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Summary

The topic of this thesis is the feedback stabilization of the attitude of an underactuated rigid
spacecraft. Underactuated mechanical systems are characterized by the fact that there are more
degrees of freedom than actuators. In the case of the rigid spacecraft, we try to stabilize the
three-axis attitude with only two available actuators. The problem is interesting both from a
practical and theoretic point of view and has received much attention in the last decades.

The spacecraft is modelled as an ideal rigid body. To represent the spacecraft’s attitude the
(w, z)-parameterization is used. The(w, z)-parameterization is a relatively new parameteriza-
tion and has properties that makes it very interesting for the attitude control problem. It is a
minimal and compact parameterization with the singularity moved as far away from the origin
as possible, and the motion of thez-axis is decoupled from the rest of the system.

It is shown that the underactuated rigid spacecraft model does not satisfy Brockett’s nec-
essary condition, i.e, it can not be stabilized by a continuous time-invariant state feedback.
However, it is possible to achieve stabilization about an equilibrium manifold. It is shown that
when using the(w, z) parameterization it is very simple to find such controllers.

The purpose of this thesis is to apply the results of Mazenc et al. (2002) to solve the open
problem of determining continuous controllers that globally stabilize the attitude of the under-
actuated spacecraft. It is demonstrated how Mazenc et al. (2002) solves the open problem of
determining explicit time-varying, periodic smooth feedbacks that globally uniformly asymp-
totically stabilize an underactuated surface vessel. Unfortunately the spacecraft model has no
damping and the kinematics are more complicated. Direct application is therefore not possible.
However, Mazenc et al. (2002) provides several useful tools and methods that can be used.

An attempt is made to solve the attitude stabilization problem by first solving the sub-
problems of spin-axis stabilization and angular velocity stabilization. By using tools from
Mazenc et al. (2002) a smooth time-varying periodic controller is derived that globally uni-
formly asymptotically stabilize the angular velocities of an underactuated spacecraft. By sim-
ulations it is indicated that the two controllers can be combined to achieve partial attitude
stabilization. Unfortunately no proof is available at the time of writing.

The problem of determining globally stabilizing control laws is still open. However it is
probable that such control laws can be found using the tools in Mazenc et al. (2002).
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Chapter 1

Introduction

The topic of this thesis is attitude stabilization of an underactuated rigid spacecraft. Underac-
tuated mechanical systems are characterized by the fact that there are more degrees of freedom
than actuators. In the case of the rigid spacecraft, we try to stabilize the three-axis attitude with
only two available actuators.

The motivation for studying this problem is both practical and theoretical. Usually an
actuator failure is handled by incorporating redundancy in the design. The disadvantage of
this approach is higher weight and a more complicated mechanical system. An alternative is
to use more complicated controllers that manage to achieve the control objectives with only
two actuators. From a theoretical point of view the stabilization of an underactuated system is
a challenging problem. Many interesting control-theoretic questions have to be answered and
the control problem is highly nonlinear.

In recent years there has been an increasing interest in space-related activities in Norway,
both from the industry and educational institutes. Hopefully this thesis will contribute to in-
crease the knowledge and interest in attitude control systems for spacecrafts.

1.1 Space-related activities in Norway

Norway has a long tradition of space-related research. The main emphasis in space-based ac-
tivities are currently on ESA projects and on sounding rockets from Andøya Rocket Range.
Norwegian universities and industry have contributed to many space projects, however no Nor-
wegian built satellite has been launched into space. Hopefully this will change in the near
future. Two satellites are at the time of writing being planned, and the author has been fortu-
nate to have participated in the study and specification phase for both satellites

NSAT-1 The NSAT-1 mission, initiated by the Norwegian Defence Research Establishment
(FFI), is a mission for demonstration of localization of maritime vessels by passive detection
of their X-band navigation radar, and subsequent direction finding and determination of the
geographic position (Narheim et al., 2001). The intention is to use the satellite to monitor the
maritime activities in Norwegian ocean areas. A high performance micro-satellite is required
for this concept.

NCUBE The Norwegian Student Satellite Project aims to design, build, integrate, test and
launch a small satellite. The project is primarily a collaboration between students at the Norwe-
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gian University of Technology and Science (NTNU), the University College of Narvik (HiN),
and the Agricultural University of Norway (NLH). Andøya Rocketrange (ARS) and the Nor-
wegian Space Centre (NRS) provides project management and financial support.

The satellite concept Cubesat, developed by Stanford University, has been chosen as a
framework for NCUBE. The satellite will be 10x10x10 cm, weighing a maximum of 1 kg. The
satellite will be stabilized by a gravity gradient boom and three electromagnetic coils (Fauske,
2002)1.

1.2 Nonholonomic systems

Control of underactuated mechanics systems has been a very active topic of research during the
last decades. The research on underactuated systems is a continuation on the research on non-
holonomic systems, as many underactuated systems are subject to nonholonomic constraints.
Nonholonomic constraints can be divided into first-order and second-order nonholonomic con-
straints. First-order constraints are non-integrable constrains on the formΦ(q, q̇) = 0, where
q and q̇ are generalized coordinates and velocities. Second-order constraints are on the form
Φ(q, q̇, q̈) = 0, and constrain the acceleration of the system. A common property of nonholo-
nomic systems is that they can not be stabilized time-invariant pure state feedback. An excellent
introduction to nonholonomic systems can be found in Kolmanovsky and McClamroch (1995).
The number of publications on nonholonomic and underactuated systems is extensive. In the
next section some of the most interesting publications concerning underactuated spacecrafts
are presented.

1.3 Previous work

There exist numerous research articles on the problem of attitude stabilization of spacecrafts.
Most of these deals with the case of complete control actuation using either reaction wheels,
thrusters or magnetic actuators. Some contributions from Scandinavian scientist are for in-
stance Egeland and Godhavn (1994), Dalsmo and Egeland (1997), Skullestad and Gilbert
(2000) and Wísniewski and Blanke (1999).

The angular velocity control of a rigid body with only one or two controls has been studied
extensively in the literature. The issue of feedback stabilization of the angular velocities has
been solved using various approaches. In Brockett (1985) it was shown by finding a Lyapunov
function, that the null solution of the angular velocity equations is asymptotically stabilizable
by two control torques aligned with two principal axes if the uncontrolled axis is not an axis
of symmetry. The angular velocity of a rigid body can in fact be asymptotically stabilized by
smooth feedback with a single control as long as the control is not aligned with a principal axis
(Aeyels and Szafranski, 1988).

Stabilization of the angular velocities of a symmetric rigid body is addressed in Andriano
(1993) and Outbib (1994). It is shown that that the angular velocities can be globally stabilized
by means of linear feedback when two control torques act on the body. In Reyhanoglu (1996)
it is shown that the angular velocity equation of a rigid body with two control torques cannot
be exponentially stabilized using aC1 feedback. Discontinuous feedback laws are proposed
that achieve asymptotic stability with exponential convergence rate.

1For the latest news about NCUBE , visit the official web-page:http://www.rocketrange.no/ncube/
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In Mazenc and Astolfi (2000) the problem of semi-global stabilization of the angular veloc-
ity of an underactuated rigid body in the presence of model errors is addressed and solved using
a smooth, time-varying, dynamic, output feedback control law. Robustness is also addressed
in Morin (1996), where homogeneity properties of the system are exploited, and in Astolfi and
Rapaport (1997). For more references on stabilization of the angular velocity of a rigid body
refer to Tsiotras and Doumtchenko (2000) and references therein.

The more difficult problem of feedback stabilization of both the the angular velocities and
attitude equations has also received much attention. One of the earliest investigations of the
attitude control problem was done in Crouch (1984), where necessary and sufficient conditions
for the controllability of a rigid body in the case of one, two and three independent control
torques was provided. In the case of momentum exchange devices it was shown that controlla-
bility is impossible with fewer than three devices.

In Byrnes and Isidori (1991) the longstanding problem concerning the existence of a time-
invariant smooth state feedback locally asymptotically stabilizing an underactuated rigid space-
craft was settled in the negative. However stabilization about an attractor is possible, inducing
a closed-loop system with trajectories tending to a revolute motion about a principal axis. A
discontinuous control strategy was suggested in Krishnan et al. (1994). By switching between
various controllers a sequence of maneuvers were performed that stabilized the spacecraft to
any equilibrium attitude in finite time.

An article by Samson (1991) triggered the discovery that many systems that can not be
stabilized by continuous state-feedback can in fact be stabilized by smooth time-varying feed-
back. A locally stabilizing smooth time-varying feedback was derived in Morin et al. (1995)
by using center manifold theory combined with averaging and Lyapunov techniques. However,
due to the smoothness of the control laws, the rate of convergence is only polynomial in the
worst case. Similar results where derived in Coron and Keraı̈ (1996) for the general case of
torques that are not aligned with the principal axes of the satellite.

A stronger result was achieved in Morin and Samson (1997) where the attitude of the un-
deractuated rigid spacecraft was locally, exponential stabilized with respect to a given dilation.
The controller was periodic, time varying and non-differentiable at the origin and the construc-
tion relied on the properties of homogeneous systems.

For the axi-symmetric rigid body there exist a wide range of results. However, stabiliza-
tion is only possible for the restricted case of zero spin rate about the unactuated axis. Spin-
stabilization with two control torques is addressed in Tsiotras and Longuski (1994) based on a
new formulation for the attitude dynamics. The new attitude formulation, described in Tsiotras
and Longuski (1995), was subsequently used in Tsiotras et al. (1995) and Tsiotras and Luo
(1996) to derive a time-invariant discontinuous control law that achieves arbitrary reorientation
of the spacecraft. Due to the properties of the new parameterization, the control laws derived
were especially simple and elegant. In a more recent paper Tsiotras and Luo (2000), saturated
tracking and stabilization laws were developed for the underacutated axi-symmetric rigid body
under the assumption of zero spin rate. Another time-varying tracking law was developed in
Behal et al. (2002) using a Lyapunov-based approach and by exploiting several characteristics
of the quaternion attitude formulation. The spin rate was not required to be zero, however the
spacecraft could only be driven to an arbitrarily small neighborhood of the origin.

The topic of feasible trajectory generation for the underactuated spacecraft has not received
much attention. An exception is Tsiotras and Luo (2000) where feasible trajectories are gen-
erated for the axi-symmetric rigid body using the notion of differential flatness. For an ex-
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cellent overview of developments in control of the underactuated spacecraft see Tsiotras and
Doumtchenko (2000) and references therein.

1.4 Contributions of this thesis

• An extensive list of references on the subject of control of underactuated spacecrafts
have been compiled. This will serve as an excelent starting point for further study.

• The relatively unknown(wz)-attitude paramaterization is presented as an usefull tool for
the attitude stabilization problem.

• The most important properties of an underactuated spacecraft are presented and com-
pared with other underactuated systems.

• A time-varying periodic controller is proposed for the angular velocity stabilization prob-
lem. The controller achieves global uniform asymptotic stability. Strict Lyapunov func-
tions are constructed to prove stability.

• The locally exponential stabilizing controller in Morin and Samson (1997) is extended
to the(w, z)-parameterization.

1.5 Outline of the thesis

The thesis is organized as follows:

• Chapter 2: Different parameterizations of the attitude and their properties are described,
with an emphasis on the relatively new(w, z)-parameterization.

• Chapter 3: An introduction to spacecraft dynamics, actuators and space environment is
given.

• Chapter 4: A complete model of an underactuated spacecraft is presented and some
important control properties are discussed.

• Chapter 5: The results in Mazenc et al. (2002) concerning the global uniform asymp-
totic stabilization of an underactuated surface vessel are presented along with a discus-
sion of how the results can be extended to the underactuated spacecraft stabilization
problem.

• Chapter 6: Feedback laws are presented that globally stabilizes the spin axis and angular
velocities. An attempt is made to solve the partial and complete attitude stabilization
problem. Feedback laws are presented that extends the results of Morin and Samson
(1997) to the(w, z)-parameterization.

• Chapter 7: Conclusions and recommendations for further work are given.

• Appendix A: Some background theory is presented.

• Appendix B: The Newton-Euler equations for rigid bodies are derived.



Chapter 2

Attitude parameterizations

Euler’s equations of motion are commonly used to describe the dynamics of a rigid spacecraft.
The equations of motion provide a complete and well-defined framework. For the kinematics
the situation is different, due to the fact that the rotation matrix, which describes the relative
orientation between two reference frames, can be parameterized in more than one way. Which
parametrization to use is clearly problem dependent. This chapter discusses different attitude
parameterizations and describes in detail the relatively new(w, z)-parametrization.

2.1 The rotation matrix

The rotation matrix, also called thedirection cosine matrix, has three interpretations:

• Describes the mutual orientation between two coordinate frames, where the column vec-
tor are cosines of the angles between the two frames.

• Transforms vectors represented in one reference frame to another.

• Rotates a vector within a reference frame.

The rotation matrixR from framea to b is denotedRa
b and is an element inSO(3), which is

defined as
SO(3) =

{
R |R ∈ R3×3,RTR = I and detR = 1

}
, (2.1)

whereI is the3× 3 identity matrix.

From the orthogonality property,RTR = I, it can be shown that the time derivate of the
rotation matrix is (Egeland and Gravdahl, 2002)

Ṙa
b = ωa

ab ×Ra
b , (2.2)

whereωa
ab is the angular velocity of frameb relative to framea represented in thea frame. The

angular velocity has the propertyωa
ab = −ωa

ba, giving

Ṙa
b = −ωa

ba ×Ra
b = Ra

b × ωa
ba. (2.3)

The cross product can be rewritten using theskew-symmetric cross product operatorS(ω):

ω× = S(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , ω =

ωx

ωy

ωz

 (2.4)
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Using (2.4) we can rewrite (2.2) as

Ṙa
b = S(ωa

ab)R
a
b = Ra

bS(ωb
ab). (2.5)

2.2 Euler parameters

The Euler parameters, also calledunit quaternions, are attractive due to their nonsingular
parametrization and linear kinematic differential equations if the angular velocities are known.
The quaternion representation requires much less computations than for instance the Euler
angles representation, and is therefore useful in applications where computer resources are
limited.

The Euler parameters are defined in terms of the principal rotation angleθ and the principal
line componentski as follows:

η = cos
θ

2
, εi = ki sin

θ

2
i = 1, 2, 3 (2.6)

They also satisfy the constraint:

η2 + ε21 + ε22 + ε23 = 1 (2.7)

The Euler parameters kinematic differential equations are given as:

[
η̇
ε̇

]
=

1
2


−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η


ω1

ω2

ω3

 (2.8)

In component form:

η̇ = −1
2
(ε1ω1 + ε2ω2 + ε3ω3) (2.9a)

ε̇1 =
1
2
(ηω1 − ε3ω2 + ε2ω3) (2.9b)

ε̇2 =
1
2
(ε3ω1 + ηω2 − ε1ω3) (2.9c)

ε̇3 =
1
2
(−ε2ω1 + ε1ω2 + ηω3) (2.9d)

2.3 Rodrigues parameters

The classical and modified parameters can be interpreted as the coordinates resulting from a
stereographic projection of the four-dimensional Euler parameter hypersphere onto a three-
dimensional hyperplane (Schaub et al., 1995). The difference between them is how the projec-
tion point and mapping hyperplane is chosen.
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2.3.1 The classical Rodrigues parameters

The classical Rodrigues parameters can be derived from the Euler parameters with the trans-
formation

qi =
εi
η
, i = 1, 2, 3. (2.10)

Combining (2.10) and (2.6) yields

qi = ki tan
θ

2
. (2.11)

Clearly the the classical Rodrigues parameters has singular condition forθ = ±π, where
qi →∞. The kinematic differential equations can be derived from (2.8), giving:q̇1q̇2

q̇3

 =
1
2

 1 + q21 q1q2 − q3 q1q3 + q2
q1q2 + q3 1 + q22 q2q3 − q1
q3q1 − q2 q3q2 + q1 1 + q23

ω1

ω2

ω3

 (2.12)

In component form it is:

q̇1 =
1
2
(
(1 + q21)ω1 + (q1q2 − q3)ω2 + (q1q3 + q2)ω3

)
(2.13a)

q̇2 =
1
2
(
(q1q2 + q3)ω1 + (1 + q22)ω2 + (q2q3 − q1)ω3

)
(2.13b)

q̇3 =
1
2
(
(q3q1 − q2)ω1 + (q3q2 + q1)ω2 + (1 + q23)ω3

)
(2.13c)

2.3.2 The modified Rodrigues parameters

The modified Rodrigues parameters can be derived from the Euler parameters with the trans-
formation

σi =
εi

1 + η
, i = 1, 2, 3. (2.14)

Combining (2.10) and (2.14) yields

σi = ki tan
θ

4
. (2.15)

Clearly the the modified Rodrigues parameters has a singular condition forθ = ±2π, which
means that the nonsingular rotation range is two times larger than the nonsingular rotation
range for the classical Rodrigues parameters. Insertion of (2.14) in (2.8) yields:σ̇1

σ̇2

σ̇3

 =
1
2

1 + σ2
1 − σ2

2 − σ2
3 2(σ1σ3 + σ2) 2(σ1σ2 − σ3)

2(σ2σ1 + σ3) 1− σ2
1 + σ2

2 − σ2
3 2(σ2σ3 − σ1)

2(σ3σ1 − σ2) 2(σ3σ2 + σ3) 1− σ2
1 − σ2

2 + σ2
3

ω1

ω2

ω3

 (2.16)

In component form it is:

σ̇1 =
1
2
(1 + σ2

1 − σ2
2 − σ2

3)ω1 + (σ1σ3 + σ2)ω2 + (σ1σ2 − σ3)ω3 (2.17a)

σ̇2 = (σ2σ1 + σ3)ω1 +
1
2
(1− σ2

1 + σ2
2 − σ2

3)ω2 + (σ2σ3 − σ1)ω3 (2.17b)

σ̇3 = (σ3σ1 − σ2)ω1 + (σ3σ2 + σ3)ω2 +
1
2
(1− σ2

1 − σ2
2 + σ2

3)ω3 (2.17c)
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(a) (b)

Figure 2.1: Rotation sequence of the(w, z)-parameterization. Left hand side shows the initial
rotation about the bodyz-axis. Right hand side shows the resulting coordinate system after the
second rotation.

2.4 The(w, z) parametrization

The(w, z) parametrization is a relatively new approach to describe the kinematics of a rotating
rigid body. The formulation describes the relative orientation of two reference frames using
two perpendicular rotations, thus complementing the Eulerian angles (three rotations) and the
Euler parameters (one rotation) (Tsiotras and Longuski, 1995). The parametrization is proba-
bly unfamiliar to the reader and therefore it is derived in detail. The material in this section is
based on Tsiotras and Longuski (1995, 1996).

Consider a reference framei, defined by three orthogonal unit vectors~i1,~i2 and~i3. Another
reference frameb is fixed to the body and is defined by the three orthogonal unit vectors~b1,~b2
and~b3. The rotation matrixR from the reference frame to the body frame is decomposed using
two successive rotations:

R(w, z) = Ri
b = R2(w)R1(z) (2.18)

The two rotations are illustrated in Figure 2.1. The first rotation represents a simple rotation
about the bodyz-axis, and is given by

R1(z) =

 cos z sin z 0
− sin z cos z 0

0 0 1

 (2.19)

The intermediate reference frame is denotedo, defined by the three orthogonal unit vectors
~o1, ~o2 and~o3.

The next step is to find an expression for the second rotation matrixR2(w). Recall that
a rotation matrix can be computed using an angle-axis description, which corresponds to a
rotation by an angleθ about an unit vector~u (Egeland and Gravdahl, 2002):

R = I + sin(θ)S(~u) + (1− cos θ)S2(~u) (2.20)

Consider the vectorvo = [0, 0, 1]T, which is along thezo-axis. Transforming it to theb frame
gives ab

c

 = R2(w)

0
0
1

 , (2.21)
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where[a, b, c]T is the third column in the rotation matrix. The axis~o3 can therefore be written
as

~o3 = a~b1 + b~b2 + c~b3. (2.22)

By symmetry the relation
~b3 = −a~o1 − b~o2 + c~o3 (2.23)

also holds. The angle between~b3 and~o3 is simply

θ = cos−1(~o3 ·~b3) = cos−1 c. (2.24)

Now the axis of rotation can be found with

~u =
~o3 ×~b3
‖~i3 ×~b3‖

. (2.25)

Using (2.22) and (2.23) the axis of rotation can be written as

~u =
b~o1 − c~o2√
a2 + b2

. (2.26)

Now the angle-axis description of the rotation matrix can be used. Insertion of (2.26) and (2.24)
into (2.20) gives

R2(w) =

c+ b2

1+c − ab
1+c a

− ab
1+c c+ a2

1+c b

−a −b c

 . (2.27)

Expanding (2.18) gives the complicated matrix

R(w, z) =


c cos z+ab sin z+(b2+c2) cos z

1+c
c sin z−ab cos z+(b2+c2) sin z

1+c a

− c sin z+(c2+a2) sin z+ab cos
1+c z c cos z+(c2+a2) cos z−ab sin z

1+c b

−b sin z − a cos z −b cos z − a sin z c

 (2.28)

The representation in (2.18) is redundant since

a2 + b2 + c2 = 1, (2.29)

hence one parameter can be eliminated. An elegant way of doing this is to use a stereographic
projection of the point(a, b, c) on the unit sphere on to the equatorial plane of the sphere. The
stereographic projection is shown in Figure 2.2 and is defined as

w := w1 + iw2 =
b− ia

1 + c
, (2.30)

wherei =
√
−1. With some algebraic manipulation the the inverse relation can be found to be

a =
i(w − w̄)
1 + |w|2

, b =
w + w̄

1 + |w|2
, c =

1− |w|2

1 + |w|2
, (2.31)

wherew̄ is the complex conjugate ofw and|w|2 = ww̄ = w2
1 +w2

2. The basis of the projection
is the point(0, 0,−1), which is the south poleS of the unit sphere. Note that whenc = −1
the projection has a singularity andw → ∞. The singularity corresponds to an upside-down
orientation of the body. Using (2.31) with (2.27) gives the matrix
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Figure 2.2: Stereographic projection of a point(a, b, c) on a unit sphere on to a complex plane.

R2(w) =
1

1 + w2
1 + w2

2

1 + w2
1 − w2

2 2w1w2 −2w2

2w1w2 1− w2
1 + w2

2 2w1

2w2 −2w1 1− w2
1 − w2

2

 . (2.32)

The matrix can be written more compactly using complex notation:

R2(w) =
1

1 + |w|2

1 + Re(w2) Im(w2) −2Im(w)
Im(w2) 1− Re(w2) 2Re(w)
2Im(w) −2Re(w) 1− |w|2

 (2.33)

The total rotation matrixR using the(w, z) parametrization is

R =
1

1 + w2
1 + w2

2

(1 + w2
1 − w2

2)cz − 2w1w2sz (1 + w2
1 − w2

2)sz + 2w1w2cz −2w2

2w1w2cz − (1− w2
1 + w2

2)sz 2w1w2sz + (1− w2
1 + w2

2)cz 2w1

2w2cz + 2w1sz 2w2sz − 2w1cz 1− w2
1 − w2

2

 ,
(2.34)

wheres(·) = sin(·) andc(·) = cos(·). The matrix can be written more compactly as

R(w, z) =
1

1 + |w|2

 Re(1 + w2)eiz Im(1 + w2)eiz −2Im(w)
Im(1− w̄2)e−iz Re(1− w̄2)e−iz 2Re(w)

2Im(weiz) −2Im(weiz 1− |w|2

 . (2.35)

2.4.1 Kinematic differential equations

The differential equation for (2.18) is simplẏR(w, z) = S(ω)R(w, z), hence the third column
of Ṙ(w, z) must satisfy ȧḃ

ċ

 =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

ab
c

 (2.36)

Recall thatw is defined as

w =
b− ia

1 + c
. (2.37)

Differentiation of (2.37) gives

ẇ =
ḃ− iȧ− wċ

1 + c
. (2.38)

Using the relations in (2.31) and (2.36) gives the differential equation forw

ẇ = −iω3w +
ω

2
+
ω̄

2
w2, (2.39)
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where
ω = ω1 + iω2, ω̄ = ω1 − iω2. (2.40)

An alternative formulation is:

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (2.41a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (2.41b)

To find the differential equation forz we start with the scalar form of the differential equation
for a rotation matrix,

tr[Ṙ(w, z)] = tr[S(ω)R(w, z)], (2.42)

wheretr(·) is sum of the diagonal elements of the matrix. Taking the trace ofṘ(w, z) gives:

tr[Ṙ(w, z)] =
d

dt
(tr[R(w, z)]) =

d

dt

(
2 cos z + 2

1 + w2
1 + w2

2

− 1
)

= − 2ż sin z
1 + w2

1 + w2
2

− 4(1 + cos z)(w1ẇ1 + w2ẇ2)
(1 + w2

1 + w2
2)2

(2.43)

Combining (2.41a) and (2.41b) gives the relation

2
w1ẇ1 + w2ẇ2

(1 + w2
1 + w2

2)2
= ω1 + w1 + ω2w2, (2.44)

which substituted into (2.43) gives the expression

tr[Ṙ(w, z)] =
2

1 + w2
1 + w2

2

(
ż sin z + (1 + cos z)(ω1w1 + ω2w2)

)
. (2.45)

Expanding the right hand side of (2.42) we obtain

tr[S(ω)R(w, z)] =
−2

1 + w2
1 + w2

2

(
(1 + cos z)(ω1w1 + ω2w2) + (ω3 − ω1w2 + ω2w1) sin z

)
.

(2.46)
Now we can obtain the differential equation forz by equating (2.46) with (2.45):

ż = ω3 − ω1w2 + ω2w1 (2.47)

An equivalent expression is

ż = ω3 +
i

2
(ω̄w − ωw̄). (2.48)

To summarize the discussion above, the differential kinematic equations for the(w, z) parametriza-
tion are

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (2.49a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (2.49b)

ż = ω3 − ω1w2 + ω2w1 (2.49c)
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Alternatively they can be written more compactly as:

ẇ = −iω3w +
ω

2
+
ω̄

2
w2, (2.50a)

ż = ω3 +
i

2
(ω̄w − ωw̄), (2.50b)

Remark 2.4.1. It is straight forward to verify that the kinematic differential equations for the
(w, z)-parameterization can be written as

d

dt
|w|2 = (1 + |w|2)Re(ωw̄) (2.51a)

ż = ω3 + Im(ωw̄) (2.51b)

where
|w|2 = ww̄ = w2

1 + w2
2, (2.52)

and
Re(ωw̄) = ω1w1 + ω2w2, Im(ωw̄) = ω2w1 − ω1w2. (2.53)

Note that in (2.51a) only the real part of the termωw̄ appears, while in (2.51b) only the imagi-
nary part appears. This antisymmetric property can be very useful for designing control laws.

2.4.2 Properties

The(w, z) parametrization has some unique properties that makes it useful in attitude control
problems.

• The kinematic equations are compact and have a clear physical interpretation

• Thez parameter does not appear in (4.4a) and (4.4b). This means that in some applica-
tions the control problem can be decomposed into one of controlling onlyw and one of
controllingz.

• A singularity appears in the parametrization when the body is upside down and conse-
quentlyw → ∞. The equilibrium(w1,w2, z) = (0, 0, 0) is as far as possible from the
singularity.

2.5 Discussion

The previous sections have shown that there are many attitude parameterizations to choose
from. However, the(w, z)-parameterization will be used in the rest of this thesis to describe the
attitude dynamics of an underactuated spacecraft. First of all this parameterization is minimal
and it is easy to avoid the singularity as long as we ensure that|w1| and|w2| does not approach
∞. Secondly, if the actuator failure is about thez-axis, the dynamics of the unactuated axis
can be decoupled from the rest of the system.



Chapter 3

Spacecraft dynamics

Spacecraft dynamics and the space environment is a very large and interesting subject. A brief
introduction will be given in this chapter. For the interested reader, Sellers (2000) is highly
recommended as an introduction to astronautics. For more in-depth information see Huges
(1986) and Wertz (1999)

3.1 Newton-Euler equations for rigid bodies

The angular motion of a spacecraft can be modelled as an ideal rigid body. However, most
spacecrafts have flexible parts like for instance antennas and solar panels. Internal effects like
fuel sloshing and thermal deformations are not accounted for using a rigid body model. Never-
theless, for many problems the rigid body model is a good approximation, especially for small
spacecrafts.

The well known equations for a rigid body can be written as

~τ = ~M~̇ωib + ~ωib × ( ~M~ωib), (3.1)

where ~M is the inertia dyadic of the rigid body,~ωib is the angular velocity between an inertial
reference frame and the body,~τ is the torque acting on the rigid body. A detailed derivation of
(3.1) can be found in Appendix B. It is more convenient to write the equations of motion in the
body frame as

Mω̇b
ib + S(ωb

ib)Mωb
ib = τ b, (3.2)

where
ωb

ib = [ω1 ω2 ω3]T, τ b = [τx τy τz]T

Assuming a diagonal inertia matrixM = diag(m11,m22,m33) the equations of motion in
component form are:

ω̇1 =
m22 −m33

m11
ω2ω3 +

1
m11

τx (3.3)

ω̇2 =
m33 −m11

m22
ω1ω3 +

1
m22

τy (3.4)

ω̇3 =
m11 −m22

m33
ω1ω2 +

1
m33

τz (3.5)
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The translational motion of a spacecraft is not considered in this thesis. However, some details
can be found in Appendix B

3.2 Actuators

There are several types of actuators that can be used to control the orientation of a spacecraft.
The actuators can be divided into three categories: thrusters, momentum exchange devices and
magnetic actuators. It is common to use more than one actuator type on a spacecraft.

3.2.1 Thrusters

Thrusters or gas jets produce torque by expelling mass. They can be used both for attitude
and position control. When used for attitude control a pair of thrusters on opposite sides of
the spacecraft is needed. The main advantage of using thrusters is that they can produce an
accurate and well-defined torque on demand. The main disadvantage is that a spacecraft can
only carry a limited amount of propellant.

3.2.2 Reaction wheels

When a gyro or rotor is accelerated an angular torque is generated in the opposite direction.

Mrω̇r = −Mω̇b
ib (3.6)

This effect is exploited when using reaction wheels to control the attitude of a spacecraft. As
seen from (3.6) the wheels have to be accelerated in order to create a torque. Neglecting friction
effects, the torque generated by a set of reaction wheels can be written as (Kaplan, 1976)

τ b
r =

(
d

dt
hr

)b

+ ωb
ib × hr, (3.7)

whereh3 = [hrx hry hrz]T = Mrωr is the wheels’ total angular momentum. In component
form the torque can written as

τrx = ḣrx + hrzω2 − hryω3 (3.8a)

τry = ḣry + hrxω3 − hrzω1 (3.8b)

τrz = ḣrz + hryω1 − hrxω2 (3.8c)

(3.8d)

3.2.3 Magnetic actuators

A magnetic torquer takes advantage of the natural torque caused by Earth’s magnetic field in-
teracting with a magnet. They offer a cheap, reliable and robust way to control a spacecraft’s
attitude. Unfortunately they are only effective for low Earth orbit (LEO) spacecrafts and re-
quires a complex model of the Earth’s geomagnetic field. Magnetic actuators together with a
gravity gradient can be used to achieve full three-axis attitude stabilization. A good example
of this is the Danish satellite Ørsted (Wiśniewski and Blanke, 1999).
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The torque generated by the magnetorquers can be modelled as

τ b
m = mb ×Bb, (3.9)

wheremb is the magnetic dipole moment generated by the coils, andBb = [Bb
x B

b
y B

b
z]

T is the
local geomagnetic field vector. The magnetic dipole moment is

mb = mb
x + mb

y + mb
z =

NxixAx

NyiyAy

NzizAz

 =

mx

my

mz

 , (3.10)

whereNk is the number of windings in the magnetic coil on the axis in thek direction,ik is
the coil current andAk is the coil cross-section area.

3.3 Disturbance torques

A spacecraft is subject to small but persistent disturbance torques and forces. The main distur-
bance torques for a satellite orbiting Earth are briefly discussed in this section. For more details
see for instance Huges (1986).

For low orbit satellites the air density is high enough to influence the satellite’s attitude dynam-
ics. The drag force also decreases the satellite’s velocity, resulting in a lower altitude. Unless
the the orbit is maintained using thrusters, a satellite will ultimately reenter the atmosphere.
Solar radiation and particles is also a source of disturbances. Radiation can damage the on
board electronics and temperature changes distort the structure of the satellite.

Several internal effects can generate disturbance torques. The electronics in the satellite
may create an unwanted residual magnetic dipole. This field will interact with the Earth’s
geomagnetic field and generate a disturbance torque. When thrusters are used, fuel sloshing is
a challenging problem. Another problem is flexible structures like antennas and solar panels.

3.3.1 Gravity gradient torque

The gravity gradient torque will affect a non symmetric body in the Earth’s gravity field. This
effect can be exploited with a gravity boom for passive stabilization. Assuming a homogeneous
mass distribution of the Earth, the gravity gradient can be written as (Wertz, 1999)

~τg =
3µ
R3

0

~ue ×
(
~M~ue

)
, (3.11)

where:

µ - Earth’s gravitational coefficientµ = 3.986 · 1014 m3/s2

R0 - Distance from Earth’s center (m)
~M - Spacecraft inertia matrix
~ue - Unit vector towards Earth’s center

Writing (3.11) in the body frame yields

τ b
g =

3µ
R3

0

cb
3 ×

(
Mcb

3

)
, (3.12)
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wherecb
3 = [c23 c23 c33]T is the third column in the rotation matrix describing the orientation

between a local reference frame and the body frame.

Assuming a diagonal inertia matrixM = diag(m11,m22,m33), the gravitational torque sim-
plifies to

τ b
g = 3ω2

o

(m33 −m22)c23c33
(m11 −m33)c33c13
(m22 −m11)c13c23

 , (3.13)

whereω2
o = µ

R3
0
.



Chapter 4

Control properties of an
underactuated spacecraft

The underactuated rigid spacecraft has many interesting properties that makes the attitude sta-
bilization a challenging control problem. The purpose of this chapter is to choose an adequate
model and describe some of the most important properties.

4.1 Model

In Chapters 3 and 2 the attitude dynamics of a spacecraft were presented. To simplify the
analysis it is important to choose an adequate model that is not too complicated. For the
kinematics the(w, z)-parameterization is chosen because of its useful properties. It is assumed
that the disturbances acting on the spacecraft are ignorable and no gravity gradient is present.
It is also assumed that the torque can be controlled directly, for instance using thrusters.

Consider the case when there is no available control torque about the third principal axis,
due to for instance an actuator failure. We then have an underactuated spacecraft. In order
to simplify the rigid body dynamics in (3.3) the following feedback transformations are intro-
duced:

τa =
m22 −m33

m11
ω2ω3 +

1
m11

τx (4.1)

τb =
m33 −m11

m22
ω1ω3 +

1
m22

τy (4.2)

(4.3)

The complete attitude dynamics for an underactuated spacecraft can then be written as

ẇ1 = ω3w2 + ω2w1 w2 +
ω1

2
(1 + w2

1 − w2
2) (4.4a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (4.4b)

ż = ω3 − ω1w2 + ω2w1 (4.4c)

ω̇1 = τa (4.4d)

ω̇2 = τb (4.4e)

ω̇3 = c3ω1ω2, (4.4f)

wherec3 = m11−m22
m33

. It is assumed thatc3 6= 0.
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Definition 4.1 (Axi-symmetric rigid body). When c3 = 0 ⇒ ω̇3 = 0 the rigid body is
axi-symmetric.

Remark 4.1.1. A real spacecraft can never be completely axi-symmetric, implying that even
if c3 is very small there will be a slow rotation about the symmetric axis.

Remark 4.1.2. The model (4.4) can be considered as a deep-space probe with only two pairs
of thrusters.

The underactuated rigid spacecraft has many similarities with other underactuated systems.
Several underactuated vehicles can in fact be described by the general model (Pettersen, 1996):

Mν̇ + C(ν)ν + D(ν)ν + g(η) =
[
τ
0

]
(4.5a)

η̇ = J(η)ν (4.5b)

where
η ∈ Rn1 , ν ∈ Rn2 , n1 ≤ n2, τ ∈ Rm, m < n2

The vectorν denotes linear and angular velocities, andη denotes the position and orientation
of the vehicle. Gravitational and buoyant forces and torques are denoted byg(η), M is the
inertia matrix,C(ν) is the Coriolis and centripetal matrix andD(ν) is the damping matrix.
Some examples of vehicles described by (4.5) are underactuated surface vessels, underwater
vehicles and spacecrafts.

The spacecraft model (4.4)can be written in the form (4.5) by setting

ν = ω = [ω1, ω2, ω3]T, η = [w1, w2, z]T, τ = [τa, τb]T ,

D(ν) = 0, C(ν) = S(ω)M, J(η) =

1
2(1 + w2

1 − w2
2) w1w2 w2

w1w2
1
2(1 + w2

2 − w2
1) −w1

−w2 w1 1


Remark 4.1.3. The fundamental difference between the underactuated spacecraft model and
the general model (4.5), is the lack of a damping term, i.e,D(ν) = 0. This turns out to be a
major disadvantage when designing stabilizing control laws.

Remark 4.1.4. A spacecraft with a gravity gradient will experience gravitational torques,
henceq(η) 6= 0.

4.2 Stabilizability

Property 4.1. There exists no continuous time-invariant state feedback that renders the system
(4.4)asymptotically stable about the origin.

Proof. (Based on Proposition 2.3 in Pettersen (1996)) Consider the mappingf(η,ω, τ ) : Rn1×
Rn2 × Rm → Rn1+n2 defined by

f(η,ω, τ ) =

 J(η)ω

−M−1S(ω)Mω + M−1

[
τ
0

] (4.6)
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To prove Property 4.1 we must show thatf(·) is not locally surjective. Consider a pointε in
Rn1+n2 of the form

ε =


0n1×1

M−1

α1

α2

β


 (4.7)

where(α1, α2, β) ∈ R and non-zero. Points on the formε exist in any neighborhood of0 in
Rn1+n2 . For f(·) to be surjective then for anyε ∈ Rn1+n2 there exists anδ ∈ Rn1+n2 × Rm

for which f(δ) = ε. However, the solution off(η,ω, τ ) = ε impliesτaτb
0

 =

α1

α2

β

 (4.8)

sinceJ(η) has full rank and thereforeω = 0. Clearly (4.8) has no solution. From Theorem
A.2 it then follows that Property 4.1 is true.

�

Remark 4.2.1. In Pettersen (1996) a more general result was derived. It was in fact shown
that there exists no continuous nordiscontinouspure-state feedback law that makes the origin
of (4.5) asymptotically stable ifgu(η) has a zero element. The vectorgu(η) is the elements of
g(η) corresponding to the underactuated dynamics .

The following property is a result of the fact that a smooth nonlinear control system is exponen-
tially stabilizable using smooth feedback only if its linearization about the origin is stabilizable

Property 4.2. The system(4.4) can not be exponentially stabilized by using smooth feedback
laws. The asymptotic rate of convergence to zero is only polynomial in the worst case when the
control laws are smooth.

Proof. See for instance Reyhanoglu (1996) and Morin and Samson (1997)

Property 4.2 explains why there has been an emphasis on discontinous and almost continuous
control laws for the stabilization of underactuated systems in the control community the latest
years.

4.3 Investigation of the underactuated dynamics

Some important insight can be gained about the system (4.4) by considering the case when
(w1,w2) ≈ (0, 0).

ẇ1 =
1
2
ω1 (4.9a)

ẇ2 =
1
2
ω2 (4.9b)

ż = ω3 (4.9c)

ω̇3 = c3ω1ω2 (4.9d)

ω̇1 = τa (4.9e)

ω̇2 = τb (4.9f)
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First of all we see from (4.9c) and (4.9d) that we have no direct control ofz andω3. How-
ever,z can be manipulated indirectly through the termc3ω1ω2 in (4.9d). If the spacecraft is
axi-symmetric,c3 = 0, we have no control at all.

Assume that it is possible to manipulate the angular velocities directly. Consider the time
varying, periodic controllers

ω1 = −ω3 sin t, ω2 = cos t (4.10)

Insertion of the controllers into (4.9d) gives

ω̇3 = −c3ω3 sin2 t (4.11)

which has the average value

˙̄ω3 = − 1
T

∫ T

0
ω3 sin2(t)dt = −1

2
ω3 (4.12)

with T = π. This means that it in average is possible to controlω3 by using time-varying
periodic controllers. This is the basic and intuitive idea behind many controllers for under-
actuated and nonholonomic systems1. Several other control strategies exist, but in order to
circumvent Brockett’s necessary condition they must be time-varying or discontinous. See for
instance Kolmanovsky and McClamroch (1995) for a comparison of different control strategies
for nonholonomic systems.

1An example from everyday life is the movement of for instance a cabinet or refridgerator by rocking it back
and forth.



Chapter 5

Extending the results of Mazenc et al.
(2002) to the spacecraft attitude
stabilization problem

In Mazenc et al. (2002) the the open problem of determining explicit expressions of smooth
time-varying periodic state feedbacks, which render the origin of an underactuated surface
vessel globally uniformly asymptotically stable (GUAS), was solved. The purpose of this
chapter is to describe the method used in Mazenc et al. (2002) and investigate if it can be
extended to the stabilization problem of an underactuated rigid spacecraft.

5.1 Global uniform asymptotic stabilization of an underactuated
surface vessel

In the subsequent sections the model of an underactuated surface vessel is presented and it is it
shown step by step how the stabilization problem was solved in Mazenc et al. (2002).

5.1.1 Model of an underactuated surface vessel

The dynamics of an underactuated surface vessel can be described by the nonlinear model:

u̇ =
m22

m11
vr − d11

m11
u+

1
m11

τ1 (5.1a)

v̇ = −m11

m22
ur − d22

m22
v (5.1b)

ṙ =
m11 −m22

m33
uv − d33

m33
r +

1
m33

τ3 (5.1c)

whereu, v andr are the velocities in surge, sway and yaw respectively,τ1 is the surge control
force andτ3 the yaw control moment. The parametersmii anddii are given by the ships inertia,
added mass effects and hydrodynamic damping. Note that there is no available control in sway.
The kinematics of the ship are

ẋ = cos(ψ)u− sin(ψ)v (5.2a)

ẏ = sin(ψ)u+ cos(ψ)v (5.2b)

ψ̇ = r (5.2c)
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wherex andy is the ship’s position, andψ is the orientation.

5.1.2 Stabilization

Step I. Model simplification To obtain simpler, polynomial equations a global coordinate
transformation was introduced and the dynamics simplified1. The resulting system was:

ż1 = u+ z2r (5.3a)

ż2 = v − z1r (5.3b)

ż3 = r (5.3c)

u̇ = τu (5.3d)

v̇ = −cur − dv (5.3e)

ṙ = τr (5.3f)

Step II The underactuated variablev was removed from the z-subsystem by introducing the
variable

Z2 = z2 +
v

d
, (5.4)

and a stabilizing term was introduced in thez1 equation by a change of coordinate

u = −d
c
z1 −

d

c
µ. (5.5)

The resulting model was

ż1 = −d
c
z1 −

d

c
µ+ Z2r −

v

d
r (5.6a)

Ż2 = µr (5.6b)

ż3 = r (5.6c)

v̇ = −dv + d(z1 + µ)r (5.6d)

µ̇ = τµ (5.6e)

ṙ = τr (5.6f)

Note that the system (5.6) has the cascade structure shown in Figure 5.1, with:

ξ = [Z2, z3, µ, r]T (5.7)

z = [z1, v]T (5.8)

u = [τµ, τr]T (5.9)

The purpose of the various transformations was to make the system amenable for partial-state
feedback designs. In partial-state feedback designs only theξ-subsystem state is used for feed-
back and the interconnection between theξ- andz-subsystem is considered as a disturbance.
The cascade system can be written as

ż = f(z) + ψ(z, ξ) (5.10)

ξ̇ = a(ξ, u) (5.11)

1See Mazenc et al. (2002) for details.
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Figure 5.1: A cascade system

whereψ(z, ξ) is the interconnection term. In some cases the stabilization of theξ-subsystem
ensures the stabilization of the entire cascade, however this imposes severe growth restrictions
on the interconnection termψ(z, ξ). If the growth ofψ(z, ξ) in z is faster than linear it is a
structural obstacle to both global and semi global stabilization. For more details about cascaded
systems, see for instance Sepulchre et al. (1997).

Step III As a result of the cascade structure it was shown that the total system (5.6) is glob-
ally uniformly asymptotically stabilized by any control law which globally uniformly asymp-
totically stabilizes the subsystem:

Ż2 = µr (5.12a)

ż3 = r (5.12b)

µ̇ = τµ (5.12c)

ṙ = τr (5.12d)

This was proved by adapting Property 4.11 in Sepulchre et al. (1997) to the case of time-varying
systems.

Step IV To find controllers for the subsystem (5.12) the backstepping technique was used by
first consideringµ andr as virtual inputs to the system

Ż2 = µfrf (5.13a)

ż3 = rf (5.13b)

According to Brockett’s theorem (Brockett, 1985) there exist no continuous time invariant feed-
backs which locally asymptotically stabilizes the system (5.13). However, it is well known that
the system is controllable and can be asymptotically stabilized by time-varying feedback. To
obtain explicit expressions of such feedbacks, a time-varying change of variable was performed

Z3 = z3 + k2 cos(t)Z2 (5.14)

resulting in the system

Ż2 = µfrf (5.15)

Ż3 = rf (1 + k2 cos(t)µf )− k2 sin(t)Z2 (5.16)

By choosingrf andµf as

µf = − sin(t)Z2
2

2(0.001 + Z2
2

, rf =
−k3Z3 + k2 sin(t)Z2

1 + k2 cos(t)µf
, (5.17)
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it was shown that the Lyapunov functionV1 = Z2
2 + Z2

3 satisfies

V̇1 ≤ − sin2(t)W1(Z2, Z3)−
k3

2
Z2

3 (5.18)

whereW1(Z2, Z3) is of classK∞2. Equation (5.18) is only negative semi definite, but by
exploiting recent results in Mazenc (2003) of the construction of strict Lyapunov functions for
time-varying systems, it was shown that it was possible to find a strict Lyapunov functionV2

that satisfies

V1 ≤ V2 ≤ (2 + k3)V1 (5.19)

V̇2 ≤ −γ(V1) < 0 (5.20)

whereγ(V1) is of classK∞. This proves that the feedbacksrf andµf globally uniformly
asymptotically stabilizes the subsystem (5.15) (See Theorem A.1).

Step V Backstepping was applied to obtain explicit expressions of global uniform asymp-
totically stabilizing feedbacks for (5.12). The feedbacks were smooth time-varying periodic
state feedbacks. Because of the knowledge of a strict Lyapunov function for (5.15) it is pos-
sible to exploit robustness backstepping results to determine reasonably simple expressions of
stabilizing feedbacks.

5.2 Comparison

In the previous section it was shown how the stabilization problem of a underactuated surface
vessel can be solved. In this section it will be investigated if it is possible to extend the method
to the stabilization problem of an underactuated rigid spacecraft.

5.2.1 Model comparison

Table 5.1 shows a side by side comparison of the simplified models of an underactuated sur-
face vessel and an underactuated rigid spacecraft. The dynamics of both systems have a similar
structure (compare (5.1) and (3.3)). However, while the surface vessel has damping terms, the
rigid spacecraft has no damping at all. This is not a surprise since a spacecraft operates in
an environment where there is nearly no friction. Damping is advantageous in stabilization
problems since it extracts energy from the system. When no damping is present, energy is con-
served in the system and typically results in oscillations which must be damped using actuators.

The kinematics of the surface vessel describe the position and course, while the kinematics
of the spacecraft describe the orientation only. The kinematic equations for the surface vessel
are much simpler that for the spacecraft. The(w, z)-parameterization is used to describe the
kinematics of the spacecraft. If the Euler parameters are used instead, it will result in sim-
pler equations, but with the additional cost of adding an extra parameter. Another difference
is that the vessels kinematics are global and nonsingular. This is not the case for the(w, z)-
parameterization since it is singular when|w| → ∞.

2See Definition A.1
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Table 5.1: Comparison of the model of an underactuated surface vessel (left) and the model of
an underactuated rigid spacecraft (right).

ż1 = u+ z2r

ż2 = v − z1r

ż3 = r

u̇ = τu

v̇ = −cur − dv

ṙ = τr

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1)

ż = ω3 − ω1w2 + ω2w1

ω̇1 = τa

ω̇2 = τb

ω̇3 = c3ω1ω2

To summarize the discussion above, the models of the surface vessel and rigid spacecraft have
a similar structure, but the kinematic equations of the surface vessel are much simpler. Addi-
tionally, the rigid spacecraft has no damping terms that can be exploited in controller designs.

5.2.2 Stabilization analysis

One of the crucial steps in Mazenc et al. (2002) was to transform the system to the cascaded
structure in Figure 5.1. Many hours have been used to try to transform the underactuated
spacecraft model to a similar structure. However, because of the lack of damping in the un-
deractuated variableω3, all attempts have failed. The consequence is that it is not possible to
isolate a subsystem that ensures the stability of the whole system. All of the states must then
be considered when designing control laws, as opposed to the surface vessel where only four
states are needed. A simplification of the spacecraft equations can however be achieved by
ignoring thez equation since it does not affect the rest of the system.

Remark 5.2.1. It is possible to introduce damping in a spacecraft using devices calleddampers
that changes angular momentum by absorbing energy. One simple type of momentum damper
consists of a small ball in a circular tube filled with highly viscous fluid. As a spacecraft rotates,
some of its momentum is contained in the the ball that moves inside the tube. Friction between
the ball and the fluid in the tube converts some of the momentum into heat that slowly dissipates
throughout the spacecraft (Sellers, 2000). Such devices are often used in spinning spacecrafts
to remove wobbling about the spin axis. The use of dampers raise many practical questions
and was therefore not considered in this thesis. However, it may be regarded as future work.

In step IV the sub-problem of stabilizingZ2 andz3 usingµ andr as virtual inputs is considered.
The same approach can be used in the spacecraft stabilization problem, i.e.,ω1 andω2 are
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considered as virtual inputs to the system:

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (5.21)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (5.22)

ż = ω3 − ω1w2 + ω2w1 (5.23)

ω̇3 = c3ω1ω2 (5.24)

This technique is for instance used in Morin et al. (1995) and Behal et al. (2002). In the case
of an axi-symmetric spacecraft, the problem is reduced to finding a pure kinematic controller
for the sub-system:

ẇ1 = ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (5.25)

ẇ2 = ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (5.26)

ż = −ω1w2 + ω2w1 (5.27)

Kinematic controllers for the axi-symmetric spacecraft are for instance derived in Tsiotras
and Luo (2000). Once a controller for the sub-system is found, it is relatively easy to find a
controller for the complete system using for instance backstepping.

Remark 5.2.2. The dynamics ofω1 andω2 can be written as

ω̇1 = τa, ω̇2 = τb

meaning thaṫω1 andω̇2 can be considered as control inputs. This corresponds to the classical
situation where integrators are added at the input level.

One of the particular features of the control design in Mazenc et al. (2002) is the method
used for construction of strict Lyapunov functions for the time varying system. The method is
very usefull if feedbacks are found that satisfies Theorem A.3. In Section 6.2 this method is
exploited to design control laws that globally uniformly asymptotically stabilizes the angular
velocities of a rigid spacecraft. Unfortunately it has proven to be hard to find such feedbacks
for the complete attitude equations.

5.2.3 Summary

The results of Mazenc et al. (2002) can not be directly applied to the spacecraft stabilization
problem. It fails because the spacecraft model has no damping and it is therefore difficult to
transform the system into a less difficult subproblem. However, several tools and methods are
provided that can be very usefull for the attitude stabiliation problem. Especially the method
for the construction of strict Lyapunov functions.



Chapter 6

Attitude stabilization of an
underactuated rigid spacecraft

The purpose of this chapter is to attempt to solve the open problem of determining explicit
expressions of continous feedbacks which render the origin of an underactuated rigid spacecraft
globally asymptotically stable. The task is somewhat ambitious, but an attempt is made to
gradually solve the main problem by first solving the less difficult subproblems: spin-axis
stabilization, angular velocity stabilization and partial attitude stabilization. Each subploblem
has a higher degree of difficulty.

6.1 Spin-axis stabilization

It is well known that the attitude of an underactuated rigid spacecraft can not be stabilized by
a time-invariant smooth state feedback. However, stabilization to an equilibrium manifold is
possible. This was shown in Byrnes and Isidori (1991) where the attitude was stabilized to
a circular attractor about the origin. Similar results were derived for the underactuated sur-
face vessel in Pettersen (1996). In this section it is shown that stabilization to an equilibrium
manifold can be achieved with very simple and elegant control laws when using the(w, z)-
parameterization.

In the spin-axis stabilization problem we try to design control laws that achievew1 = w2 =
ω1 = ω2 = 0. By ignoring the spin about the underactuated axis the spacecraft equations can
be reduced to:

ẇ1 = ω3(t)w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (6.1a)

ẇ2 = −ω3(t)w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (6.1b)

ω̇1 = τa (6.1c)

ω̇2 = τb (6.1d)

The angular velocityω3 is considered as a time-varying parameter, but due to the unique prop-
erties of the(w, z)-parametrization,ω3 can be ignored in the following analysis.
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Proposition 6.1. The choice of the linear feedback control laws

τa = −κ1ω1 − κ2w1 (6.2)

τb = −κ1ω2 − κ2w2 (6.3)

with κ1 > 0 andκ2 > 0, globally asymptotically stabilizes the system(6.1) to the equilibrium
manifoldw1 = w2 = ω1 = ω2 = 0.

Proof. In Tsiotras and Longuski (1994) it was shown that Proposition 6.1 is true for the axi-
symmetric spacecraft. However, the following analysis shows that it can be extended to the
non-symmetric case as well. Consider the LPV function

V =
1
2
(ω2

1 + ω2
2) + κ2 ln(1 + w2

1 + w2
2). (6.4)

Differentiation along the trajectories of (6.1) gives

V̇ = ω1τa + ω2τb + κ2(ω1w1 + ω2w2) (6.5)

where we have used (2.51a). Note thatω3 does not appear in the expression forV̇ . Insertion of
the control laws (6.2) and (6.3) yields

V̇ = −κ1(ω2
1 + ω2

2) ≤ 0 (6.6)

The functionV̇ is only negative semi definite, so a more careful analyzis is necessary. IfV̇ = 0
thenω1 = ω2 = ω̇1 = ω̇2 = 0. Insertion of the controllers into (6.1c) and (6.1d) yields

ω̇1 = −κ1ω1 − κ2w1 (6.7)

ω̇2 = −κ1ω2 − κ2w2 (6.8)

Clearly ω̇1 = ω̇2 = 0 impliesw1 = w2 = 0. SinceV is radially unbounded, it follows from
LaSalle’s theorem that the equilibrium manifolds is globally asymptotically stable.

�

Remark 6.1.1. It is important to clerify that Proposition 6.1 is trueif and only if the inital
attitude of the spacecraft is nonsingular. However, if such an initial singular orientation is
detected, it can be avoided by switching on one of the actuators for an arbitrary short period of
time before the controllers are activated.

6.1.1 Simulation with the spin-axis controller

The control laws (6.2) and (6.3) was simulated with initial conditions

[w1(0), w2(0), z(0), ω1(0), ω2(0), ω3(0)]T = [−1, 1, 1.28, 0.1, −0.01, −1.2]T

and parameters
c3 = 0.2, κ1 = κ2 = 2.

Figure 6.1 and 6.2 shows the time evolution of the orientation and the angular velocities. The
trajectory in thew1w2 plane is shown in Figure 6.4 along with the time evolution of the
z-parameter. The simulations clearly show that stabilization to the equilibrium manifold is
quickly achieved and thatω3 converge to a constant value.
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Figure 6.1: The time evolution of the orientationw1(-),w2(- -) when using the spin-axis con-
troller
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Figure 6.2: The time evolution of the angular velocitiesω1(-), ω2(- -), ω3(-·) when using the
spin-axis controller



30 Attitude stabilization of an underactuated rigid spacecraft

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time [s]

Figure 6.3: The time evolution of the torque controlsτa(-), τb(- -) when using the spin-axis
controller.
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Figure 6.4: Upper plot shows the trajectory in thew1w2 plane. Lower plot shows the time
evolution ofz.
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6.2 Stabilization of the angular velocities

In the previous section it was shown that it is relatively easy to stabilize the spacecraft to a
uniform rotation about the underactuated axis. In this section the more difficult problem of
angular velocity stabilization is solved.

ω̇1 = τa (6.9a)

ω̇2 = τb (6.9b)

ω̇3 = c3ω1ω2, (6.9c)

Proposition 6.2. Consider the angular velocity system(6.9). Letk1, k2, ka andkb be strictly
positive parameters. Then the system is globally uniformly asymptotically stabilized by the
feedbacks

τa = −ka(ω1 − ω1d) + ω̇1d − δω2 (6.10a)

τb = −kb(ω2 − ω2d) + ω̇2d − δω1d (6.10b)

where

ω1d = −ω
2
3 sin t
β + ω2

3

, β << 1 (6.11a)

ω1d = kω3 sin t (6.11b)

δ =
(
4 + 4c3k − c3k sin(2t)

)
c3ω3 (6.11c)

andω̇1d, ω̇2d are the derivatives ofω1d, ω2d along the solutions of the closed loop system.

Proof. To prove Proposition 6.2 a similar approach as step IV and step V in Mazenc et al.
(2002) will be used.
Consider the subsystem (6.9c) withω1d andω2d as virtual inputs:

ω̇3 = c3ω1dω2d (6.12)

Insertion of the velocity controllers in (6.11) gives

ω̇3 = −c3k
ω3

3 sin2 t

β + ω2
3

(6.13)

Consider the Lyapunov function
V1 = ω2

3. (6.14)

Differentiation along the trajectories of (6.12) gives

V̇1 = 2ω3ω̇3 (6.15)

= −2c3k
ω4

3 sin2 t

β + ω2
3

(6.16)

≤ −c3kω2
3 sin2 t (6.17)

≤ −p(t)W (V1) ≤ 0 (6.18)

where
p(t) = sin2 t ≥ 0, W (V1) = c3kω

2
3 = c3kV1(ω3) ≥ 0 (6.19)
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Unfortunately,V̇1 is negativesemi-definite. However, sinceV̇1 satisfies Assumptions A.1 and
A.2, Theorem A.3 states that there exist a strict Lyapunov function for the system (6.12):

U = Γ(V1) + P (t)λ(V1) (6.20)

whereΓ(·), λ(·) are of classK∞ andP (t) is defined in (A.8). Sincep(t) = sin2 t, with period
T = π, P (t) can be written as

P (t) = −t
∫ π

0
sin2 s ds+ π

∫ t

0
sin2 s ds (6.21)

= −π
2

sin(2t) (6.22)

To simplify the design we consider a slightly different function than (6.20):

V2 = 2V + Γ(V1) + P2(t)λ(V1) (6.23)

Let λ(V ) = W (V ) andP2(t) = 1
2 sin(2t). Γ(V ) is to be chosen later.

V2 = 2V1 + Γ(V1)−
1
2

sin(2t)W (V1) (6.24)

V̇2 ≤ −2 sin2(t)W (V ) + Γ
′
(V1)V̇1 − cos(2t)W (V1)−

1
2

sin(2t)W
′
(V1)V̇1 (6.25)

= −
(
2 sin2 t+ cos(2t)

)
W (V1) +

(
Γ

′
(V1)−

1
2

sin(2t)W
′
(V1)

)
V̇1 (6.26)

≤
(

Γ
′
(V1)−

1
2

sin(2t)W
′
(V )
)
V̇1 −W (V1) (6.27)

where we have used thatcos(2t) = cos2 t − sin2 t. FurthermoreW
′
(V1) = c3k. Choosing

Γ
′
(V1) = 2c3k yields

V̇2 ≤ 3
2
c3kV̇1 −W (V1) (6.28)

≤ −W (V1) < 0, ∀ ω3 6= 0 (6.29)

since|− sin(2t)| ≤ 1. With Γ(V ) = 2c3kV = 2W (V ) andλ(V1) = W (V1), (6.23) is

V2 = 2V1 + 2W (V1)−
1
2

sin(2t)W (V1)

= (2 + 2c3k)V1 −
1
2

sin(2t)c3kV1 (6.30)

and satisfies

2V1 ≤ V2 ≤
(

2 +
5
2
c3k

)
V1 (6.31)

All the conditions of Theorem A.1 are satisfied, hence the subsystem (6.12) is globally uni-
formly asymptotically stable.

The derivative of the Lyapunov functionV2 along the trajectories of the complete system (6.9)
satisfies

V̇2 =
∂V2

∂ω3
ω̇3 +

∂V2

∂t
(6.32)
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By writing ω̇3 as
ω̇3 = c3(ω1ω2 + ω1dω2d − ω1dω2d), (6.33)

V̇2 can be written as

V̇2 =
∂V2

∂ω3
c3ω1dω2d +

∂V2

∂ω3
c3(ω1ω2 − ω1dω2d) +

∂V2

∂t
. (6.34)

with
∂V2

∂ω3
=
(
4 + 4c3k − c3k sin(2t)

)
ω3,

∂V2

∂t
= − cos(2t)c3kV1. (6.35)

Using (6.28) it’s seen thaṫV2 satisfies

V̇2 ≤ −W (V1) +
∂V2

∂ω3
c3(ω1ω2 − ω1dω2d) (6.36)

The next step is to find a control law that stabilizes the whole system (6.9). Consider the
function

V3 = V2 +
1
2
(ω1 − ω1d)2 +

1
2
(ω2 − ω2d)2 (6.37)

Differentiation along the trajectories of (6.9) yields

V̇3 = V̇2 + (ω1 − ω1d)(τa − ω̇1d) + (ω2 − ω2d)(τa − ω̇2d) (6.38)

≤ −W (V1) +
∂V2

∂ω3
c3(ω1ω2 − ω1dω2d)

+(ω1 − ω1d)(τa − ω̇1d) + (ω2 − ω2d)(τa − ω̇2d) (6.39)

≤ −W (V1) +
∂V2

∂ω3
c3
(
(ω1 − ω1d)ω2 + (ω2 − ω2d)ω1d

)
+(ω1 − ω1d)(τa − ω̇1d) + (ω2 − ω2d)(τa − ω̇2d) (6.40)

Insertion of the controllers in (6.10) gives

V̇3 ≤ −W (V1)− ka(ω1 − ω1d)2 − kb(ω1 − ω1d)2 < 0 ∀ ω1, ω2, ω3 6= 0 (6.41)

The functionV̇3 is negative definite andV3 is radially unbounded. It then follows from Theorem
A.1 that the system (6.9) is globally uniformly asymptotically stable in closed-loop with the
control laws in (6.10).

�

Remark 6.2.1. The controllers (6.10) are unnecessary complicated. Because of the strict Lya-
punov functionV2 it is possible to use robust backstepping techniques to find simpler feedback
laws that achieves global uniformly asymptotic stability. Unfortunately this results in a more
complicated stability analysis. A more simple and robust controller is:

τa = −ka(ω1 − ω1d) + ω̇1d (6.42a)

τb = −kb(ω2 − ω2d) + ω̇2d (6.42b)

Simulations indicate that even the controller

τa = −ka(ω1 − ω1d) (6.43a)

τb = −kb(ω2 − ω2d) (6.43b)

achieves GUAS.
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6.2.1 Simulation with the angular velocity controller

The control laws (6.2) and (6.3) has been simulated with the initial conditions

[ω1(0), ω2(0), ω3(0)]T = [0.5, −0.5, 1.0]T

and parameters
c3 = 0.2, ka = kb = 4, k = 3, β = 0.001.

Figure 6.5 and 6.6 shows the time evolution of the angular velocities and torque controls. The
angular velocities are quickly reduced but the actuator usage is initially quite high. This can be
reduced by changing the parameters. The controller is less effective with small values ofc3

6.3 Partial attitude stabilization

It is tempting to combine the angular velocity and spin axis controllers to try to achieve partial
attitude stabilization, i.e, stabilizew1, w2 andω3 to zero. From a practical point of view this
can be just as important as full attitude stabilization. One example is a space telescope where
the camera must be pointed in a specific direction and the spin rate about the telescope axis
must be zero. The value ofz is not important as long as it is constant. The solution of the
partial attittude stabilization problem is also a very important step towards full attitude stabi-
lization.

The following reduced model withω1 andω2 as virtual inputs is considered:

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2
(1 + w2

1 − w2
2) (6.44a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (6.44b)

ω̇3 = c3ω1ω2 (6.44c)

Proposition 6.3. The controllers

ω1 = −k1w1 −
ω2

3 sin t
(β + ω2

3)α(w)
(6.45a)

ω2 = −k2w2 +
k3ω3 sin t
α(w)

(6.45b)

with

α(w) =
√

1 + w2
1 + w2

2, 0 < β << 1 (6.46)

locally asymptotically stabilize the system(6.44)

Unfortunately a proof is not available at the time of writing. Extensive simulations indicate
that Proposition 6.3 is true even for extreme initial values. The idea behind the controllers in
(6.45) is that the first term stabilizesw1 andw2 to a neighbourhood about the origin while the
second term stabilizesω3. The intention of the termα(w) is to limit ω3 whenw1 andw2 are
large.

Many attempts have been made to find a continous controller that renders the origin of
(6.45) globally uniformly asymptotically stable. The focus has been on smooth time-varying
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Figure 6.5: The time evolution of the angular velocitiesω1(-), ω2(- -), ω3(-·) when using the
angular velocity controller.
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Figure 6.6: The time evolution of the torque controlsτa(-), τb(- -) when using the angular
velocity controller.
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periodic control laws and to find Lyapunov functions that satisfies Theorem A.3. One simple
candidate is

V = ln(1 + w1 + w2) + ω2
3. (6.47)

However, at the time of writing, it has not been shown that by using controllers with a similar
structure as (6.45),̇V can be written as

V̇ = −p(t)W (V ) ≤ 0 (6.48)

6.3.1 Simulation with the partial attitude stabilization controller

The controllers in (6.45) have been simulated with the initial conditions

[w1(0), w2(0), z(0), ω3(0)]T = [−1, 1,−π
2
, 1.5]T

and parameters
c3 = 0.2, k1 = k2 = 0.9, k3 = 5, β = 0.001.

The results are shown in Figure 6.7-6.8. Note thatω1 andω2 are considered as actuators.

6.4 Attitude stabilization

Our ultimate goal is to find a controller that globally stabilizes the complete system

ẇ1 = ω3w2 + ω2w1 w2 +
ω1

2
(1 + w2

1 − w2
2) (6.49a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2
(1 + w2

2 − w2
1) (6.49b)

ż = ω3 − ω1w2 + ω2w1 (6.49c)

ω̇1 = τa (6.49d)

ω̇2 = τb (6.49e)

ω̇3 = c3ω1ω2, (6.49f)

As far as the Author know, at the time of writing there exist no controllers that globally sta-
bilizes the attitude of an underactuated nonsymmetric rigid spacecraft. Global exponential
convergence was indicated in Godhavn and Egeland (1995), but no proof was given. Possible
candidates are suggested in Tsiotras and Doumtchenko (2000) but no formal proof is available.

Countless attempts have been made to find such control laws and several strategies have
been tried during the work of this thesis. One promising strategy is to letw1 andw2 converge
to a time varying manifold by introducing the change of variables

W1 = w1 − g1(z, ω3)h1(t), W2 = w2 − g2(z, ω3)h2(t) (6.50)

whereh1, h2 are time varying periodic functions. A similar approach was used in Morin et al.
(1995) and Walsh et al. (1994) to determine smooth time-varying periodic control laws that
locally renders the origin of the undearctuated spacecraft asymptotically stable. Both used
averaging and center manifold theory to prove stability. A particular feature of Walsh et al.
(1994) is a novel choice of Listing1 coordinates to describe the attitude. The Listing coordinates
are quite similar to the(w, z)-paramterization.

1Listing coordinates are based on the works of Listing, a psychologist studying the movement of the eye. He
noted that the eye moves in a way which minimally twists the optic nerve. Listing’s law describes the subset of
SO(3) swept out by such an eye (Walsh et al., 1994)
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Figure 6.7: The time evolution of the angular velocitiesω1(-), ω2(- -) andω3(lower plot) when
using the partial attitude stabilization controller.
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Figure 6.8: The time evolution of the attitude when using the partial attitude stabilization con-
troller. Upper plot showsw1(-), w2(- -).
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The disadvantage of introducing a time varying change of variables is that the elegant
symmetric structure of the(w, z)-parameterization is destroyed, and extra terms are introduced.
This makes it difficult to find a suitable Lyapunov function to prove global stability for the
system. The same problem is observed in Morin et al. (1995) where the controllers derived
have many terms and corresponding Lyapunov functions only locally stable.

6.4.1 Time-varying exponential stabililization

In Morin and Samson (1997) a time-varying periodic controller was proposed that locally ex-
ponentially stabilizes the attitude of an underactuated rigid spacecraft. The proposed controller
uses Rodrigues parameters which are singular atθ = ±π. In this section the result is ex-
tended to the(w, z)-parameterization, thereby avoiding the singular condition and extending
the convergence range.

The following proposition is based on Theorem 1 in Morin and Samson (1997), with some
changes in notation. See Appendix A for more details.

Proposition 6.4. Consider the functions

ω1d = −k1w1 − ρ(x, ω3) sin(t/ε) (6.51)

ω2d = −k2w2 +
1

ρ(x, ω3)
(z + ω3) sin(t/ε) (6.52)

with x = [w1, w2, z]T andρ, of classC1 on R4 − {0}, a homogeneous norm associated with
the dilation

δr
λ(x) = (λw1, λw2, λ

2z, λ2ω3, t), (6.53)

and the following time-varying continous feedback:

τa = k3(ω1 − ω1d) (6.54a)

τb = k4(ω2 − ω2d). (6.54b)

Then, for any positive parametersk1 andk2, there existsε0 > 0 such that for anyε ∈ (0, ε0]
and large enough parametersk3 > 0 andk4 > 0, the feedback(6.54) locally asymptotically
and exponentially stabilizes the origin of(6.49).

A proof of Proposition 6.4 can be found in Morin and Samson (1997). Unfortunately the proof
is based on a attitude parameterization using Rodrigues parameters, however, it is shown below
that the proof can be applied directly to the(w, z)-parameterization as well.

The system can be written as the perturbed system[
ẋ
ω̇

]
= f(x,ω, t) + h(x,ω, t) (6.55)

where

x = [w1, w2, z]T, ω = [ω1, ω2, ω3]T
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and

f(x,ω, t) =



1
2ω1
1
2ω1

ω3 + ω2w1 − ω1w2

τa(x,ω, t)
τa(x,ω, t)
c3ω1ω2

 , h(x,ω, t) =



w1w2ω2 + w2ω3 + 1
2ω1(w2

1 + w2
2)

w1w2ω1 − w1ω3 + 1
2ω2(w2

2 − w2
1)

0
0
0
0


(6.56)

When using Rodrigues parametersf(x,ω, t) andg(x,ω, t) are

fq(·) =



1
2ω1
1
2ω1

1
2(ω3 + ω2q1 − ω1q2)

τa(x,ω, t)
τa(x,ω, t)
c3ω1ω2

 , hq(·) =



1
2

(
q21ω1 + (q1q2 − q3)ω2 + (q1q3 + q2)ω3

)
1
2

(
(q1q2 + q3)ω1 + q22ω2 + (q2q3 − q1)ω3

)
1
2

(
q3q1ω1 + q3q2ω2 + q23ω3

)
0
0
0


(6.57)

with x = [q1, q2, q3]T. The functionsf(·) and fq(·) are identical in sturcture, except for
the constant12 , i.e. f3(·) = 2fq3(·). Proposition A.1 states thath(x, t) must be a T-periodic
function such that the corresponding vector fieldh is a sum of homogeneous vector fields of
degree strictly positive with respect to the dilation

δr
e = (λw1, λw2, λ

2z, λω1, λω2, λ
2ω3, t), (6.58)

A direct calculation yields that
h1(δr

e)
h2(δr

e)
h3(δr

e)
...

 =


λ1+2h1(x,ω, t)
λ1+2h2(x,ω, t)

λ2+20
...

 (6.59)

and thereforeg(x, t) is of degree 2 with respect toδr
e . The functionhq(·) is also of degree 2

with respect to
δr
q = (λq1, λq2, λ2q3, λω1, λω2, λ

2ω3, t), (6.60)

Since the two systems have the same properties it then follows from Theorem 1 in Morin and
Samson (1997) that Proposition 6.4 is correct.

6.4.2 Simulation with the time-varying exponential controller

The control laws (6.2) and (6.3) have been simulated with initial conditions

[w1(0), w2(0), z(0), ω1(0), ω2(0), ω3(0)]T = [2, −2,
π

2
, 1, −1, 1]T

and parameters

c3 = 0.5, k1 = k2 = 1, k3 = k4 = 6, ε =
1
3
.

Figure 6.9-6.11 shows the results of the simulations.

Remark 6.4.1. Note that the time responses are quite oscillary, except forω3 and z. The
high frequent motion can be a serious problems if the spacecraft consists of flexible parts. An
advantage of the controllers derived with the tools from Mazenc et al. (2002) is that they work
for low frequencies.
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Figure 6.9: The time evolution of the attitude using when using the exponential stable controller
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controller.
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Chapter 7

Conclusions

In this thesis the attitude stabilization of an underactuated rigid spacecraft has been stud-
ied. The spacecraft has been modelled as an ideal rigid body and the relatively new(w, z)-
parameterization has been used to represent the attitude due to its interesting and favorable
properties compared with other minimal attitude representations. Several properties of the
underactuated spacecraft have been presented, most important being the fact that it does not
satisfy Brockett’s necessary condition and therefore can’t be stabilized using time-invariant
continuous state feedback.

A result in Mazenc et al. (2002), solving the open problem of determining explicit ex-
pressions of smooth time-varying periodic state feedbacks which render the origin of an un-
deractuated surface vessel globally uniformly asymptotically stable, has been studied and the
possibility of extending the result to the underactuated spacecraft attitude stabilization prob-
lem has been investigated. It has been shown that direct application is not possible because of
the lack of damping in the spacecraft dynamics and the spacecraft model is considerably more
complicated. than the surface vessel model. However the article provides several useful tools
and methods.

Insight about the attitude stabilization problem has been gained by solving the subproblems
of spin-axis stabilization and angular velocity stabilization. The angular velocity controller
has shown that some of the results of Mazenc et al. (2002) can be applied to the spacecraft
stabilization problem. An attempt to combine the two controllers to achieve partial attitude
stabilization has been made. Extensive simulations has indicated that such a controller is stable,
but no proof of stability is available at the time of writing.

Several attempts to find continuous controllers that achieve global asymptotic attitude sta-
bilization have failed. However, with more time it is probable that it is possible to find such
controllers using the tools in Mazenc et al. (2002)

Finally a time-variant periodic local exponential stable controller has been demonstrated
by extending the results of Morin and Samson (1997) to the(w, z)-parameterization.

7.1 Recommendations for further work

After finishing this thesis there is definitely more to do on the subject of attitude stabilization
of underactuated spacecrafts. First of all it feels that the interesting work has just started and it
is a bit sad to end a work in progress. Some recommendations for future work are:

• More attempts should be made to find globally controllers. A considerable part of the
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time has been used to understand the problem and to study litterature.

• How is the problem affected by introducing a gravity gradient?

• Reaction wheels have not been considered in this work. Results in Crouch (1984) states
that attitude stabilization is not possible with momentum exchange devices. What is the
best that can be achieved with such devices?

• Tracking and robust attitude control of underactuated spacecrafts is still open problems.
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Appendix A

Theory

A.1 Lyapunov stability

First some definitions.

Definition A.1. A real valued functionγ(s) is of classK∞ if it is continuous, strictly increasing
and satisfies

γ(0) = 0, lim
s→+∞

γ(s) = +∞.

Consider the nonautonomous system

ẋ = f(x, t) (A.1)

wheref : [0,∞)×D → Rn.

Theorem A.1. (Khalil (1996), Theorem 3.8) Letx = 0 be an equilibrium for(A.1) andD ⊂
Rn be a domain containingx = 0. Let V : [0,∞)×D → R be a continuously differentiable
function such that

W1(x) ≤ V (x, t) ≤W2(x) (A.2a)

∂V (x, t)
∂t

+
∂V (,x)
∂t

f(x, t) ≤ −W3(x) (A.2b)

∀ t ≥ t0, ∀ x ∈ D whereW1(x),W2(x) andW3(x) are continuous positive definite functions
onD. Then,x = 0 is locally uniformly asymptotically stable.

Corollary A.1. Suppose that all the assumption of Theorem A.1 are satisfied globally (for all
x ∈ Rn) andW1(x) is radially unbounded. Then,x = 0 is globally uniformly asymptotically
stable.

Definition A.2. A Lyapunov function satisfying (A.2a) and (A.2b) is called astrict Lyapunov
function

In Brockett (1985) a necessary condition for stabilizability by continuous time-invariant feed-
back was presented. It is often referred to as Brockett’s necessary condition or Brockett’s
theorem. It was shown to hold forC1 time-invariant state feedback, and in Zabczyk (1989) it
was shown to hold for continuous time-invariant state feedback also. It can be formulated as
follows (Aneke, 2003):
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Theorem A.2. Assume that there exists a continuous time-invariant state feedbacku : Rn →
Rm, that renders the origin of

ẋ = f(x,u), (A.3)

with x ∈ Rn andu ∈ Rm, asymptotically stable. Then the functionf : Rn × Rm → Rn is
locally surjectible, i.e., the functionf maps an arbitrary neighborhood of(0,0) ∈ Rn × Rm

onto a neighborhood of0 in Rn.

A.2 Strict Lyapunov functions for time-varying systems

Consider the time varying system
ẋ = f(x, t) (A.4)

with x ∈ Rn andf(x, t) is a nonlinear function periodic in time of periodT > 0.

Assumption A.1. A Lyapunov functionV (x, t), periodic in time and of periodT > 0, a
positive definite functionW (x) and a nonnegative functionp(t), periodic and of periodT ,
such that

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, t) ≤ −p(t)W (x) (A.5)

and two functionsαi(·), i = 1, 2 of classK∞ such that

α1(|x|) ≤ V (x, t) ≤ α2(|x|) (A.6)

are known.

Assumption A.2. The constant
∫ T
0 p(s)ds is strictly positive.

Theorem A.3. (Mazenc, 2003) If Assumptions A.1 and A.2 are satisfied by the system(A.4),
one can determine the explicit expressions of a continuously differentiable functionΓ(·) of
classK∞ and of a positive definite functionλ(·) continuously differentiable, with a positive
first derivate, such that the function

U(x, t) = Γ
(
V (x, t)

)
+ P (t)λ

(
V (x, t)

)
(A.7)

with

P (t) = −t
∫ T

0
p(s) ds+ T

∫ t

0
p(s) ds (A.8)

is a strict Lyapunov function for system(A.4).

A.3 Dilations and homogeneity

Some definitions about homogeneous systems are presented below. The definitions are based
on Pettersen (1996) and Morin and Samson (1997).

For anyλ > 0 and any set of real parametersr1, · · · , rn > 0, adilation operatorδr
λ : Rn+1 →

Rn+1 is defined by
δr
λ(x1, . . . , xn) = (λr1x1, . . . , λ

rnxn, t) (A.9)
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A homogeneous normassociated with the dilationδr
λ is

ρr
p(x) =

(
n∑

i=1

|xi|
p
ri

) 1
p

with p > 0 (A.10)

A continuous functionh : Rn × R → R is said to be homogeneous of degreeτ ≥ 0 with
respect to the dilationδr

λ if

h
(
δr
λ(x, t)

)
= λτ (x, t) ∀ λ > 0 (A.11)

A differential systemẋ = f(x, t) with f : Rn × R → Rn continuous, is homogeneous of
degreeσ ≥ 0 with respect to the dilationδr

λ if its ith coordinate is a homogeneous function of
degreeri + σ, i.e.

f i
(
δr
λ(x, t)

)
= λri+σf i(x, t) ∀ λ > 0 i = 1, . . . , n (A.12)

Proposition A.1. (Morin and Samson, 1997) Consider the system

ẋ = f(x, t) (A.13)

with f(x, t) : Rn × R → Rn a T -periodic continuous function
(
f(x, t + T ) = f(x, t)

)
and

f(0, t) = 0. Assume that(A.13) is homogeneous of degree zero with respect to a dilation
δr
λ(x, t) and that the equilibrium pointx = 0 of this system is locally asymptotically stable.

Then:

1. x = 0 is globally exponentially stable in the sense that there exist two strictly positive
constantsK andγ such that along any solution of(A.13)

ρr
p

(
x(t)

)
≤ Ke−γtρr

p

(
0(t)

)
(A.14)

with ρr
p(x) denoting a homogeneous norm associated with the dilationδr

λ(x, t)

2. the solutionx = 0 of the perturbed system

ẋ = f(x, t) + h(x, t) (A.15)

is locally exponentially stable whenh(x, t) : Rn × R → Rn is a continuousT -periodic
function such that the corresponding vector fieldh is a sum of homogeneous vector field
of degree strictly positive with respect toδr

λ
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Appendix B

Newton-Euler equations for rigid
bodies

Equations of motion for a rigid body can be derived by summing up the equations of motion
for individual mass elementsdm with velocity~vp. A rigid bodyB with a mass elementdm is
shown in Figure B.1. The pointc is the center of mass, whileo is the point where we want to
express the equations of motion about. The material in this chapter is based on Egeland and
Gravdahl (2002) and Fossen (2002).

dm

o c

Inertial frame

ro

r

rc

rg

rm

Figure B.1: Rigid body with mass elementdm.

B.1 Translational motion

The translational equation of motion with reference to a pointo can be written as

~fo = m~ac. (B.1)

From Figure B.1 we have that~rc = ~ro + ~rg, hence

~vc = ~vo + ~ωib × ~rg, (B.2)

~ac = ~ao + ~̇ωib × ~rg + ~ωib × (~ωib × ~rg), (B.3)
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where we have used that~rg is a constant inb.

Combining (B.1) and (B.3) gives the force equation with reference to the pointo:

~fo = m
(
~ao + ~̇ωib × ~rg + ~ωib × (~ωib × ~rg)

)
. (B.4)

The translational motion of a spacecraft can be controlled using thrusters. For a spacecraft in
orbit the motion is governed by the laws of orbital mechanics. Such a law is the restricted
two-body equation of motion:

~a = −µ ~r

|r|3
(B.5)

where~r is the spacecraft’s position andµ is the gravitational parameter for Earth. For more
details see a textbook in orbital mechanics, for instance Prussing and Conway (1993).

B.2 Angular motion

The Newton-Euler equations are derived from Euler’s First and Second Axioms:

~fc = m~ac (B.6)

~τc = ~̇hc (B.7)

~τo = ~τc + ~rg × ~fc (B.8)

where the angular momentum aboutc ando are defined as

~hc =
∫

B
(~r × ~vp)dm, (B.9)

~ho =
∫

B
(~rd × ~vp)dm. (B.10)

By using that~vp = ~vo + ~ωib × ~rd and~rd = ~r + ~rg, (B.10) can be written as

~ho = m~rg × ~vo +
∫

B
~rd × (ωib × ~rd)dm. (B.11)

To simplify (B.11) the inertia dyadic

Io =
∫

B
−S2(~rd)dm (B.12)

is introduced. The angular momentum abouto can then be written as

~ho = m~rg × ~vo + Io~ωib. (B.13)

An alternative expression can be found by writing~ho as

~ho =
∫

B
(~r + ~rg)× ~vpdm

= ~hc +
∫

B
(~rg × ~vp)dm

= ~hc + ~rg ×m~rc, (B.14)
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where we have used that~vc ≡ 1
m

∫
B ~vpdm.

Time differentiation of~ho with respect to the inertial frame yields1

~̇ho = ~vc ×m~vo + ~rg ×m~̇vo + ~Mo~̇ωib + ~ωib × ( ~Mo~ωib). (B.15)

Equation (B.14) implies that

~̇ho = ~̇hc + ~rg ×m~̇vc − ~vo ×m~vc, (B.16)

which combined with (B.15) gives

~̇hc = ~τc = ~rg ×m(~̇vo − ~̇vc) + ~Mo~̇ωib + ~ωib × ( ~Mo~ωib). (B.17)

Insertion of (B.17) in (B.8) and using (B.7) gives the angular equation of motion

~τo = ~rg ×m~ao + ~Mo~̇ωib + ~ωib × ( ~Mo~ωib). (B.18)

B.3 Model summary

The equations (B.4) and (B.18) can be simplified by lettingo coincide with the center of mass
c, meaning~rg = ~0 and ~Mo = ~Mc. The simplified equations are

~f = m~a, (B.19a)

~τ = ~M~̇ωib + ~ωib × ( ~M~ωib), (B.19b)

where the subscriptc has been dropped for convenience.

Writing the equations of motion in coordinate form in theb frame yields

mv̇b = f b, (B.20)

Mω̇b
ib + S(ωb

ib)Mωb
ib = τ b. (B.21)

At a first glance the translational and angular motion seems decoupled. A closer inspection
reveals that this is not the case. The reason is that disturbance torques,~τd, and forces,~fd acting
on a spacecraft are usually dependent of the spacecraft’s position and attitude. However, for
our purposes the translational and angular motion can be assumed decoupled.

1For more details about the derivation refer to Egeland and Gravdahl (2002)
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