or

equally, we can write υ̇ = Λ−1µ̇. By utilizing the matrix
inversion lemma, together with (14), we get that

[
ω̇b

ib

ω̇s

]
=

[
J−1 −J−1A

−ATJ−1 ATJ−1A + I−1
s

] [
ḣb

ḣa

]
(15)

which can be written in full as

ω̇b
ib = J−1

[−(ωb
ib)
×(Iωb

ib + AIsωs) + τe

]

−Aτa (16a)

ω̇s = ATJ−1
[
(ωb

ib)
×(Iωb

ib + AIsωs)− τe

]

+
[
ATJ−1A + I−1

s

]
τa (16b)

As can be seen from (16), the angular velocities are given
in Fb and relative to Fi, while the kinematics in (9) are
relative to Fo. However, it would be preferable if we in the
model could represent the attitude of Fb relative to Fo. This
can be done by exploiting the relation

ωb
ib = ωb

ob + Rb
oω

o
io and ω̇b

ib = ω̇b
ob + Ṙb

oω
o
io (17)

where ωo
io = [0,−ω0, 0]T, and ω0 is assumed constant and

equal to the mean angular velocity of Fo, given in Fi. This
implies circular orbits. For the remainder we let ci denote
the i’th column of the rotation matrix Rb

o. If we also include
the gravity gradient as a disturbance, that is τe = τ + τg ,
where τ is the torque provided from thrusters, while the
gravity gradient is given as

τg = 3ω2
0 [c3 × (Ic3)] (18)

and by utilizing (8) and (17), we can rewrite (16) as

ω̇b
ob = f̂inert + f̂τ + f̂g + f̂add (19a)

ω̇s = f̄inert + f̄τ + f̄g (19b)

where the terms are given as

f̂inert = J−1
[−(ωb

ob − ωoc2)×(
I [ωb

ob − ωoc2] + AIsωs

)]

f̄inert = ATJ−1
[
(ωb

ob − ωoc2)×(
I [ωb

ob − ωoc2] + AIsωs

)]

f̂τ = J−1τ − J−1Aτa

f̄τ = −ATJ−1τ +
[
ATJ−1A + I−1

s

]
τa

f̂g = J−1
[
3ω2

0c3 × (Ic3)
]

f̄g = −ATJ−1
[
3ω2

0c3 × (Ic3)
]

f̂add = ωoċ2

III. ATTITUDE CONTROL BY MEANS OF
EXPLICIT MPC

In the following the explicit MPC controller is computed,
and some aspects considering implementation are discussed.

The complete nonlinear model throughout is given as

ẋ = f(x,u) = [ω̇b
ob, ω̇s, η̇, ε̇]T (21)

where ωb
ob � [ω1, ω2, ω3]T, ε � [ε1, ε2, ε3]T, and u �

[τ1, τ2, τ3, τa]T = [τ T, τ T
a]T will be used for short.
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A. Explicit MPC controller for the SSETI/ESEO satellite

As we are only considering the linear discrete-time MPC
in this paper, it is necessary to linearize the model in (9)
and (19) with respect to the total state vector. By choosing
the equilibrium point p equal to xp = [04, 1,03]T,up = 04,
which equals the scenario where Fb coincides with Fo and
the angular velocity of the wheel is zero, it can be found
that the linearized model can be given as

∆ẋ = Ac∆x + Bc∆u (21)

where the matrices Ac and Bc are given as

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 (1−kx)ω0 0
0 0 0 0

(kz−1)ω0 0 0 0
0 0 0 0
0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1

2 0

0 −8kx ω2
0 0 0

0 0 −6 kyi22 ω2
0

κ 0
0 0 0 −2kzω2

0

0 0 6 kyi22 ω2
0

κ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22a)

Bc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
i11

0 0 0
0 1

κ 0 − 1
κ

0 0 1
i33

0
0 − 1

κ 0 i22
κ Is

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22b)

where we used that I = diag(i11, i22, i33), kx = i22−i33
i11

,
ky = i11−i33

i22
, kz = i22−i11

i33
and κ = i22 − Is.

From the system matrix in (22a), we can immediately
conclude that the linearized system is uncontrollable, as all
the terms corresponding to η are equal to zero. However, the
linearized system is found to be stabilizable, and omitting
η, also controllable. Also note that we can utilize the fact
that the Euler parameters satisfy η2 + εTε = 1, making us
able to keep track of, and update η in an open-loop manner.

Before we can use the mpQP Algorithm, (21) is converted
into an equivalent discrete-time form by utilizing a modified
first-order hold approach. The sampling time is chosen as
Ts = 0.1 [sec], and when deriving the controller, η is
omitted, making up the new state vector x̃ of 7th order.

TABLE II

SUMMARY OF TUNING PARAMETERS

Parameter Value

Q diag{200, 200, 200, 5 · 10−7, 1, 1, 1}
R diag{100, 200, 100, 1}

N (horizon) 2

ρ (slack) 8 · 10−5

The tuning parameters for the explicit MPC controller are
summarized in Table II. The parameter space, in which we
search for feasible solutions of the mpQP, the is chosen as

−[1, 1, 1, 1500, 1, 1, 1]T ≤ x̃ ≤ [1, 1, 1, 1500, 1, 1, 1]T (23)

while the constraints are given as

umax = −umin =

⎡
⎢⎢⎣

0.0484
0.0484
0.0398
0.0020

⎤
⎥⎥⎦ , |ωs| ≤ 527 (24)

The solution of the mpQP, obtained from the discrete-time
version of (21), Table I and II, and (24), gave a polyhedral
partition over the parameter space in (23), consisting of
2867 regions. If we denote each of these polyhedrons as
Xi, where i is the specific region, then Xi ⊂ R

7. Examples
of planer intersections are shown in Fig. 1. Each polyhedron
contains an optimal control law such that if x̃(k) ∈ Xi then
u(k) = Kix̃(k)+ki. The latter is clearly an affine function.
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Fig. 1. Polyhedral partition, N = 2 and ρ = 8 · 10−5
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B. Bang-bang modulation

When doing implementation, an important thing to keep
in mind is that the actuating thrusters are on-off by nature.
A preliminary bang-bang modulation scheme can be ap-
plied for dealing with this problem. The technique is best
explained through Fig. 2, where Knom are nominal thruster
torques, and u∗ is given according to

u∗ : signum(u) =

{
−1 if u ≤ −dz,

1 if u ≥ dz.
(25)

Fig. 2. Bang-bang modulation with dead-zone

IV. SIMULATIONS

To demonstrate the aforementioned theory for the linear
MPC controller, the following closed-loop simulations have
been performed with the complete nonlinear model. Initial
conditions for the dynamics and kinematics, as well as
Keplerian orbital elements, are given in Table III.

The first case is simulated without noise and bang-bang
modulation, while in the second, bang-bang is utilized, to-
gether with measurement noise as in Table IV. By means of
visualizing the results, the Euler parameters are transformed
into Euler angles [deg].

TABLE III

SUMMARY OF SIMULATIONS

Case 1 Initial condition Set-point Unit
ωb

ob {−0.05, 0.15,−0.08} {0, 0, 0} rad/s
ωs 400 0 rad/s
Euler angles (XYZ) {−25, 60, 90} {0, 0, 0} deg

Case 2 Initial condition Set-point Unit
ωb

ob {0.018,−0.018, 0.018} {0, 0, 0} rad/s
ωs −500 0 rad/s
Euler angles (XYZ) {60,−45, 30} {0, 0, 0} deg

Keplerian elements Initial condition Unit
[i, ω, Ω, ν] {7, 178,−10, 0} deg
a 24603.14 km
e 0.0 -

TABLE IV

RMS ERRORS IN STATE ESTIMATES

Estimates Errors Unit
ωb

ob {0.0035, 0.0052, 0.0035} rad/s
ωs 0.5 rad/s
Euler angles (XYZ) {0.1, 0.1, 0.1} deg
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Fig. 3. Case 1, N = 2 and ρ = 8 · 10−5
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Fig. 4. Case 2, N = 2 and ρ = 8 · 10−5

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

It has been shown that explicit solutions to constrained
linear MPC problems can be computed for the attitude
control problem by solving multi-parametric quadratic pro-
grams (mpQP). The approach has shown to be an highly
potential, and it should be considered if constraints need to
be taken into account.
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Appendix B

Communication and Workshops
associated to ESA

Various communication and exchange of material has taken place during work on this thesis. A
wide range of tools has been available for the SSETI project, and communication has been via
e-mail, IRC, Newsgroup, ftp-servers, Workshops, and conferences. A short summary is given
bellow.

Presentation on eMPC held at the 7th SSETI Workshop
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Participation at the STEC 2004 conference, Lausanne, Switzerland



Appendix C

MATLAB scripts and Simulink block
diagrams

The Simulink block diagrams shown in this appendix were all used throughout our simulations,
together with a few MATLAB scripts. Except for different plotting routines, all the block
diagrams and scripts are included below. The source code for the mpQP toolbox is not included
here, and the reader should refer to Petter Tøndel at the Norwegian University of Science and
Technology for details.

MATLAB functions and scripts

init.m : (.) → (defines various parameters)

%**************************************************************
%* *
%* init.m *
%* *
%* Author: Oeyvind Hegrenaes and Morten Topland, NTNU 2004 *
%* *
%* Initialization of different parameters used in Simulink *
%* *
%**************************************************************

% Earth Parameters by means of WGS84
mu = 398600.5; % [kmˆ3/sˆ2]
re = 6378137e-3; % Equatorial Radius of the Earth [km]
f = 1/298.257223563; % Flattering of Earth ellipsoid
rp = re - f * re; % Polar Radius of the Earth [km]

% Orbit parameters for approximated circular orbit
% Initial orbit parameters given for SSETI/ESEO
% inclination: 7 [deg]
% semi-major axis: 24603.14 [km]
% eccentricity: 0.718
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% argument of perigee: 178 [deg]
% 1st descending node: -10 [deg]

a = 24603.14; e = 0.718;
rc_mean = a * sqrt(1-eˆ2); % Mean radius of ellipse orbit [km]
omega0 = sqrt(mu/rc_meanˆ3);

% SSETI/ESEO Parameters
i11 = 4.35; i22 = 4.337; i33 = 3.664;
Ib = [i11 0 0 ; 0 i22 0 ; 0 0 i33]; % Inertia matrix
a_vec = [0 1 0]’; % Normalized axis of relative rotation
A = a_vec;
Is = 4.0e-5; % Moment of inertia of the wheel about a_vec
J = Ib - A * Is * A’; % Inertialike matrix

Jinv=inv(J); AtJinv=A’ * Jinv; AIs=A * Is;
AtJinvA=A’ * Jinv * A; JinvA=Jinv * A; % Pre-calculated parameters

% Parameters for linearized model (the components
% corresponding to dot_eta have been omitted since
% they were only zeros)
kx=(i22-i33)/i11; ky=(i11-i33)/i22;
kz=(i22-i11)/i33; kappa=i22-Is;

A = [0,0,(1-kx) * omega0,0,-8 * kx * omega0ˆ2,0,0;
0,0,0,0,0,-6 * ky * i22 * omega0ˆ2/kappa 0;
(kz-1) * omega0,0,0,0,0,0,-2 * kz * omega0ˆ2;
0,0,0,0,0,6 * ky * i22 * omega0ˆ2/kappa,0;
1/2,0,0,0,0,0,0;
0,1/2,0,0,0,0,0;
0,0,1/2,0,0,0,0 ];

B = [1/i11,0,0,0;
0,1/kappa,0,-1/kappa;
0,0,1/i33,0;
0,-1/kappa,0,i22/(kappa * Is);
0,0,0,0;
0,0,0,0;
0,0,0,0];

C = eye(7,7); D = zeros(7,4);

% Nominal values from PROP document 24.02.2004 [Nm]
Tau_thrust_nom = [0.0484, 0.0484, 0.0398]’;

% Reaction wheel
w_s_max = 5035 * 2* pi/60;
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% Similarity transformation x = Nx * x_
Nx = [ 0.04 0 0 0 0 0 0;

0 0.04 0 0 0 0 0;
0 0 0.04 0 0 0 0;
0 0 0 527 0 0 0;
0 0 0 0 1 0 0;
0 0 0 0 0 1 0;
0 0 0 0 0 0 1 ];

Nu = eye(4,4);

A_scaled = inv(Nx) * A* Nx;
B_scaled = inv(Nx) * B* Nu;

Q_scaled = [ 50 0 0 0 0 0 0;
0 50 0 0 0 0 0;
0 0 50 0 0 0 0;
0 0 0 1 0 0 0;
0 0 0 0 100 0 0;
0 0 0 0 0 100 0;
0 0 0 0 0 0 100 ] ;

R_scaled = [

200 0 0 0;
0 300 0 0;
0 0 200 0;
0 0 0 0.1 ];

[K_scl,S_scl,E_scl]=LQR(A_scaled,B_scaled,Q_scaled,R_scaled);
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solveKep.m :(i, n, e,Ω0, $0, ν0,4t) → (Ω, $, ν)

function Orbit = solveKep(input)
%**************************************************************
%* *
%* solveKep.m *
%* *
%* Author: Oeyvind Hegrenaes, NTNU 2004 *
%* *
%* Solves Keplers equation iteratively. The position *
%* of the satellite in the geocentric inertal system *
%* is found be means of classical Kepler elements at time t. *
%* *
%* Input parameter: i [deg] (inclination) *
%* e (eccentricity) *
%* a [km] (semimajor axis) *
%* o [deg] (ascending node) *
%* w [deg] (perigee) *
%* v [deg] (true anomaly) *
%* t [sec] (time [sec]) *
%* *
%* Output parameter: Orbit (updated COE) *
%* *
%**************************************************************

i=(pi/180) * input(1); e=input(2); a=input(3); o=(pi/180) * input(4);
w=(pi/180) * input(5); v=(pi/180) * input(6); t=input(7);

mu = 398600.4418; % WGS84 [kmˆ3/sˆ2]

% Orbit settings
n = sqrt(mu/aˆ3); % mean motion

if(e ˜= 0)
E0 = acos(((e + cos(v)) / (1 + e * cos(v))));
if(pi < v & v < 2 * pi)

E0 = 2* pi-E0;
end

else
E0 = w + v;

end

M0 = E0 - e* sin(E0); M = M0 + n * t;

if(-pi < M & M < 0 | pi < M)
E0 = M - e;

else
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E0 = M + e;
end

E_old = E0; E_new = E_old + (M - E_old + e * sin(E_old)) ...
/ (1 - e * cos(E_old));

while(abs(E_new - E_old) > 10ˆ-8)
E_old = E_new;
E_new = E_old + (M - E_old + e * sin(E_old)) ...

/ (1 - e * cos(E_old));
end

if(e ˜= 0)
v_new = acos((cos(E_new)-e) / (1-e * cos(E_new)));
if(pi < E_new & E_new < 2 * pi)

v_new = 2 * pi-v_new;
end

else
v_new = E_new - w;

end

Orbit = [i,e,a,o,w,v_new];

kep2car.m : (COE) → (Fi)

function Orbit_ECI = kep2car(input)
%**************************************************************
%* *
%* kep2car.m *
%* *
%* Author: Oeyvind Hegrenaes, NTNU 2004 *
%* *
%* For COE, the function finds the corresponding position *
%* and velocity of the orbit frame, given in the ECI frame. *
%* *
%* Input parameter: COE (Keplarian orbit elemets) *
%* *
%* Output parameter: Orbit_ECI (pos. and vel. in ECI) *
%* Abs. distance to center of the Earth *
%* *
%**************************************************************

i=input(1);e=input(2); a=input(3); Omega=input(4);
w=input(5);v=input(6);

% WGS84
mu = 398600.4418; % [kmˆ3/sˆ2]
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% Orbit settings
n = sqrt(mu/aˆ3); % mean motion

% Find the ECI position and velocity from COE
r=a * (1-eˆ2)/(1+e * cos(v));
x=r * (cos(v+w) * cos(Omega)-sin(v+w) * sin(Omega) * cos(i));
y=r * (cos(v+w) * sin(Omega)+sin(v+w) * cos(Omega) * cos(i));
z=r * (sin(v+w) * sin(i));

b=a* sqrt(1-eˆ2);
l1=cos(Omega) * cos(w)-sin(Omega) * sin(w) * cos(i);
l2=-cos(Omega) * sin(w)-sin(Omega) * cos(w) * cos(i);
m1=sin(Omega) * cos(w)+cos(Omega) * sin(w) * cos(i);
m2=-sin(Omega) * sin(w)+cos(Omega) * cos(w) * cos(i);
n1=sin(w) * sin(i);
n2=cos(w) * sin(i); cosE=(e+cos(v))/(1+e * cos(v));
sinE=(sqrt(1-eˆ2) * sin(v))/(1+e * cos(v));

x_dot=(n * a/r) * (b * l2 * cosE-a * l1 * sinE);
y_dot=(n * a/r) * (b * m2* cosE-a * m1* sinE);
z_dot=(n * a/r) * (b * n2* cosE-a * n1* sinE);

Orbit_ECI = [r,x,y,z,x_dot,y_dot,z_dot];

rot o2i.m : (COE) → (Ri
o)

function R_io = rot_o2i(input)
%**************************************************************
%* *
%* rot_o2i.m *
%* *
%* Author: Oeyvind Hegrenaes, NTNU 2004 *
%* *
%* Given some COE, the function returns the rotation matrix *
%* from o -> i, that is the rotation matrix R_io. *
%* *
%* Input parameter: COE (Keplarian orbit elements) *
%* *
%* Output parameter: R_io (rotation matrix from o -> i) *
%* *
%**************************************************************

i=input(1); Omega=input(4); w=input(5); v=input(6);

cos_i=cos(i); sin_i=sin(i); sin_u=sin(w+v); cos_u=cos(w+v);
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sin_O=sin(Omega); cos_O=cos(Omega);

x_oi=[-cos_i * sin_O * cos_u-cos_O * sin_u , cos_i * cos_O* cos_u-...
sin_O * sin_u , sin_i * cos_u ]’;

y_oi=[-sin_i * sin_O , sin_i * cos_O , -cos_i ]’;
z_oi=[-cos_O * cos_u+cos_i * sin_O * sin_u , -sin_O * cos_u-...

cos_i * cos_O* sin_u , -sin_i * sin_u ]’;

R_io = [x_oi,y_oi,z_oi]; % Equation (3.5)

rot2quart : (R ∈ SO(3)) → (q = [η, ε1, ε2, ε3])

function q = rot2quart(R)
%**************************************************************
%* *
%* rot2quart.m *
%* *
%* Author: Prof. Thor Inge Fossen *
%* Edited: Oeyvind Hegrenaes, NTNU 2004 *
%* *
%* Given a rotation matrix, R in SO3, the function returns *
%* the corrosponding quaternions. *
%* *
%* Input parameter: R (rotation matrix in SO3) *
%* *
%* Output parameter: q (quaternions) *
%* *
%**************************************************************

R(4,4)=trace(R); [Rmax,i]=max([R(1,1) R(2,2) R(3,3) R(4,4)]);
p_i=sqrt(1+2 * R(i,i)-R(4,4));

if i==1,
p1 = p_i;
p2 = (R(2,1)+R(1,2))/p_i;
p3 = (R(1,3)+R(3,1))/p_i;
p4 = (R(3,2)-R(2,3))/p_i;

elseif i==2,
p1 = (R(2,1)+R(1,2))/p_i;
p2 = p_i;
p3 = (R(3,2)+R(2,3))/p_i;
p4 = (R(1,3)-R(3,1))/p_i;

elseif i==3,
p1 = (R(1,3)+R(3,1))/p_i;
p2 = (R(3,2)+R(2,3))/p_i;
p3 = p_i;
p4 = (R(2,1)-R(1,2))/p_i;
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else
p1 = (R(3,2)-R(2,3))/p_i;
p2 = (R(1,3)-R(3,1))/p_i;
p3 = (R(2,1)-R(1,2))/p_i;
p4 = p_i;

end

q=0.5 * [p4 p1 p2 p3]’; q=[q/(q’ * q)]’;

ucalloc.m : (τ ) → (u)

function u = ucalloc(tau)
%**************************************************************
%* *
%* u = ucalloc(K,T,W,tau) unconstrained control allocation. *
%* The generalized force vector tau = T * K* u (dim n) is *
%* distributed to the input vector u (dim r) where r>=n by *
%* minimizing the force f=K * u. *
%* *
%* An unconstrained solution u = inv(K) * inv(W) * T’ * ... *
%* inv(T * inv(W) * T’) exists if T * T’ is non-singular. *
%* *
%* - K is a diagonal rxr matrix of force coefficients *
%* - T is a nxr constant configuration matrix. *
%* - W is a rxr positive diagonal matrix weighting *
%* (prizing) the different control forces f = K * u. *
%* *
%* Author: Thor I. Fossen *
%* Date: 3rd November 2001 *
%* *
%**************************************************************

T=[1,0,0,0 ; 0,1,0,-1 ; 0,0,1,0];
K=[1,0,0,0 ; 0,1,0,-1 ;0,0,1,0];
W=[1,0,0,0 ; 0,1,0,-1 ; 0,0,1,0];

if det(T * T’)==0,
error(’T * T’’is singular’);

elseif det(W)==0,
error(’W must be positive’);

else
Winv = inv(W);
u = inv(K) * Winv * T’ * inv(T * Winv * T’) * tau;

end
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Simulink block diagrams
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Figure C.1: The ESEO satellite system
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Appendix D

Newton-Euler equations of motion

Equations of motion for a rigid body can be derived by summing up the equations of motion
for individual mass elementsdm with velocity~vp. A rigid bodyB with a mass elementdm is
shown in Figure D.1. The pointc is the center of mass, whileo is the point where we want to
express the equations of motion about. Later it will be assumed that the two points coincide.
The material in this chapter is based on Egeland and Gravdahl (2002).

dm

o c

Inertial frame

ro

r

rc

rg

rm

Figure D.1: Rigid body with mass elementdm.

D.1 Translational motion

The translational equation of motion with reference to a pointo can be written as

~fo = m~ac. (D.1)

From Figure D.1 we have that~rc = ~ro + ~rg, hence

~vc = ~vo + ~ωib × ~rg, (D.2)

~ac = ~ao + ~̇ωib × ~rg + ~ωib × (~ωib × ~rg), (D.3)

where we have used that~rg is a constant inb.
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Combining (D.1) and (D.3) gives the force equation with reference to the pointo:

~fo = m
(
~ao + ~̇ωib × ~rg + ~ωib × (~ωib × ~rg)

)
. (D.4)

The translational motion of a spacecraft can be controlled using thrusters. For a spacecraft in
orbit the motion is governed by the laws of orbital mechanics. Such a law is the restricted
two-body equation of motion:

~a = −µ ~r

|r|3
(D.5)

where~r is the spacecraft’s position andµ is the gravitational parameter for Earth. For more
details see a textbook in orbital mechanics, for instance?.

D.2 Angular motion

The Newton-Euler equations are derived from Euler’s First and Second Axioms:

~fc = m~ac (D.6)

~τc = ~̇hc (D.7)

~τo = ~τc + ~rg × ~fc (D.8)

where the angular momentum aboutc ando are defined as

~hc =
∫

B
(~r × ~vp)dm, (D.9)

~ho =
∫

B
(~rd × ~vp)dm. (D.10)

By using that~vp = ~vo + ~ωib × ~rd and~rd = ~r + ~rg, (D.10) can be written as

~ho = m~rg × ~vo +
∫

B
~rd × (ωib × ~rd)dm. (D.11)

To simplify (D.11) the inertia dyadic

Io =
∫

B
−S2(~rd)dm (D.12)

is introduced. The angular momentum abouto can then be written as

~ho = m~rg × ~vo + Io~ωib. (D.13)

An alternative expression can be found by writing~ho as

~ho =
∫

B
(~r + ~rg)× ~vpdm

= ~hc +
∫

B
(~rg × ~vp)dm

= ~hc + ~rg ×m~rc, (D.14)
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where we have used that~vc ≡ 1
m

∫
B ~vpdm.

Time differentiation of~ho with respect to the inertial frame yields1

~̇ho = ~vc ×m~vo + ~rg ×m~̇vo + ~Mo~̇ωib + ~ωib × ( ~Mo~ωib). (D.15)

Equation (D.14) implies that

~̇ho = ~̇hc + ~rg ×m~̇vc − ~vo ×m~vc, (D.16)

which combined with (D.15) gives

~̇hc = ~τc = ~rg ×m(~̇vo − ~̇vc) + ~Mo~̇ωib + ~ωib × ( ~Mo~ωib). (D.17)

Insertion of (D.17) in (D.8) and using (D.7) gives the angular equation of motion

~τo = ~rg ×m~ao + ~Mo~̇ωib + ~ωib × ( ~Mo~ωib). (D.18)

D.3 Model summary

The equations (D.4) and (D.18) can be simplified by lettingo coincide with the center of mass
c, meaning~rg = ~0 and ~Mo = ~Mc. The simplified equations are

~f = m~a, (D.19a)

~τ = ~M~̇ωib + ~ωib × ( ~M~ωib), (D.19b)

where the subscriptc has been dropped for convenience.

Writing the equations of motion in coordinate form in theb frame yields

mv̇b = f b, (D.20)

Mω̇b
ib + S(ωb

ib)Mωb
ib = τ b. (D.21)

At a first glance the translational and angular motion seems decoupled. A closer inspection
reveals that this is not the case. The reason is that disturbance torques,~τd, and forces,~fd acting
on a spacecraft are usually dependent of the spacecraft’s position and attitude. However, for
our purposes the translational and angular motion can be assumed decoupled.

1For more details about the derivation refer to Egeland and Gravdahl (2002)
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Appendix E

Orbital mechanics

Johannes Kepler(1571-1630) formulated the three famous laws of planetary motion from an
empirical study based on data collected by the astronomerTycho Brahe(1546-1601). Kepler’s
laws describe the simplest form of motion of celestial bodies under the assumption that no
external perturbing forces are present, and that the respective masses can be considered point
masses.

The three laws gave a description of the motion but no explanation. Kepler himself was con-
vinced that his empirically found laws followed a more general law. In 1687Isaac Newton
(1642-1727) published his three laws of motion and the law of universal gravitation in the
Mathematical Principles of Natural Philosophy. By using these laws Kepler’s laws can be
derived.

E.1 The Two-Body problem

In celestial mechanics we are concerned with motions of celestial bodies under the influence
of mutual mass attraction. This Keplerian motion is described by (E.1).

a = −µM +m

|r|3
r (E.1)

For an artificial Earth satellite the massm can be neglected. The expression above then be-
comes

a = −µM
|r|3

r (E.2)

with r being the geocentric position of the satellite.

Equation (E.2) is a second order differential equation with solution on the form

r(t) = r(t; a1 · · · a6)
ṙ(t) = ṙ(t; a1 · · · a6) (E.3)

with a1 · · · a6 being free selectable integration constants describing the orbit. Usually the six
Keplerian orbital parametersa, e, i,Ω, $, ν are used.
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E.2 Classical Orbital Elements COE

To describe a satellite orbit the six Keplerian elementsa, e, i,Ω, $, ν can be used. See table
E.1. For a good and pedagogic description of the classical orbital elements, see Sellers (2000).
The COEs are best understood by looking at figure E.1.

Table E.1: The six classical orbital elements

Name Symbol
Semimajor axis a
Eccentricity e
Inclination i
Longitude of ascending node Ω
Argument of perigee $
True anomaly ν

zi

xi

Ω
ω

ν perigee

apogee

i

yi

Figure E.1: Orbital elements

Semimajor axisa The major axis of an elliptical orbit is the distance between the point of
closest approach (perigee) and furthest point (apogee). Semimajor axis is one-half this distance.

Eccentricity e A circular orbit has an eccentricity of zero. Elliptical orbits has an eccentricity
less than one, while hyperbolic orbits has an eccentricity greater than one.

Inclination i Describes the tilt of the orbital plane with the respect to the equatorial plane.

Longitude of ascending nodeΩ Also calledright ascension of the ascending node. The
ascending node is the point where the satellite crosses the equator moving south to north.
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Argument of perigee$ Location of the perigee with respect to the ascending node.

True anomaly ν Location of satellite with respect to perigee

Mean anomalyM

Instead of the true anomalyν the mean anomalyM can be used.M is defined by

M = E − e sinE (E.4)

whereE is given by

cosE =
e+ cos ν

1 + e cos ν
(E.5)

E.2.1 The orbital period

The orbital period, P is the time it takes for the satellite to revolve once around its orbit. The
period can be derived from Kepler’s Third Law (Sellers, 2000) as

P = 2πn−1 = 2π

√
a3

µ
(E.6)

whereP is the period in seconds,a is the semimajor axis, whileµ = 398600.4418 [km3/s2]
is the gravitational parameter.

E.2.2 Conversion from COEs to the ECI frame

A satellite position given in COEs can be converted to the ECI frame by (Wertz, 1978)xy
z

 = r ·

cos(ν +$) cos Ω− sin(ν +$) sinΩ cos i
cos(ν +$) sinΩ + sin(ν +$) cos Ω cos i

sin(ν +$) cos i

 (E.7)

wherer is given by

r =
a(1 + e2)
1 + e cos ν

(E.8)

Similarly, we can find the velocity of the satellite in the ECI frame, that isẋẏ
ż

 =
na

r

 b l2 cosE − a l1 sinE
bm2 cosE − am1 sinE
bn2 cosE − an1 sinE

 (E.9)

wheren is the mean motion as in (E.6),r is defined in (E.8), and

b = a
√

(1− e2)
l1 = cos Ω cos$ − sinΩ sin$ cos i
m1 = sinΩ cos$ + cos Ω sin$ cos i
n1 = sin$ sin i
l2 = − cos Ω sin$ − sinΩ cos$ cos i
m2 = − sinΩ sin$ + cos Ω cos$ cos i
n2 = cos$ sin i
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E.3 Perturbed Satellite Motion

Equation (E.2) describes the ideal motion of a satellite around a body when only the mutual
gravitational forces are considered. In reality a certain number of additional forces act on a
satellite. The extended equation of motion is given by:

~a = −µ M
|~r|3

~r + ~ks (E.10)

where
~ks = ~aE + ~am + ~ae + ~ao + ~aD + ~aSP + ~aA (E.11)

Perturbing forces on a near-Earth satellite are in particular(Seeber, 1993)

1. accelerations due to the non-spherically and inhomogeneous mass distribution within the
Earth,r̈E

2. accelerations due to other celestial bodies(Sun, Moon and planets), mainlyr̈s, r̈m

3. accelerations due to Earth and oceanic tidesr̈e, r̈o

4. accelerations due to the atmospheric dragr̈D

5. accelerations due to direct and Earth-reflected solar radiation pressurer̈SP , r̈A

Expressions for the perturbing forces can be found in Seeber (1993). An easy to understand
description of the main perturbations and its implications can be found in Sellers (2000).



Appendix F

The (w, z) parametrization

As mentioned in Chapter 2 the three-dimensional(w, z) parametrization is a relatively new for-
mulation for describing the relative orientation of two reference frames using two perpendicu-
lar rotations. Although it uses three parameters to describe the motion, two of the parameters
can be combined to a single complex variable. The complex variable is used to designate the
second of the two rotations and it is derived using stereographic projection (Conway, 1978).
The remaining parameter represents the initial rotation. As will be shown, the two rotations
can be completely decoupled, which has important implications and advantages. Since this
parametrization is quite new and not very well known it is here derived in detail. The material
in this section is based on the work by Tsiotras and Longuski (1995, 1996).

Parametrization of the rotation matrix R ∈ SO(3)

As mentioned above, we wish to derive a parametrization of the rotation matrixR in section
2.1 using two successive rotations. The resulting rotation matrix can thus be decomposed as

R(w, z) , Rb
i(w, z) = Rb

o(w)Ro
i (z) (F.1)

This can be interpreted as follows. Consider a inertial framei, defined by three orthogonal unit
vectors~i1,~i2 and~i3. Another frameb is fixed to the body and is defined by the three orthogonal
unit vectors~b1,~b2 and~b3. The rotation matrixR in (F.1) is then the rotation matrix from the
the body frame to the inertial frame. The intermediate frameo, defined by the three orthogonal
unit vectors~o1, ~o2 and~o3 is the result of the first rotation.

The first rotation is shown in Figure F.1 a) and represents a simple rotation about the iner-
tial~i3-axis. This resulting rotation matrix can be written as

Ro
i (z) =

 cos z sin z 0
− sin z cos z 0

0 0 1

 , R1(z) (F.2)

The next step is to find an expression for the second rotation matrixRb
o(w) , R2(w). Recall

that a rotation matrix can be computed using an angle-axis description, which was shown in
section 2.1 by usingRodrigues’ fomula(2.2). The formula is repeated here for clarity;

R(k, θ) = I + S(k) sin θ + S2(k)(1− cos θ) (F.3)
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(a) (b)

Figure F.1: Rotation sequence of the(w, z) parametrization. Left hand side shows the initial
rotation about the body~i3-axis. Right hand side shows the resulting coordinate system after
the second rotation.

Assume that~o3 = a~b1 + b~b2 + c~b3, which is the~o3-axis in the intermediate frame, transformed
to the body frame. In sense of the rotation matrixRb

o(k, θ) this can be written asab
c

 = Rb
o(k, θ)~o3 (F.4)

The resulting vector[a, b, c]T is clearly the third column in the rotation matrixR2. Also, it can
be shown that(−a,−b, c) are the directed cosines of the~b3-axis in theo frame, that is

~b3 = −a~o1 − b~o2 + c~o3 (F.5)

The angle between~b3 and~o3 is simply found from the vector dot product as

θ = cos−1 ~o3 ·~b3
|~o3||~b3|

= cos−1 c (F.6)

The axis of rotation can be found from (note that~k has the same coordinates in both frames)

~k =
~o3 ×~b3
‖~o3 ×~b3‖

(F.7)

Using~o3 = [0, 0, 1]T, when refereed to the intermediate reference frame, and (F.5), the axis of
rotation can be calculated as

~k =
b~o1 − a~o2√
a2 + b2

(F.8)

Now the angle-axis description of the rotation matrix can be used. Insertion of (F.8) and (F.6)
into (F.3) gives the rotation matrix from the intermediate frame to the body frame, that is

Ro
b(k, θ) =

c+ b2

1+c − ab
1+c −a

− ab
1+c c+ a2

1+c −b
a b c

 (F.9)
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Figure F.2: Stereographic projection of a point(a, b, c) on a unit sphere on to a complex plane.

By taking the transpose of (F.9) we get the following expression for the rotation matrixR2(w)

Rb
o(k, θ) =

c+ b2

1+c − ab
1+c a

− ab
1+c c+ a2

1+c b

−a −b c

 , R2(w) (F.10)

Expanding (F.1) with (F.2) and (F.10) gives the complicated matrix

R(w, z) =


c cos z+ab sin z+(b2+c2) cos z

1+c
c sin z−ab cos z+(b2+c2) sin z

1+c a

− c sin z+(c2+a2) sin z+ab cos
1+c z c cos z+(c2+a2) cos z−ab sin z

1+c b

−b sin z − a cos z −b cos z − a sin z c

 (F.11)

The foregoing matrix is redundant, in the sense that the elements a,b,c are not independent, but
satisfy the constraint

a2 + b2 + c2 = 1 (F.12)

We can therefore eliminate one of the elements in (F.11) to obtain a simplified form. One way
of doing this is to use a stereographic projection. From the constraint in (F.12) we introduce
the setS2 =

{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1
}
∈ R3, which is the unit sphere. For

(a, b, c) ∈ S2, we get the mappingσ : S2\{(0, 0,−1)} → C, (a, b, c) 7→ w. The stereographic
projection is shown in Figure F.2 and is defined as

w , w1 + iw2 =
b− ia

1 + c
(F.13)

It can be verified that the inverse mapσ−1 : C → S2\{(0, 0,−1)}, w 7→ (a, b, c) is given by

a =
i(w − w̄)
1 + |w|2

, b =
w + w̄

1 + |w|2
, c =

1− |w|2

1 + |w|2
(F.14)

wherew̄ is the complex conjugate ofw and|w|2 = ww̄ = w2
1 +w2

2. The basis of the projection
is the point(0, 0,−1), which is the south poleS of the unit sphere. Note that whenc = −1
the projection has a singularity andw → ∞. The singularity corresponds to an upside-down
orientation of the body. Using (F.14) we can expressR2(w) in terms of (F.13) as follows

R2(w) =
1

1 + w2
1 + w2

2

1 + w2
1 − w2

2 2w1w2 −2w2

2w1w2 1− w2
1 + w2

2 2w1

2w2 −2w1 1− w2
1 − w2

2

 (F.15)
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When using complex notation, a more compact matrix can be given as

R2(w) =
1

1 + |w|2

1 + Re(w2) Im(w2) −2Im(w)
Im(w2) 1− Re(w2) 2Re(w)
2Im(w) −2Re(w) 1− |w|2

 (F.16)

The total rotation matrixR(w, z) is then given in terms ofw and z as follows

β ·

(1 + w2
1 − w2

2)cz − 2w1w2sz (1 + w2
1 − w2

2)sz + 2w1w2cz −2w2

2w1w2cz − (1− w2
1 + w2

2)sz 2w1w2sz + (1− w2
1 + w2

2)cz 2w1

2w2cz + 2w1sz 2w2sz − 2w1cz 1− w2
1 − w2

2

 (F.17)

where cz and sz denotescos(z) andsin(z), respectively, andβ = 1/(1 + |w|2).

The foregoing matrix can be written more compactly as

R(w, z) =
1

1 + |w|2

 Re(1 + w2)eiz Im(1 + w2)eiz −2Im(w)
Im(1− w̄2)e−iz Re(1− w̄2)e−iz 2Re(w)

2Im(weiz) −2Re(weiz) 1− |w|2

 (F.18)

Kinematic differential equations

From (2.6) we can derive the kinematic differential equations for the attitude motion of the rigid
body. The differential equation for (F.1) becomesṘ(w, z) = S(ω̄)R(w, z), whereω̄ = ωb

bi

is the angular velocity of the inertial frame relative to the body frame, as seen from the body
frame. It can be shown however, thatωb

bi = −ωb
ib (Kane et al., 1983). This relation makes

it possible to derive the kinematics using the more intuitive angular velocityωb
ib, which is the

angular velocity of the body frame relative to the inertial frame, as seen from the body frame.
For the reminder we letω = ωb

ib , [ω1, ω2, ω3]T, and the redefined differential equation for
(F.1) becomeṡR(w, z) = −S(ω)R(w, z), whereS(ω) was defined in (2.4).

It can easily be verified that the third column ofṘ(w, z) must satisfyȧḃ
ċ

 = −S(ω)

ab
c

 (F.19)

Recall from (F.13) thatw is defined as

w =
b− ia

1 + c
(F.20)

Differentiation of (F.20) gives

ẇ =
ḃ− iȧ− wċ

1 + c
(F.21)

Using the relations in (F.14) and (F.19) gives the differential equation forw ∈ C

ẇ = −iω3w +
ω

2
+
ω̄

2
w2 (F.22)

where
ω = ω1 + iω2, ω̄ = ω1 − iω2, i =

√
−1 (F.23)
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An alternative formulation, which will be used throughout, is given as

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (F.24a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (F.24b)

To find the differential equation forz we start with the scalar form of the differential equation
for a rotation matrix,

tr[Ṙ(w, z)] = tr[−S(ω)R(w, z)] (F.25)

wheretr(·) denotes the trace of the matrix. Taking the trace ofṘ(w, z) gives

tr[Ṙ(w, z)] =
d

dt
(tr[R(w, z)]) =

d

dt

(
2 cos z + 2

1 + w2
1 + w2

2

− 1
)

= − 2ż sin z
1 + w2

1 + w2
2

− 4(1 + cos z)(w1ẇ1 + w2ẇ2)
(1 + w2

1 + w2
2)2

(F.26)

Combining (F.24a) and (F.24b) gives the relation

2
w1ẇ1 + w2ẇ2

(1 + w2
1 + w2

2)2
= ω1w1 + ω2w2 (F.27)

Substituted (F.27) into (F.26) gives the expression

tr[Ṙ(w, z)] =
2

1 + w2
1 + w2

2

(
ż sin z + (1 + cos z)(ω1w1 + ω2w2)

)
(F.28)

Expanding the right hand side of (F.25) we obtain

tr[−S(ω)R(w, z)] =
−2

1 + w2
1 + w2

2

[(1 + cos z)(ω1w1 + ω2w2) + (ω3 − ω1w2 + ω2w1) sin z]

(F.29)
Equating (F.29) with (F.28), we obtain the following differential equation for the angle z

ż = ω3 − ω1w2 + ω2w1 (F.30)
or equivalently,

ż = ω3 +
i

2
(ω̄w − ωw̄) (F.31)

To summarize the discussion above, the differential kinematic equations for the(w, z) parametriza-
tion are

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (F.32a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (F.32b)

ż = ω3 − ω1w2 + ω2w1 (F.32c)

Alternatively they can be written more compactly as

ẇ = −iω3w +
ω

2
+
ω̄

2
w2, (F.33a)

ż = ω3 +
i

2
(ω̄w − ωw̄) (F.33b)
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a+ib
1+c

ẇ =−i
(
ω3w − ω

2 + ω̄
2 w2

)
ż = ω3 + 1

2 (ωw̄ + ω̄w)
ω1 + iω2

b−ia
1+c

ẇ =−iω3w + ω
2 + ω̄

2 w2

ż = ω3 + i
2 (ω̄w − ωw̄)

ω1 + iω2

b+ic
1+a

ẇ =−i
(
ω1w − ω

2 + ω̄
2 w2

)
ż = ω1 + 1

2 (ωw̄ + ω̄w)
ω2 + iω3

c−ib
1+a

ẇ =−iω1w + ω
2 + ω̄

2 w2

ż = ω1 + i
2 (ω̄w − ωw̄)

ω2 + iω3

c+ia
1+b

ẇ =−i
(
ω2w − ω

2 + ω̄
2 w2

)
ż = ω2 + 1

2 (ωw̄ + ω̄w)
ω3 + iω1

a−ic
1+b

ẇ =−iω2w + ω
2 + ω̄

2 w2

ż = ω2 + i
2 (ω̄w − ωw̄)

ω3 + iω1

Table F.1: Stereographic coordinatew and corresponding kinematics

Remark F.0.1. It is straight forward to verify that the kinematic differential equations for the
(w, z) parametrization can be written as

d

dt
|w|2 = (1 + |w|2)Re(ωw̄) (F.34a)

ż = ω3 + Im(ωw̄) (F.34b)

Remark F.0.2. Equation (F.13) is only one of the possible definitions of the parameterw.
Other combinations will provide different kinematic equations forw and z. This is shown in
Table F.1.
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