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Problem Description
Background

This assignment concerns a servomechanism utilizing motors with metal graphite brushes. The
servomechanism is used as a part of a robotic colonoscope, for which good position and force
control are crucial.

Electric motors with metal graphite brushes experience a change in contact resistance depending
on current load, which leads to varying gain in the motor. Using such a motor for force control with
a discrete feedback controller is problematic, since current feedback will render the system
unstable for any practical sampling time and controller gain. A possible solution to this problem is
to use feedforward control, but this requires accurate parameter estimates. A least mean squares
estimator is currently being used to learn the value of the resistance. A possible alternative to this
is a gain-scheduler based on a model of the deterministic properties of the resistance attenuation
phenomenon.

Assignment

1. Describe and analyze the system.
2. Suggest models that can describe the resistance attenuation phenomenon.
3. Set up laboratory experiment(s) suitable for estimation of motor parameters.
4. Design and implement an adaptive scheme to estimate motor parameters through a series of
experiments.
5. Use obtained experimental data to identify parameters in selected models.
6. Compare the different adaptive schemes through practical experiments.

Assignment given: 07. January 2007
Supervisor: Jan Tommy Gravdahl, ITK



 



Abstract

Electric motors with metal graphite brushes experience a change in contact resistance
depending on current load. This varying resistance leads to varying gain in the motor,
since the proportion of power dissipated due to the resistance changes. This investigation
is concerned with a servomechanism, which uses such motors for position and force
control. Force control with electric motors is typically accomplished by controlling the
current. The servomechanism utilizes a discrete controller, and discretization renders the
system unstable for any practical sampling times and controller gains when using current
feedback. Feedforward is therefore used to control the current, and is thus sensitive to
the variation in the motor’s resistance. To counter the sensitivity, a parameter estimator
using least mean squares is presently used to learn the value of the resistance.

An alternative to the parameter estimator might be a gain-scheduler based on a
model of the resistance attenuation phenomenon. It should be possible to find such a
model because of the deterministic quality of the resistance attenuation. In the course
of this investigation, an extended Kalman filter has been developed to estimate current
and resistance with accuracy. Estimated current and resistance data from a series of
experiments has been fitted to a rational model using nonlinear regression. The obtained
model was used as a gain-scheduler.

The estimated resistance from the extended Kalman filter, the least mean squares
estimator, and the gain-scheduler were used in conjunction with the feedforward con-
troller and compared for their ability to control the current. The extended Kalman
filter provided the most accurate results, but at the expense of being more complex than
the least mean squares estimator. The gain scheduler was the worst performer, most
likely due to unmodeled effects. With some modifications, it was made to perform on
par with the least mean squares estimator, but more work is required before it can be
recommended for use.
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Chapter 1

Introduction

1.1 Motivation

Electric motors with metal graphite brushes experience a change in contact resistance
which is dependent on current load. Figure 1.1 presents graphs of contact resistance vs.
current for such brushes. The resistance for both brush polarities (anodic/cathodic) are
shown separately and combined. As can be seen, the relationship is nonlinear, leading
to a nonlinear i-u characteristic. This varying resistance leads to varying gain in the
motor, since the proportion of power dissipated due to the resistance changes.

If such a motor is going to be used for force/torque control, a current controller is
typically used to generate the actuation voltage, since the torque output of the motor is
proportional to the armature current. If a discrete controller is used with current feed-
back, the sampling time must match the electrical time constant of the motor, otherwise
it will be unstable for high gains in the controller. Since the electrical time constant
is typically very small, a discrete controller with current feedback is not practical. An
alternative is to use feedforward to compute the actuation voltage, but this requires
good estimates of the motor’s parameters in order to be accurate. Hence some adaptive
scheme is needed for feedforward to work well.

Presently, a least mean squares estimator is used to adapt to the changing resistance.
A general impression is that estimators work better for slowly varying parameters than
quickly varying ones, because of convergence rates and periods of transients that yield
parameter estimation error.

The resistance attenuation phenomenon seems deterministic and can lead to large
variations in short periods of time, especially at low currents, where the tangent to the
graph in Figure 1.1 is steep. At low currents we have input/output values of small mag-
nitude and relatively larger noise magnitude. Using an estimator under such conditions,
one can typically expect inaccurate estimates and slow convergence rates.

A static model of the phenomenon yielding the parameter change could potentially
give a better estimate, if the model and corresponding measurements are accurate
enough. Both the estimator-based and the gain-scheluder-based scheme should bene-
fit from measurement signal conditioning to remove noise and bias.
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then itself take over an increasing part of the current. The 

abrasion of the slip-ring is reduced as there are no longer so 

many copper particles issuing from the matrix metal of the 

slip-ring and grinding the track. Roughness measurements 

show this fact very clearly (see Table I). 

TABLE I 

Current (A) 

0 

0.5 

1 

2.5 

5 

10 

20 

Roughness Rt of Slip-Ring (pm) 

Anodic Brush Cathodic Brush 

14 14 

16 20 

15 16 

18 19 

16 28 

10 19 
2 12 

Above 5 A the conduction mechanism obviously changes, 

as shown in Table I. The roughness is now getting smaller; the 

brush wear, however, is increasing further but more slowly. We 

conclude that the cathodic brushes slide almost entirely on 

copper. There remains, however, a very thin copper oxide film 

together with a thin graphite layer which reduce the abrasion 

of the slip-ring. 

The wear of the anodic brushes has its maximum at 5 A. 

The abrasion of the slip-ring falls continually starting from the 

no-current state. This,fact can also be seen from the roughness, 

which is up to IO /..frn at 10 A but only 2 pm at 20 A. The 

generally lower wear of slip-ring and brush can be attributed to 

the fact that the opposite polarity of the electric field does not 

allow the formation of copper particles. With rising temper- 

ature an ohmic graphite layer is added to the copper oxide 

layer which becomes thinner and more conductive and pro- 

tects the slip-ring from abrasion. We see that the conduction 

mechanism is more or less the same at both polarities and this 

is further shown up by the nearly equal contact resistances. 

The development of the conduction mechanism can also be 

gathered from the U-l characteristics (Figs. 6 and 7). The 

points in these diagrams are measurements on brushes which 

had been running for a long distance (ca. 50 000 km) under 
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Fig. 6. Contact voltage as a f mction of current. 
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Fig. 7. Contact voltage as a function of current. 

the same conditions. Although we cannot speak of a genuine 

rectifying effect, the characteristics are strongly non linear. 

Fig. 8 shows the contact resistance plotted against the current 

load separately for each polarity snd for both brushes to- 

gether. With increasing current the contact resistance decreases 

and becomes less dependent on the current load..The same low 

contact resistances are obtained for 10th polarities. 

CUf?REN1’ IA] 

Fig. 8. Contact resistance as a function of current. 

However, when there are still c:opper particles under the 

cathodic brush, the film on the slipring and the surface of the 

brush are somewhat roughened. A; long as such copper par- 

ticles are involved, the wear of tie cathodic brush and its 

slip-ring is higher than that of the irnodic brush, although the 

electrical data can be the same. If we want to test a carbon 

brush/copper slip-ring contact for its usefulness we have to 

examine the cathodic brush. 

Figure 1.1: Contact resistance as a function of current [3].

1.2 Objectives

The main objective of this investigation is to find a model for the resistance attenuation
phenomenon in electric motors with metal graphite brushes. Different adaptive schemes
for discrete force/current control for such motors will also be compared. In pursuit of
these goals, the following tasks were performed:

� Description and analysis of the existing system.

� Suggestion of models that can describe the resistance attenuation phenomenon.

� Construction of an experimental rig with necessary instrumentation.

� Development and implementation of a scheme to perform signal conditioning and
obtain the resistance’s current dependence from input/output data.

� Conduction of experiments with the developed scheme.

� Use of the experimental data to identify the parameters in the resistance attenua-
tion models using nonlinear regression.

� Comparison of the existing adaptive scheme with the new scheme, and with a
gain-scheduler based on the best-fit resistance attenuation model.

2



1.3 Outline of the report

This report is split into 6 chapters:

Chapter 1 Introduction to the problem, outline of the tasks performed, the structure
of the report, and a brief overview of the system.

Chapter 2 Development and some analysis of significant physical models for the sys-
tem. Models are found for the electric motor and the thermal dynamics of the
motor. Models for the resistance attenuation phenomenon are proposed. The
Wiener process as a model for time-varying quantities is briefly described.

Chapter 3 In-depth description and analysis of the system, showing stability limits for
the control structure in use, sensitivity to parameter variation, and why current
feedback does not work well on this system.

Chapter 4 Description and analysis of the gradient method-based/least mean squares
parameter estimator that is currently in use, and development of an extended
Kalman filter for signal conditioning and parameter estimation. Description and
development of a nonlinear regression method for identifying resistance model pa-
rameters.

Chapter 5 Description of the experimental setup, implementation of the estimators,
and the performed experiments.

Chapter 6 Discussion of the results from the experiments, and conclusions.

Appendices Additional figures and Simulink diagrams. Explanation of some of the
experimental setups. Provides a description of the various MATLAB scripts used,
the source code for the extended Kalman filter implementation, and the location
of the different files on the accompanying digital versatile discs (DVDs.)

Portions of this report are based on work done on a project during the Fall of 2006.
This includes some of the modeling and analysis, as well as the nonlinear regression
method. The main output of the project was a simulator for the system. This simulator
has been used during the work on this thesis to validate and debug the extended Kalman
filter.

1.4 Brief description of the servomechanism

The servomechanism discussed in this report is going to be used in a robotic colonoscope.
The colonoscope consists of several links connected by rotational joints that are actuated
by cables that run from a rack of gearing mechanisms (called leadscrews), which are
actuated by electric motors. The objective for the colonoscope is to shape itself and
follow the path traced by the tip, which is controlled by a gastroenterologist during
a procedure. The torque output from the motors, and thus the pull force from the

3



cables, is what causes the deflection of the colonoscope at the joints. The shape of the
colonoscope is therefore determined by the torque output of the motors. There is also a
safety aspect to consider. One wishes to limit the maximum torque output of the motors
to prevent the colonoscope from exerting excessive force on the colon wall, in order to
prevent injuries. The servomechanism therefore operates with a maximum current limit
(imax = 0.7 [A].)

The colonoscope itself consists of 9 segments or links with rotational joints actuated
by 36 cables (4 per segment) running through the colonoscope to a rack of direct cur-
rent (DC) motors and gears, called the actuation control unit (ACU). Pictures of the
colonoscope and the ACU are provided in Figures 1.3(a), 1.3(b) and 1.3(c).

Figure 1.2: Segment Control Unit (SCU).

The servomechanism is located on a segment control unit (SCU), shown in Figure 1.2,
to which four DC motors are connected. The SCU is a circuit board with, among other
things, a Texas Instruments C2000 digital signal processor (DSP), which implements
the controller. Each of the DC motors is equipped with an encoder that measures the
angluar position of its rotor. Additionally, the angular position of a rotor determines
the length of cable that has been pulled by the attached leadscrew. The SCU also
contains H-brigde pulse width modulation (PWM) amplifiers to produce the voltage
actuation signal, current sensors, and encoder decoders. The current sensors produce
a voltage signal which is filtered by a Butterworth low-pass filter to avoid anti-aliasing
when sampling.

4



(a) Colonoscope detail (without skin)

(b) Colonoscope (without skin) (c) Actuation Control Unit (ACU)

Figure 1.3: Colonoscope and actuation control unit (ACU).
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Chapter 2

Modeling

In order to perform analysis and to develop estimators and controllers for the servomech-
anism, models are needed for each of its components and for the physical phenomena
which occur. This chapter presents the necessary models.

2.1 Motor model

2.1.1 Physical model

To model an electric motor, some equations from elementary electromagnetism are
needed. The magnetic force working in the motor is given by the Lorentz force [8, 18].

~F = q[ ~E + (~vq × ~B)]. (2.1)

~F is the force, q is charge, ~E is the electric field strength vector, ~vq is the velocity of the
charge and ~B is the magnetic flux density vector.

Current intensity through a surface is defined as:

I ,
dqS
dt

If a charge is moving in a segment of wire with a velocity ~vq, its displacement in time dt
will be d~̀= ~vq dt, thus:

d~vq =
d~̀

dt
For the type of motor we are modeling, there should ideally only be a magnetic field in
the space where the segment of wire is situated. Therefore, we can ignore the electric
field, ~E = 0. Finding the charge in the segment of wire to be dqS = I dt, we can find
the force on the segment of wire as

d~F = I dt

(
d~̀

dt
× ~B

)
⇒ d~F = I(d~̀× ~B).

6



We can now find the total force for a wire loop (which should sum to zero in a uniform
magnetic field) as

~F =
∮
C
I d~̀× ~B

and the torque working on the wire loop will be

d~T = ~r × d~F ⇒ ~T =
∮
C
~r × (I d~̀× ~B).

−1
−0.5

0
0.5

1

−1

0

1

−1

−0.5

0

0.5

1

x
y

z

Figure 2.1: Circular loop, surface normal and magnetic field.

For a circular loop of radius a with center at the origin revolving around the x-axis
(with an angle φ), we have the parameterization

~rcircle = (a cosu, a sinu cosφ, a sinu sinφ)>.

The tangent (velocity) to this parameterization is

d~̀

du
=

d~rcircle
du

= (−a sinu, a cosu cosφ, a cosu sinφ)>.

The moment arm for the force will in this case be

~rarm = ~rcircle ·~j = (0, a sinu cosφ, 0)>,

7



assuming we have a uniform magnetic field ~B = (0, B, 0)> (~j is the unit vector along
the y-axis.) If we further assume uniform distribution of the current intensity I, we can
find the total torque as:

~T =
∮
C
~rarm × (I d~̀× ~B) =∫ 2π

0
~rarm × (−IaB cosu sinφ, 0,−IaB sinu)>du =∫ 2π

0
(−Ia2B sin2 u cosφ, 0,−Ia2B sinu cosu sinφ cosφ)>du =

(−Ia2πB cosφ, 0, 0)> = (−ISB cosφ, 0, 0)> = I ~S ×B (2.2)

where ~S = (0, a2π sinφ,−a2π cosφ)> is the surface normal to the disc spanned by the
circle (and |~S| = a2π.)

As the loop turns in the magnetic field, the magnetic flux through the loop will vary,
inducing a electromotive force defined by Faraday’s Law, [8, 18]:

e =
∮
C

~E · d~l = −dΦ
dt

= − d
dt

∫
S

~B · d~S (2.3)

The disc spanned by the circle is parameterized by

~rdisc = (v cosu, v sinu cosφ, v sinu sinφ)>

and its surface area element is

d~S =
∂~rdisc
∂u

× ∂~rdisc
∂v

= (0, v sinφ,−v cosφ)>.

The magnetic flux through this surface is∫
S

~B · d~S =
∫ 2π

0

∫ a

0
vB sinφ dv du =

∫ 2π

0

1
2
a2B sinφ du = a2πB sinφ.

If the wire loop revolves around the x-axis as a function of time, we can use the following
relation to express it with angular frequency:

φ = ωt

We now find the electromotive force induced in the loop as

e = − d
dt

(a2πB sinωt) = −a2πBω cosωt = −SBω cosωt. (2.4)

This system is illustrated in Figure 2.1, where the circular loop, unit surface normal,
and magnetic field are plotted.

If we add commutation to rectify the current in one direction (that is, we take the
absolute value) and add loops spaced radially around the turning axis with an angle

8



0 pi 2 pi 3 pi
ω t

e(
t)

Figure 2.2: Electromotive force induced in loops.

of 2
3π, we will get an induced electromotive force as shown in Figure 2.2. As can be

seen, loops added with decreasing angle between them will result in an almost constant
induced electromotive force. The result is that we can approximate both the torque and
induced electromotive force as linear relations.

The torque is given by (changing notation for the current, I = i)

T = (| − SB cosωt|) i

and the electromotive force is given by

e = (| − SB cosωt|)ω.

The terms in the parentheses are assumed to be constant due to commutation, and we
get the linear relations:

T = KT i (2.5)
e = KEω (2.6)

As seen in the above equations, the two constants KT and KE are the same. This
can also be shown as follows [7]: the electrical power is equal to PE = ei = KEωi and
the mechanical power is PT = ωT = ωKT i. Assuming steady-state, it follows that

KEωi = PE = PT = ωKT i ⇒ KE = KT .

9



To develop a full dynamic model, we can start by finding the governing equation for
the current in the armature. Assuming there is a resistance R, a voltage source u, and
a self-inductance L, we can use Faraday’s law again [2] to obtain∮

C

~E · d~l = −u+ e+Ri = −Ldi
dt
. (2.7)

The moment balance for the rotor can be expressed as [7]

Jω̇ = T − TL. (2.8)

Here J is the moment of inertia of the rotor and TL is the torque load (or disturbance.)
Together with the phase variable θ̇ = ω we can set up a state-space representation of
the system:

L
di
dt

= −Ri−KEω + u (2.9)

Jω̇ = KT i− TL (2.10)

θ̇ = ω (2.11)

The system is also presented as a block diagram in Figure 2.3.

i

2

theta

1

R

R

K_T

K_T

K_E

K_E

Current

1
s

Angular speed

1
s

Angular position

1
s

1/L

1/L

1/J

1/J

T_L

2

u

1

Figure 2.3: DC-motor block diagram.

The nominal electrical and mechanical parameter values stated by the motor man-
ufacturer which are used in this investigation are given in Table 2.1, where they are
converted to SI units.

2.1.2 State-space formulation

Equations (2.9), (2.10) and (2.11) can be put in a standard state-space formulation as
follows:

ẋ = Ax+Bu+Bdd
y = Cx+Du

(2.12)

ẋ =

 di
dt
ω̇

θ̇

 =

 −R
L −KE

L 0
KT
J 0 0
0 1 0

 ·
 i
ω
θ

+

 1
L
0
0

 · u+

 0
− 1
J

0

 · TL
10



Table 2.1: Nominal parameters for Maxon RE 36.118800

Parameter Value Units Description
L 0.487× 10−3 [H] Terminal inductance
R 2.74 [Ω] Terminal resistance
KT 56.6× 10−3 [Nm/A] Torque constant
KE KT [V/rad·s] Speed constant
J 6.78× 10−6 [kg m2] Rotor inertia

y =
[
i
θ

]
=

 1 0 0
0 1 0
0 0 1

 ·
 i
ω
θ

+

 0
0
0

 · u
For the time being, we will assume that all the states are available for measurement.

2.1.3 Transfer functions

The Laplace transform of (2.12) can be found as:

sx̂ = Ax̂+Bû+Bdd̂⇒
(sI −A)x̂ = Bû+Bdd̂⇒

x̂ = (sI −A)−1Bû+ (sI −A)−1Bdd̂

Finding the Laplace transform of y, and inserting x̂ into the expression gives us:

ŷ = Cx̂+Dû⇒
ŷ = C[(sI −A)−1Bû+ (sI −A)−1Bdd̂] +Dû⇒
ŷ = [C(sI −A)−1B +D]û+ [C>(sI −A)−1Bd]d̂

We now set ŷ = G(s)û to be

G(s) = C(sI −A)−1B +D (2.13)

and ŷ = Gd(s)d̂ to be
Gd(s) = C(sI −A)−1Bd. (2.14)

This gives us all the transfer functions from the input u and the disturbance TL to the
states x = (i, ω, θ)>:

G(s) =


sJ

(s2JL+sJR+KTKE)
KT

(s2JL+sJR+KTKE)
KT

s(s2JL+sJR+KTKE)

 (2.15)
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Gd(s) =


KE

(s2JL+sJR+KTKE)

− sL+R
(s2JL+sJR+KTKE)

− sL+R
s(s2JL+sJR+KTKE)

 (2.16)

2.1.4 Stability

Looking at Equations (2.15) and (2.16), we can see that the roots of the common de-
nominator shared by all the transfer functions,

s2JL+ sJR+KTKE = 0,

are given by

s = −JR±
√
J2R2 − 4JLKTKE

2JL
.

The real parts of the roots will always be negative if the parameters are positive and
real, so the system is inherently stable.

−JR+
√
J2R2 − 4JLKTKE > 0⇒ −4JLKTKE ≯ 0

For the transfer functions to θ, there is a root at zero because of the integrator from
the angular velocity to the angular position. These transfer functions are thus marginally
stable.

2.1.5 Passivity

The total energy for the motor is given by the energy stored in the inductor and the
kinetic energy of the motor’s shaft, so the storage function [13] will be:

V =
1
2
Li2 +

1
2
Jω2 ≥ 0 (2.17)

The total derivative of (2.17) will then be, given Equations (2.9), (2.10) and KE = KT :

V̇ = iL
di
dt

+ ωJω̇ = i(−Ri−KEω + u) + ω(KT i− TL) = −Ri2 + iu− ωTL

We know the resistance varies with current. If the load is a spring-damper system, it
should be dependent on angular velocity and position. Then we get

V̇ = ui−R(i)i2 − ωTL(ω, θ).

If uR(i) = R(i)i and TL(ω, θ) are passive, the system is passive. If R(i) is positive and
real, R(i)i2 ≥ 0 and is therefore passive.

A spring-damper system might be described as

TL(ω, θ) = Ksθ +Kdω,

12



with Ks and Kd being the spring constant and the damping constant respectively. Aug-
menting (2.17) with the energy stored in the spring, the storage function will be

V =
1
2
Li2 +

1
2
Jω2 +

1
2
Ksθ

2 ≥ 0.

The total derivative will now be

V̇L = iL
di
dt

+ ωJω̇ + θKsω = ui−R(i)i2 −Kdω
2.

If Kd is positive and real, Kdω
2 ≥ 0 and is therefore passive, yielding an overall passive

system.
We may therefore conclude that, given a passive load, as long as the value for the

resistance is positive and real, the system will be passive. With estimation in mind, one
must be sure that an estimated resistance will always satisfy these criteria.

2.1.6 Butterworth anti-aliasing filter

The current measurement on the SCU and in the experimental instrumentation is filtered
by a second-order Butterworth filter with a cut-off fequency of ωc = 2π · 100 [rad/s] to
avoid anti-aliasing.

A second-order, low-pass, unity-gain Butterworth filter with cut-off frequency, ωc, is
described by the following transfer function [15]:

G(s) =
ωc

2

s2 + ωc
√

2s+ ωc2
(2.18)

The poles of the transfer function are:

s1,2 = −ωc

(√
2

2
± i
√

2
2

)
Both poles have negative real parts, Re[s1,2] < 0, so the filter is stable.

A state-space realization of this transfer function can found as:

ẋf = Afxf +Bf i
if = Cfxf

(2.19)

ẋf =
[

d
dt i
′
f

d
dt if

]
= ωc ·

[
−
√

2 −1
1 0

]
·
[
i
′
f

if

]
+ ωc ·

[
1
0

]
· i

if =
[

0 1
]
·
[
i
′
f

if

]
The Butterworth filter influences the observed current dynamics. Using the current

measurement without accounting for the Butterworth filter renders both the extended
Kalman filter and the gradient method-based/least mean squares parameter estimator
unstable.
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2.2 Thermal model

2.2.1 Heat transfer

A simple model for the heat transfer in the motor can be developed using the parameters
from the datasheet provided by the manufacturer, given that the mounting of the motor
is similar to that used to determine the parameters. It is stated that the parameters were
found while the motors were end-mounted to a plastic plate, which should be similar
to the conditions used during the experiments (see Figure 5.2(b).) The thermal data is
presented in Table 2.2.

Table 2.2: Parameters for Maxon RE 36.118800

Parameter Value Dimension Description
τ1 44.2 [s] Thermal time constant, winding
τ2 1120 [s] Thermal time constant, motor
Rth1 3.4 [K/W] Thermal resistance, winding-housing
Rth2 6.4 [K/W] Thermal resistance, housing-ambient

The model is based on lumped thermal capacity and thermal resistance, and is very
similar to an electric circuit with capacitors and resistors. Temperature will then be
analogous to voltage, and heat will be analogous to current. Since the time constant
of a RC-circuit will in either case be given by τ = RC, we should be able to find the
thermal capacities based on the given data as follows:

Cth1 =
τ1

Rth1
, Cth2 =

τ2

Rth2

The heat generated in the motor will be due to Joule losses [8] in the winding (ignoring
losses due to friction and other dissipative effects.) The Joule losses should then be
equal to the difference between the electrical power that is inputted to the motor, and
the mechanical power outputted from the motor, or equal to power dissipated by the
motor’s electrical resistance. Thus

QJ = R(i)i2 = PE − PT = ui− TLω,

where QJ is heat, with dimensions [J/s] or [W].
The model below was adapted from [14]. It is a second-order system that gives us

the transient behavior of the winding temperature, Tw, and the housing temperature,
Th, which we can measure.

Cth1
dTw
dt

= − 1
Rth1

(Tw − Th) +QJ

Cth2
dTh
dt

= − 1
Rth2

(Th − T∞) +
1

Rth1
(Tw − Th)
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We can put this in a state-space formulation, using Joule losses and the ambient
temperature, T∞, as inputs:

Ṫ = AthT +Bthu (2.20)

[
Ṫw
Ṫh

]
=

[
− 1
Rth1Cth1

1
Rth1Cth1

1
Rth1Cth2

−
(

1
Rth1Cth2

+ 1
Rth2Cth2

) ] · [ Tw
Th

]
+

+

[
1

Cth1
0

0 1
Rth2Cth2

]
·
[
QJ
T∞

]

2.2.2 Stability

To check the stability of the above system we can use Hurwitz’s criterion [1]. We
construct a matrix of the coefficients from the characteristic polynomial of the state
matrix. The characteristic polynomial is given by:

|λI −Ath| = λ2 +
(
Rth1Cth1 +Rth2Cth1 +Rth2Cth2

Rth1Rth2Cth1Cth2

)
λ+

1
Rth1Rth2Cth1Cth2

The constructed matrix becomes:

H =

[
Rth1Cth1+Rth2Cth1+Rth2Cth2

Rth1Rth2Cth1Cth2
0

1 1
Rth1Rth2Cth1Cth2

]

The system is stable if H is positive definite. A positive definite matrix has posi-
tive principal minors. All the parameter values are positive and real, so the following
inequalities for the principal minors hold:

Rth1Cth1 +Rth2Cth1 +Rth2Cth2

Rth1Rth2Cth1Cth2
> 0

Rth1Cth1 +Rth2Cth1 +Rth2Cth2

(Rth1Rth2Cth1Cth2)2
> 0

Thus, the system is stable, as would be expected.

2.3 Resistance models

From [3] we know that the contact resistance in an electrical motor with metal graphite
brushes and slipring will vary with current, temperature, and brush wear, w [m]. Figure
1.1 shows the dependence on current, and Figure 2.4 presents the contact voltage vs.
temperature, where the voltage drops with increasing temperature, indicating decreasing
resistance. The manufacturer of the motors used during the experiments also states that
the terminal resistance of the motor will vary with rotational position of the rotor, due
to commutation.
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Up to 90°C wear is hardly affected by the ambient temper- 

ature at all. From this temperature upwards, however, it 

increases considerably. The conditions for a wear reducing 

film are now evidently rather unfavorable. 

Fig. 13 shows the contact voltage as a function of temper- 

ature. We see that the contact voltage drops with increasing 

wear. This shows that the film on the sliding track becomes 

thinner. Measurements on freshly cleaned slip-rings confirm 

that the results for 140°C and 160°C, respectively, correspond 

to the series-connection of two ohmic-conducting brush/ 

copper contacts. There is no longer a lubrication film so that 

the brush wear is very high. The abrasion product under these 

conditions is almost black, whereas it is red-brown at lower 

temperatures. It follows that the abrasion process under these 

conditions is almost entirely an abrasion of the brushes. 

x 

Fig. 13. Contact voltage between brushesasa function of temperature. 

TEMER.A WRE (‘Cl 

WEAR AS A FUNCTION OF 

CONTACT RESISTANCE 

So far we have examined the influence of different param- 

eters on wear and contact resistance. A certain relation be- 

tween wear and contact resistance could already be suspected. 

In conclusion, this relation was quantitatively evaluated. 

Since the cathodic brush, as mentioned above, wears some- 

what quicker than the anodic one, its behavior is a criterion 

for the applicability of a brush grade. Fig. 14 shows wear as a 

function of contact resistance. This diagram combines the test 

results of Fig. 9 (different brush pressures) and Fig. 4 (different 

current loads) scaled up to the same sliding distance of 

92 000 km. 

The asymptote of the wear is the result for brushes without 

current. The asymptote of the contact resistance is the result 

for freshly cleaned slip-rings without film and high brush 

pressure. The curve can be approximated by the equation 

W=A+B; 

or 

W=A +B’; if I = const. 

For Fig. 14 we obtain the equation 

W=4.6+0.17 1 
R 

where R is in ohms, W is in mil imeters for the relation 

between the wear of the cathodic bru jh and its resistance. 

The results of tests at different ambient temperatures (Figs. 

12 and 13) are plotted in Fig. 15 (1s a second example. As 

mentioned above, this curve is the rr!sult of the second brush 

grade with smaller cross section. We obtain a similar curve as 

the characteristic in Fig. 14. The abscissa here (Fig. 15) is the 

total contact resistance between both brushes. Having Fig. 8 in 

mind we see that this is possible I)ecause the resistance is 

almost the same for both polarities ;Ind shows the same reac- 

tion to external influences. 

From these curves it follows that all parameters, such as, 

e.g., brush pressure, ambient tempe’rature, current load, in- 

fluence the temperature of the car tact surfaces. Thus they 

determine the mechanism of current conduction and thereby 

contact resistance and wear of slip-rirg and brush. 

. VARIOUS BRUSH PR FSSURES 

o VARIOUS CURRENT2 

Fig. 14. Wear (cathodic brush) as a fur ction of contact resistance. 

Q VARIOUS TEMPERA,‘URES 

Fig. 15. Wear (cathodic brush) as a fur ction of contact resistance. 

Figure 2.4: Contact voltage between brushes as a function of temperature [3].

From [8] we also know the resistivity in many conductors varies with temperature.
Thus we know that the terminal resistance of the type of motor considered will vary
with current, temperature, position, and wear.

The terminal resistance will most likely be a combination of the contact resistance
and the resistance in the motor’s windings:

Rterminal(i, T, θ, w) = Rcontact(i, T, θ, w) +Rwinding(T )

The contact resistance is formed by the system of metal graphite brushes and slipring.
We have chosen to account for the variation of contact resistance due to current.

Our goal was to express the terminal resistance as a function of armature current, R(i).
Experience with the motor has shown that the variation of the terminal resistance will
range between approximately 25 [Ω] and 2.5 [Ω], for low, 0.044 [A], and high, 2.3 [A],
current respectively, when the motor is at room temperature. This variation can be
attributed to armature current. The dominating behavior thus seems to be current
dependent. We have not attempted to model the contact resistance’s dependence on
temperature. The contact resistance’s dependence on position, wear, and other unknown
effects was assumed to be negligible.

While performing the experiments, we have chosen to account for the winding resis-
tance’s dependence on temperature. At high currents, the heat produced in the motor by
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Joule losses is significant, leading to a increase of up to about 1 [Ω], which can be larger
than the variation of the contact resistance at these currents. The terminal resistance
has thus been assumed to be:

Rt(i, T ) = Rc(i) +Rw(T )

Since no temperature measurement is available in the system where the controller is
going to be used, one might try to account for the variation due to temperature for both
the contact and winding resistance using some online adaptive scheme. This should also
compensate for variation due to rotor position and brush wear.

2.3.1 Contact resistance due to current

Looking at Figure 1.1 and assuming the behavior is correct, we can postulate that
the change in resistance vs. current can be described as a convex function that has
asymptotic behavior as the current goes to infinity. The resistance should be bounded.
To insure the passivity of the motor model, the output of the function should also always
be positive and real. A function that has these characteristics is the exponential function,

S1(x) = aebx + c (2.21)

if b < 0, a > 0, c > 0, x ∈ R, and x ≥ 0. This function will start at

lim
x→0

S(x) = a+ c,

and end at
lim
x→∞

S(x) = c.

Exponential functions like this are often approximated using Padé approximants,
which are rational expressions with polynomials in the numerator and the denominator.
Using a rational function with polynomials of the same order, we should get similar
behaviour as (2.21), but the shape will have different characteristics that might be de-
sirable.

When taking into consideration the use of these models for finding a fit to a set
of experimentally obtained data, as described in Section 4.6, it should be mentioned
that exponential models like (2.21) are known to have poor statistical properties [20].
Rational functions should have better statistical properties.

The Padé approximant to (2.21) with order L = 1 in the numerator and order M = 1
in the denominator developed around the point x0 = d is

S2(x) =
2(aebd + c) + b(aebd − c)(x− d)

2− b(x− d)
=
β + γx

1 + αx
, (2.22)

and we must require that β > 0, x ∈ R, and x ≥ 0. This function starts at,

lim
x→0

S2 = β
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and ends at:
lim
x→∞

S2 =
γ

α

As can be seen, this model can have the same number of parameters as (2.21) when lump-
ing the original parameters a, b, c, d, into α, β, γ. It should be noted that the rational
model will have different behavior when performing regression depending on the param-
eterization. It is also the latter parameterization that yield better statistical properties,
and it is the parameterization that is used henceforth.

2.3.2 Winding resistance due to temperature

Resistivity in some materials has a temperature dependence [8]. Copper and graphite
are two such materials. For these two materials this dependency is mostly linear, at
least within the temperature ranges specified for the motors used during this work. It
should be safe to assume that the electrical resistance will vary linearly with temperature
according to the following model:

R = R0 [1 + α (T − T0)] , (2.23)

where α is the temperature resistance coefficient for the material and R0 is the resistance
at temperature T0. For copper αCu = 0.0039 [1/K], and for carbon (graphite) αC =
−0.0005 [1/K], [8]. For the purposes of this investigation, we have only considered
the temperature dependency of copper, that is, the motor’s windings. This is because
we do not have an estimate of brush temperature, and the value of the temperature
resistance coefficient for carbon is about an order of magnitude lower than that of copper.
Additionally, it is not known if this value is directly applicable to a given metal graphite
composite material.

2.4 Wiener process as a model for time-varying quantities

A Wiener, or Brownian-motion, process is often used to model quantities that change
with time. In the system under consideration we have such quantities in the form of
unknown random bias, unknown exogenous input, and varying model parameters. A
Wiener process can briefly be described as being the output of an integrator driven with
Gaussian white noise [4]. A state-space description will therefore be

ẋ = w,

where w is a Gaussian white noise process. In the discrete case, the above equation
becomes

xk+1 = xk + wk,

where wk is a Gaussian white noise sequence. The first and second order statistics are
given by

E[x] = 0
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and
E[x2] = t

given that the process is ergodic. Since the variance increases with time, it is not a
stationary process.

2.5 Remarks

The motor we used has a permanent magnet. The electromagnetic constant is deter-
mined by the winding geometry and the strength of the magnet. Ideally, these should
be constant. The geometry can safely be assumed to be constant, but the magnetic field
can be weakened by temperature and demagnetization. The field weakens with higher
temperature. No significant variability of the electromagnetic constant was observed
(see Section 5.2.2.)

Commutation yields ripple in the armature current. The ripple can be seen as noise,
and increases with velocity.
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Chapter 3

Analysis

3.1 Existing control structure

The structure of the existing controller is shown in Figure 3.1. The objective for the
control loop is to track position and control the torque output. The proportional deriva-
tive (PD) controller produces a current reference, based on the feedback of an angular
position measurement from an encoder, and an angular velocity estimate, produced as
the first difference of the encoder signal. The current reference is ideally proportional to
the desired torque, as in Equation (2.5).

The adaptive control law uses an estimate of the varying resistance to calculate
the output voltage corresponding to the current reference. The calculated voltage is
then converted to an equivalent pulse width modulated (PWM) signal which actuates
the motor. Due to implementation aspects, the voltage output is delayed one sample
instant. The estimator uses the velocity estimate and a current measurement, filtered
by a Butterworth low-pass filter to avoid anti-aliasing, in addition to the output voltage.

The parameter estimator is described in Section 4.2. The reason current feedback
and a simple proportional (P) regulator with high gain is not used to control the current
(instead of the adaptive law), is that although such a controller for a DC motor in the
continuous case has an infinite gain margin [7], the discretization makes this margin very
small for this system, and it therefore does not give a small enough error. This is shown
in Section 3.3.3. A proportional integral (PI) controller could be used to let the error go
to zero asymptotically, even though the proportional term has a small gain. However,
both because its performance is not on par with the feedforward controller, and in order
to avoid any problems related to integral windup, it is not used (see Section 3.3.3 and
6.3.)

3.1.1 Controller

The PD controller used to generate the current reference is given by

ir = Kpe+Kdė. (3.1)
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Figure 3.1: Existing control structure.

The current reference is then fed into the adaptive control law, which looks like this:

u = Rir +KEω (3.2)

The electromotive force generated in the motor, KEω, is added to the voltage drop over
the resistance. Given perfect estimates of KE and R, this should yield the correct voltage
to produce a current equal to the current reference. This is, in other words, feedforward
control.

Combined, the control signal is

u = R(Kpe+Kdė) +KEω. (3.3)

To find the gains of the PD controller, (3.1) is inserted into the relation T = KT i,
setting θr = 0:

T = KT i = KT (−Kpθ −Kdθ̇) ⇒ i = −Kpθ −Kdθ̇

Using (2.10) and setting TL = 0, this yields:

Jω̇ = KT i = −Kpθ −Kdθ̇

Using (2.11), this is then equated to zero

θ̈ +
Kd

J
θ̇ +

Kp

J
= 0 (3.4)

and is compared to the characteristic equation for a harmonic oscillator, typically ex-
pressed as:

λ2 + 2ζω0λ+ ω0
2 = 0 (3.5)

If we select a desired natural frequency, ω0, and damping factor, ζ, we can compare (3.4)
with (3.5) and get expressions for Kp and Kd:

Kp = ω0
2J (3.6)

Kd = 2ζω0J (3.7)
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3.1.2 Closed loop transfer functions

The Laplace transforms of Equations (2.9), (2.10) and (2.11) are:

sLî = −Rî−KEω̂ + û (3.8)

sJω̂ = KT î− T̂L (3.9)

sθ̂ = ω̂ (3.10)

To find the closed loop transfer functions, we take the Laplace transform of, and
insert Equations (3.1), (3.2) and (3.3) into the above equations. R∗ is the actual value
of the resistance, R is the estimate, w∗ is the actual value of the angular velocity and
w is the estimate. (The velocity is estimated in the implementation as a first difference,
which is noisy.)

Inserting (3.2) into (3.8) we get:

sLî = −R∗î−KEω̂
∗ +Rîr +KEω̂ ⇒

sLî = Rîr −R∗î+KE(ω̂ − ω̂∗), d̂ω = KE(ω̂ − ω̂∗)⇒
(sL+R∗)̂i = Rîr + d̂ω

Any difference in actual and estimated angular velocity is here denoted d̂ω and viewed
as a disturbance. This results in:

î =
Rîr + d̂ω
sL+R∗

(3.11)

When using (2.5), T = KT i, which gives the transfer function îr → T̂ :

T̂ =
KTR

sL+R∗
îr (3.12)

Inserting (3.11) into (3.9) and using (3.10):

s2Jθ̂ =
KTRîr +KT d̂ω

sL+R∗
− T̂L (3.13)

Inserting (3.1) into (3.13):

s2Jθ̂ =
KTR

sL+R∗
îr +

KT

sL+R∗
d̂ω − T̂L, T̂ ′L =

KT

sL+R∗
d̂ω − T̂L ⇒

s2Jθ̂ =
KTR

sL+R∗
îr + T̂ ′L

Here, the disturbance has been incorporated into T̂ ′L. Inserting Equation (3.1) into the
above equation with e = θr − θ gives:

s2Jθ̂ =
KTR

sL+R∗
(Kp(θr − θ) +Kd(θ̇r − θ̇)) + T̂ ′L (3.14)
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From (3.14) we get the complementary sensitivity function:

θ̂ =
sKTRKd +KTRKp

s3LJ + s2R∗J + sKTRKd +KTRKp
θ̂r +

sL+R∗

s3LJ + s2R∗J + sKTRKd +KTRKp
T̂ ′L

(3.15)
With the relation θ = θr − e, we get the sensitivity function:

ê =
s3LJ + s2R∗J

s3LJ + s2R∗J + sKTRKd +KTRKp
θ̂r −

sL+R∗

s3LJ + s2R∗J + sKTRKd +KTRKp
T̂ ′L

(3.16)

3.1.3 Stability

Using Hurwitz’s criterion [1] for the closed loop system, we can construct a matrix using
the coefficients in the denominator shared between the sensitivity functions above:

H =
[
R∗J KTRKp

LJ KTRKd

]
If H is positive definite, the system is stable. The leading principal minors of H are:

R∗J

det
[
R∗J KTRKp

LJ KTRKd

]
= (R∗J)(KTRKd)− (KTRKp)(LJ)

If these are positive [5], the matrix is positive definite, giving the following criteria for
the stability of the closed loop system:

R∗J > 0 (3.17)
R∗Kd > LKp (3.18)

The first criterion, (3.17), is always satisfied, since the parameters are positive and real.
The second criterion, (3.18), is dependent on both the controller and the given system
parameters. The inequality (3.18) can be expressed in terms of (3.6) and (3.7):

ζ >
Lω0

R∗2
(3.19)

ω0 <
R∗2ζ
L

(3.20)

3.2 The effect of parameter variation

As a measure of the effect a varying parameter has on a system, one can use relative
sensitivity. In the frequency-domain this is called the Bode sensitivity function. For a
function, F (s), the Bode sensitivity function with respect to a parameter, α, is defined
as [11]

SF (s)
α ,

∂F (s)/F (s)
∂α/α

=
α0

F (s)0

∂F (s)
∂α

∣∣∣∣
NOP

, (3.21)
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using a nominal operating point (NOP) for all the parameters.
The Laplace transform of (2.9), (2.10) and (2.11) are given by (2.15) and (2.16).

Open loop

We can find the steady-state gain of û→ θ̂ as:

lim
s→0

s
θ̂

û
(s) =

1
KE

and the steady-state gain of T̂L → θ̂ as:

lim
s→0

s
θ̂

T̂L
(s) = − R

KTKE

It is apparent that the resistance, R, has no influence on the open loop gain for û→ θ̂ in
steady-state (because of the integration from angular velocity to angular position), and
it is multiplicative with the load for T̂L → θ̂ in steady-state.

The Fourier transform of G3 is:

θ̂

û
(jω) =

−ωKTJR+ j(ω2KTJL−K2
TKE)

ω3J2R2 + ω(ω2JL−KTKE)2

From this we find the amplitude:∣∣∣∣∣ θ̂û(jω)

∣∣∣∣∣ =

√
(ωKTJR)2 + (ω2KTJL−K2

TKE)2

(ω3J2R2 + ω(ω2JL−KTKE)2)2

As can be seen, the amplitude, or gain, of the motor at a given frequency, ω0, is approx-
imately reciprocal to the resistance in the armature.∣∣∣∣∣ θ̂û(jω0, R)

∣∣∣∣∣ ∼ 1
R

(3.22)

The relative sensitivities of the open loop system with respect to the resistance, R,
are given by:

SGR (s) =

 −
sJR

(s2JL+sJR+KTKE)

− sJR
(s2JL+sJR+KTKE)

− sJR
(s2JL+sJR+KTKE)

 (3.23)

SGdR (s) =

 − sJR
(s2JL+sJR+KTKE)

RKTKE
(s2JL+sJR+KTKE)(sL+R)

RKTKE
(s2JL+sJR+KTKE)(sL+R)

 (3.24)

As can be seen, SG1
R = SG2

R = SG3
R = S

Gd1
R and S

Gd2
R = S

Gd3
R .

The magnitudes of SG3
R and SGd3

R are shown in Figure 3.2 using nominal parameters
for a Maxon RE 36.118800. A plot of |G3(jω,R)| is also presented in Figure A.1.
The effect of parameter variation is most notable in an interval of (102, 104) [rad/s]
≈ (16, 1600) [Hz]. This is where the proportionality of (3.22) is most pronounced.
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Figure 3.2: Open loop sensitivity to variation in R and closed loop sensitivity to variation
in R∗.

Closed loop example

Closing the loop with a serial-type compensation using some given controller, K(s), the
input to the motor is û = K(s)ê = K(s)(θ̂0 − θ̂). This gives us the following Laplace
transform:

θ̂ =
KTK(s)(θ̂0 − θ̂)− (sL+R)T̂L
s(s2JL+ sJR+KTKE)

Using the relation ê = θ̂0 − θ̂ ⇒ θ̂ = θ̂0 − ê we find an expression for ê

ê =
(sL+R)T̂L + s(s2JL+ sJR+KTKE)θ̂0

KTK(s) + s(s2JL+ sJR+KTKE)

and an expression for θ̂

θ̂ =
KTK(s)θ̂0 − (sL+R)T̂L

KTK(s) + s(s2JL+ sJR+KTKE)
.

If we put a step on each of the inputs θ̂0 = a
s and T̂L = b

s , we get the following
stationary values for ê and θ̂:

ess = lim
s→0

s
1
s

(
(sL+R)b+ s(s2JL+ sJR+KTKE)a
KTK(s) + s(s2JL+ sJR+KTKE)

)
=

Rb

KTK(s→ 0)
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θss = lim
s→0

s
1
s

(
KTK(s)a− (sL+R)b

KTK(s) + s(s2JL+ sJR+KTKE)

)
=
KTK(s→ 0)a−Rb

KTK(s→ 0)

As can be seen, the error is proportional to the resistance in the armature. Depending
on the behavior of the controller, the sensitivity (error) can go to zero and the comple-
mentary sensitivity (tracking) can go to a, as desired. For a proportional controller with
very high gain, the error becomes very small, and for a proportional-integral controller,
KPI(s→ 0) =∞, the error goes to zero in steady-state, as expected.

Closed loop

From Equations (3.15) and (3.16) we get the complementary sensitivity function,

M(s) =
sKTRKd +KTRKp

s3LJ + s2R∗J + sKTRKd +KTRKp
(3.25)

sensitivity function,

N(s) =
s3LJ + s2R∗J

s3LJ + s2R∗J + sKTRKd +KTRKp
(3.26)

and the sensitivities for the disturbances:

Mdω(s) =
1

s3LJ + s2R∗J + sKTRKd +KTRKp
(3.27)

MTL(s) = − sL+R∗

s3LJ + s2R∗J + sKTRKd +KTRKp
(3.28)

Ndω(s) = − 1
s3LJ + s2R∗J + sKTRKd +KTRKp

(3.29)

NTL(s) =
sL+R∗

s3LJ + s2R∗J + sKTRKd +KTRKp
(3.30)

A step on each of the inputs θ̂0 = a
s , T̂L = b

s and d̂ω = c
s , yields the following stationary

values for θ̂ and ê:

θss = lim
s→0

s
1
s

(aM(s) + bMTL(s) + cMdω(s)) = a− b R∗

KTRKp
+ c

1
KTRKp

ess = lim
s→0

s
1
s

(aN(s) + bNTL(s) + cNdω(s)) = b
R∗

KTRKp
− c 1

KTRKp

As in the previous example, the error approaches zero and the position approaches a
with high proportional gain in the controller.

The relative sensitivity of (3.25) to change in R∗ is given by

SMR∗ =
sR∗J

s3LJ + s2R∗J + sKTRKd +KTRKp
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and is plotted in Figure 3.2 as well. It can be shown for (3.26) that SNR∗ = −SMR∗ , and
thus each gives the same response. As can be seen in the plot, the relative sensitivity is
lower than in the open loop case, as would be expected.

If we look at the transfer function from the desired current to torque, (3.12), we can
see that the effect of the varying resistance has a lot of influence on the torque output
of the motor.

GT (s) =
KTR

sL+R∗
(3.31)

A step input in the desired current with a torque setpoint i0 = 1
KT
T0, yields the station-

ary value:

Tss = lim
s→0

s
1
s

1
KT

T0(GT (s)) =
R

R∗
T0 (3.32)

To match the torque setpoint perfectly, the estimated resistance (or the resistance as-
sumed in the controller), must match the actual resistance, R = R∗.

The relative sensitivity of GT (s) with respect to the estimated resistance, R, is very
simple:

SGTR = 1 (3.33)

This means that varying the resistance assumed in the controller will influence the gain
proportionally for all frequencies. A plot of |GT (jω,R)| is presented in Figure A.2.

3.3 Discrete analysis

3.3.1 Exact discretization

Given a continuous-time system of the form [5]

ẋ = Ax(t) +Bu(t)
y = Cx(t) +Du(t),

(3.34)

we can find a discretization to put into the form

xk+1 = Aδxk +Bδuk
yk = Cδxk +Dδuk.

(3.35)

If we assume that the input to the system will be piecewise constant for the duration
of the sampling time, T , the input can be described as a zero-order hold (ZOH) element:

u(t) = u(kT ) = uk for kT ≤ t < (k + 1)T (3.36)

Using this input, we can find an exact discretization, meaning the solution of (3.34) still
equals the solution of (3.35).

For (3.34) we can find the solution as

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ (3.37)
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Using (3.37) with (3.36) we find

xk = x(kT ) = eAkTx(0) +
∫ kT

0
eA(kT−τ)Bu(τ)dτ. (3.38)

and

xk+1 = x((k + 1)T ) = eA(k+1)Tx(0) +
∫ (k+1)T

0
eA((k+1)T−τ)Bu(τ)dτ. (3.39)

Rearranging (3.39) as

xk+1 = eAT
[
eAkTx(0) +

∫ kT

0
eA(kT−τ)Bu(τ)dτ

]
+
∫ (k+1)T

kT
eA((kT+T−τ)Bu(τ)dτ

and substituting with (3.36), (3.38) and α = kT + T − τ , we get

xk+1 = eATxk +
(∫ T

0
eAαdα

)
Buk

The state, input, output and feedthrough matrices (A,B,C,D) of the discretized
system will thus be given by:

Aδ = eAT , Bδ =
(∫ T

0 eAτdτ
)
B, Cδ = C, Dδ = D (3.40)

If the state matrix of the continuous-time system is invertible, it can be shown that the
discretized input matrix can be computed as

Bδ = A−1(eAT − I)B = A−1(Aδ − I)B. (3.41)

Otherwise it might also be computed as a power series:

Bδ =
(∫ T

0
I +Aτ +A2 τ

2

2!
+ . . . dτ

)
B =

(
IT +A

T 2

2!
+A2T

3

3!
+ . . .

)
B (3.42)

3.3.2 Discretization of motor model

To do further work with the motor model in the context of discrete control, a discretiza-
tion of (2.12) is needed. An exact discretization follows.

The state and input matrices are given by

A =

 −R
L −KE

L 0
KT
J 0 0
0 1 0

 , B̄ = [B Bd] =

 1
L 0
0 − 1

J
0 0

 ,
where we have lumped both input matrices into one matrix, B̄, for convenience. The
eigenvalues of the system are given by:

∆(λ) = det(A− λI) = λ
1
JL

(JLλ2 + JRλ+KTKE) = 0
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λ1,2 = −JR±
√
J2R2 − 4JLKTKE

2JL
, λ3 = 0

Finding a set of accompanying eigenvectors, Aqi = λiqi, we can find the transition matrix
for the system as a similarity transform:

eAt = QeÂtQ−1,

where Â is a diagonal matrix of distinct eigenvalues

Â =

 λ1 0 0
0 λ2 0
0 0 λ3

 ,
and Q is a matrix composed of the eigenvectors

Q =
[
q1 q2 q3

]
=

 J
KT
λ1

2 J
KT
λ2

2 0
λ1 λ2 0
1 1 1

 .
The inverse of the eigenvector matrix is given by

Q−1 =
1

λ1 − λ2


KT
J

1
λ1

−λ2 0
−KT

J
1
λ2

λ1 0
KT
J

λ1−λ2
λ1λ2

λ2
2−λ1

2

λ1λ2
λ1 − λ2

 .
We can now compute the transition matrix:

eAt =
1

λ1 − λ2

 λ1eλ1t − λ2eλ2t J
KT
λ1λ2

(
eλ2t − eλ1t

)
0

KT
J

(
eλ1t − eλ2t

)
λ1eλ2t − λ2eλ1t 0

KT
J

(
1
λ1

eλ1t − 1
λ2

eλ2t + λ1−λ2
λ1λ2

)
λ1
λ2

eλ2t − λ2
λ1

eλ1t + λ2
2−λ1

2

λ1λ2
λ1 − λ2


Inserting for the sampling time, T , and doing some algebraic simplification, yields the
discrete state matrix.

Aδ = eAT = Φ =

1
λ1 − λ2

 λ1eλ1T − λ2eλ2T KE
L

(
eλ2T − eλ1T

)
0

KT
J

(
eλ1T − eλ2T

)
λ1eλ2T − λ2eλ1T 0

KT
J

(
1
λ1

(
eλ1T − 1

)
− 1

λ2

(
eλ2T − 1

))
λ1
λ2

(
eλ2T − 1

)
− λ2

λ1

(
eλ1T − 1

)
λ1 − λ2


(3.43)

Since A for this system is not invertible, Bδ must be found be using a power series
or the integral below. The latter was done.

Bδ =
(∫ T

0
eAτdτ

)
B̄
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Bδ = ∆ =
1

λ1 − λ2


1
L

(
eλ1T − eλ2T

)
KT
JL

(
1
λ1

(
eλ1T − 1

)
− 1

λ2

(
eλ2T − 1

))
KT
JL

(
1
λ1

2

(
eλ1T − 1

)
− 1

λ2
2

(
eλ2T − 1

)
+
(

1
λ2
− 1

λ1

)
T
) · · ·

KE
JL

(
1
λ1

(
eλ1T − 1

)
− 1

λ2

(
eλ2T − 1

))
−1
J

(
λ1
λ2

(
eλ2T − 1

)
− λ2

λ1

(
eλ1T − 1

))
−1
J

(
λ1

λ2
2

(
eλ2T − 1

)
− λ2

λ1
2

(
eλ1T − 1

)
+
(
λ2
λ1
− λ1

λ2

)
T
)
 (3.44)

It is worth noting, with implementation in mind, that some of the elements of Φ and
∆ are very similar:

δ11 =
J

KTL
φ21, δ21 =

1
L
φ31, δ12 =

KE

KTL
φ31 =

KE

KT
δ21, δ22 =

−1
J
φ32

3.3.3 Current feedback

In this section it is shown why simple current feedback does not work well on this system.
This is also verified experimentally, as presented in Section 6.3.

Since the voltage input can be seen as having a zero-order hold (ZOH) element, we
will use the exact discretization of the motor model to find the exact discrete stability
behavior.

The angular position state is an integration of the angular velocity state, and dis-
creteization should move the continuous pole at s = 0 to a pole at z = 1. It will not
influence the stability. If we then consider the current and angular velocity states, and
the controlled voltage input, we can find the stability margin for a proportional (P)
regulator using current feedback.

Inserting the expressions for the eigenvalues in the requisite expressions from (3.43)
and (3.44) gives us an explicit solution in terms of the motor’s parameters.

1
λ1 − λ2

=
JL√

J2R2 − 4JLKTKE

1
λ1 − λ2

J

KT
λ1λ2 =

JKE√
J2R2 − 4JLKTKE

1
λ1 − λ2

KT

J
=

LKT√
J2R2 − 4JLKTKE

λ1

λ1 − λ2
=
−JR+

√
J2R2 − 4JLKTKE

2
√
J2R2 − 4JLKTKE

The discrete state matrix will now be

Φ =
[
φ11 φ12

φ21 φ22

]
,
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where

φ11 =
1
2

(−JR+
√
J2R2 − 4JLKTKE)eλ1T + (JR+

√
J2R2 − 4JLKTKE)eλ2T√

J2R2 − 4JLKTKE

φ12 =
LKT (eλ1T − eλ2T )√
J2R2 − 4JLKTKE

φ21 =
JKE(eλ2T − eλ1T )√
J2R2 − 4JLKTKE

φ22 =
1
2

(−JR+
√
J2R2 − 4JLKTKE)eλ2T + (JR+

√
J2R2 − 4JLKTKE)eλ1T√

J2R2 − 4JLKTKE

.

The input matrix will be

∆ =
[
δ1

δ2

]
=


J(eλ1T−eλ2T )√
J2R2−4JLKTKE

1
KE

(
1− (JR+

√
J2R2−4JLKTKE)eλ1T−(JR−

√
J2R2−4JLKTKE)eλ2T

2
√
J2R2−4JLKTKE

)
 .

A proportional current controller is given by

uk = Ki(ir − ik).

The state difference equations should be

xk+1 = Φxk + ∆uk.

Adding the current controller we get the expression

xk+1 =
[
φ11 φ12

φ21 φ22

] [
ik
ωk

]
+
[
δ1

δ2

]
Ki(ir − ik) =

=
[
φ11 − δ1Ki φ12

φ21 − δ2Ki φ22

] [
ik
ωk

]
+
[
δ1Ki

δ2Ki

]
ir,

or more briefly expressed as
xk+1 = Φ′xk + ∆ir.

Solving for the eigenvalues det(Φ′ − λI) = 0 yields

λ1,2 = −Ki − φ11 − φ22

2
± (Ki − φ11 − φ22)2 − 4(φ11φ22 − φ12φ21 + φ12Kiδ2 − φ22Kiδ1)

2
.

Now solving λ1,2 = eiθ, θ ∈ (0, 2π), with respect to Ki, yields one solution (λ2 = −1):

K ′i =
(eα1 + eα2 + eα3 + eα4)

(
−JR2 + 4LKTKE

)
(eα1 + eα2)

(√
J2R2 − 4JLKTKE

) ,
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where

α1 = −JR+ 2
√
J2R2 − 4JLKTKE

2JL
T

α2 = − R

2L
T

α3 = −2JR+
√
J2R2 − 4JLKTKE

2JL
T

α4 = −
√
J2R2 − 4JLKTKE

2JL
T.
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Figure 3.3: Root locus for discrete current feedback using a P controller.

This yields the stability margin, Ki < K ′i. Numerically, with data from Table 2.1,
K ′i ≈ 2.8. This value will, of course, change if the motor’s parameters change.

As this method of performing stability analysis is very cumbersome, MATLAB was
used to generate a root locus plot of the poles when adding a Butterworth filter and
output delay for the voltage.

Using the discretized transfer function u → i, G1, from (2.15) together with the
discretized transfer function for the Butterworth filter, (2.18), Figure 3.3 is produced,
which shows the root locus for the motor with a discrete current controller, as well as the
system with a Butterworth filter connected in series with the current output, and with
a Butterworth filter together with a unit delay, z−1, on the voltage input. The delay is
present due to a implementation aspect on the SCU. The Butterworth filter makes the
stability margin wider, and the delay narrows it.
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Figure 3.4: Root locus for discrete current feedback using a PI controller.

The last plot is representative of the real system, and yields a maximum gain of
K ′i ≈ 5, which was deemed to be too low, i.e., not enough to give a sufficiently small
error.

A proportional integral (PI) regulator could be used to let the current error go to
zero asymptotically. A PI regulator is given by:

GPI(s) = KP
1 + TIs

TIs
= KP

1 + 1/KIs

1/KIs

Exact discretization yields the the z-transform as:

GPI(z) =
KP z + TKI −KP

z − 1
(3.45)

Adding this to the system yields the root locus plot in Figure 3.4, here using an integral
gain of value KI = 100. The location of the poles does not change much for integral
gains below this value, but will start to move out of the unit circle if the integral gain is
set higher. So, up to about KI = 100, the stability margin for the proportional term is
about the same.

A PI regulator is not used, however, because it does not provide good performance
at these gains, as shown in Section 6.3, and also in order to avoid problems that could
occur with integral windup. The system will sometimes saturate at the current limit
(imax = 0.7 [A]). Saturation typically causes integral windup.

The MATLAB script used to produce Figures 3.3 and 3.4 is described in Appendix
B.1.1.
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3.4 Remarks

Generally, numerical integration using exact discretization will be stable for any sampling
time. For the system under consideration, any other type of fixed-step explicit numerical
integration scheme was found to be mostly unstable, since it is not practical or possible
to sample at a rate that matches the time constant of the electrical dynamics, τ = L/R.

Euler integration and Runge-Kutta (RK) integration up to the 5th order were tried
for solving the motor’s differential equations. Varying the resistance in the motor model,
the RK5 scheme was stable at low resistance, since lower resistances produce larger time
constants, which match the sampling time used.

The electrical dynamics might be ignored in some cases, avoiding these stability
issues altogether. As a rule of thumb, the sampling time should then be longer than five
time constants.

34



Chapter 4

Estimation

4.1 Introduction

In this chapter we will present two estimation schemes to be able to learn the values of
varying parameters in the motor. The first scheme is the gradient method, which is the
one used now. The other is the extended Kalman filter. We will also present a method
for performing nonlinear regression.

The gradient method is used to estimate the motor’s terminal resistance. It uses a
noisy first difference estimate of the velocity, and a current measurement that often has
a bias component which will cause an asymptotic error in the estimate. For the real
system, this bias component is slowly varying, and a static correction is used, where the
mean value of the current measurement is found before any voltage is applied, and that
value is henceforth subtracted from the measurement when voltage is applied. The bias
component of the instrumentation used in the experiments was constantly changing and
had a hysteresis effect, so static correction was not applicable.

The extended Kalman filter was developed to in order to estimate any of the mo-
tor’s parameters. It should also provide better velocity estimates, and be able to track
unknown measurement bias. It was also necessary to track an unknown exogenous in-
put, the torque load disturbance, since the filter was developed using all the state-space
equations for the motor. In this manner, it was hoped that more accurate estimates
could be obtained.

An observer for the motor’s winding temperature was also developed using a steady-
state Kalman filter. This was done to be able to compensate for the temperature de-
pendency in the motor’s winding.

4.2 Gradient method

4.2.1 Resistance estimation

Since the current is available for measurement, and an estimate of the angular velocity
can be produced from the encoder signal, the equation describing the electrical dynamics
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can be used to estimate the resistance:

L
di
dt

= −Ri−KEω + u (4.1)

The electrical time constant for the equation, τ = L/R, is very small for the motors
used in this system. Using the data from Table 2.1, the value of the time constant is
τ ≈ 0.2×10−3 [s]. Comparing it to the sampling period used for the current measurement
on the SCU, T = 1×10−3 [s], it can be neglected (τ � T or T ≈ 5τ), giving the equation:

uR = Ri = u−KEω (4.2)

Angular velocity, ω, is available as the first difference of the measurement from the
encoders, and can in turn be used to estimate the electromotive force, e = KEω, in
(4.2), giving the simple relation:

i =
1
R
uR = GuR (4.3)

The control signal, u, is, of course, also known. This is the model used: a scalar equation
with one unknown parameter, G, the conductance [S].

To estimate the varying resistance, the gradient method [10], or least mean squares
(LMS) algorithm [23], is used in the existing system. The method is summarized in
Table 4.1 [10].

Table 4.1: Gradient method

Parametric model y = θ∗u

Estimation model ŷ = θu

Estimation error ε = y − ŷ
Adaptive law θ̇ = γεu

In our case, the adaptive law is:

Ġ = γ(i−GuR)uR (4.4)

A discretization of (4.4) can be found using Euler integration [7] (this gives the LMS
algorithm as given in [23].) Given a differential equation of the following form:

ẋ = f(x(t), v(t), t)

we can find the solution numerically from the following equation, where t = hk, and h
is the time step:

x(k + 1) = x(k) + hf(x(k), v(k), k)

For Equation (4.4), this gives us:

G(k + 1) = G(k) + hγ [i(k)−G(k)uR(k)]uR(k) (4.5)

A block diagram of this discrete adaptive law is presented in Figure D.1.
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4.3 Derivation, stability and convergence

In [10], it is shown how to derive the method summarized in Table 4.1. We start out
by using the difference between a measurement and the corresponding model response.
Let θ∗ be the true value of a given parameter, and θ be the estimate of it. The model
response in our case is given by

ŷ(t) = θ(t)u(t),

where the measurement from the real system is denoted as y(t), and u(t) is the known
forcing signal (the circumflex on ŷ(t) here means the estimate.) Looking at the difference
between the two values gives

ε = y − ŷ = y − θu. (4.6)

Defining the parameter error as θ̃ , θ − θ∗, we can express Equation (4.6) as

ε = θ∗u− θu = −θ̃u.

When the parameter error goes to zero, the estimate has converged to the true value
of the parameter, given the chosen model. We thus want to minimize (4.6) with respect
to θ, for example by using some iterative technique, such as the gradient method. The
gradient method above is derived using an instantaneous cost criterion

J(θ) =
ε2

2
=

(y − θu)2

2
.

This is a convex function for all t and therefore has a global minimum because it satisfies
∇J(θ) = −(y−θ∗u)u = 0 at the minimum, and has a positive definite Hessian ∇2J(θ) =
u2 > 0 for all θ, if u 6= 0.

The gradient method for this case is given by

θ̇ = −γ∇J(θ) = γ(y − θu)u = γεu, θ(0) = θ0, (4.7)

where γ > 0 is a scaling constant that influences the convergence of the method. The
choice of γ is usually a trade-off between fast convergence and noise suppression. (For
a discrete implementation one would also like to reduce any oscillations occuring due to
overshooting the minimum value when the step size is large.) Comparing Equation (4.7)
with the summary in Table 4.1, this is the adaptive law.

To show the stability of the adaptive law, we can rewrite it using the parameter
error, ˙̃

θ = θ̇ − θ̇∗ = γεu− θ̇∗, where θ̇∗ = 0 (assuming it is a constant), giving us

˙̃
θ = γεu = −γθ̃u2, θ̃(0) = θ0 − θ∗. (4.8)

We can analyze this function using a Lyapunov function in quadratic form

V (θ̃) =
θ̃2

2γ
.
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The total derivative of this is

V̇ (θ̃) =
θ̃

˙̃
θ

γ
= −θ̃2u2 = −ε2 ≤ 0, (4.9)

which tells us that the equilibrium θ̃e = 0 is uniformly stable. The properties of the
forcing signal u determine any further stability characteristics and convergence of θ̃ to
zero.

For the parameter estimate θ to converge to θ∗ the signal u needs to be persistently
exciting, which means that it must satisfy∫ t+T0

t
u2(τ)dτ ≥ α0T0, ∀t ≥ 0

where α0, T0 > 0. The closed form solution of (4.8) is given by

θ̃ = e−γ
R t
0 u

2(τ)dτ θ̃(0),

so it can be seen that any signal u satisfying the persistent excitation criterion will lead
to an exponential convergence in the solution, assuming θ∗ is constant.

4.4 The effect of measurement bias

The asymptotic behavior, when t→∞, of the gradient method, (4.7), gives us the final
value of the estimated parameter as

θ̇ = γ(y − θu)u = 0 ⇒ θ =
y

u
,

as should be expected. If we have a bias in the measurement, y = yactual + ybias, this
will affect the final value of the estimate. The asymptotic value of (4.4) in the presence
of the current bias, ib, will be:

G∞ =
i+ ib
uR

⇒ R∞ =
uR
i+ ib

=
R∗

1 + ib/i

To get an impression of the effect the bias will have, we can compute eR = R∗ − R∗

1+ib/i
for various values of the current, i. It is apparent that the estimation error will decrease
with increasing current, as can be seen in Figure 4.1, where we have used R∗ = 10 [Ω],
ib = 1 [mA]. To get accurate estimates at low currents, it is therefore desirable to remove
any bias in the current measurements.

4.5 Kalman filters

In this section, we will briefly present the discrete Kalman filter, the extended Kalman
filter (EKF), and how to use the EKF to estimate parameters, unknown exogenous
inputs, and unknown random bias. When an extended Kalman filter is used in this
manner, augmenting it with additional states to be estimated, it allows us to estimate
both states and parameters, and is sometimes called the augmented state Kalman filter
(ASKF), [12], or joint extended Kalman filter (joint-EKF), [22].
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Figure 4.1: Asymptotic estimation error in the presence of current bias in the measure-
ment.

4.5.1 Discrete Kalman filter

A set of difference equations can be described as

xk+1 = Fkxk +Gkuk + wk (4.10)
yk = Hkxk + vk, (4.11)

where x ∈ Rn, y ∈ Rm, u ∈ Rl. wk and vk are stationary Gaussian white noise sequences.
The covariance matrices for wk and vk are given by:

E[wkw>i ] = Qkδki

E[vkv>i ] = Rkδki

E[wkv>i ] = 0, ∀ k, i

Here δki denotes the Kronecker delta function, defined as:

δki =
{

1, i = k
0, i 6= k

Qk and Rk are the process noise covariance and measurement noise covariance, respec-
tively. The discrete Kalman filter for this system is summarized below [21].
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Filtering

Entering the sequence with the prior estimate x̂−0 and its error covariance P−0 , the
Kalman gain is computed as

Kk = P−k H
>
k

[
HkP

−
k H

>
k +Rk

]−1
, (4.12)

the estimate is updated with the measurement yk as

x̂k = x̂−k +Kk

[
yk −Hkx̂

−
k

]
, (4.13)

and the error covariance for the updated estimate is computed as

Pk = [I −KkHk]P−k . (4.14)

Prediction

The next estimate is computed from the state equations

x̂−k+1 = Fkx̂k +Gkuk, (4.15)

and the error covariance is projected ahead as

P−k+1 = FkPkF
>
k +Qk. (4.16)

If the system is linear time invariant (LTI), and the noise has stationary statistics,
the steady-state Kalman filter can be used. This means that P−k+1 = P−k for large k. If
we insert (4.12) into (4.14), and then the result into (4.16), we get the discrete algebraic
Riccati equation (dropping the k subscripts since the matrices are constant):

FP−F> − P− − FP−H>
[
HP−H> +R

]−1
HP−F> +Q = 0

Solving the Riccati equation with respect to P− will give us a stationary Kalman gain
when inserted into (4.12). Inserting (4.13) into (4.15), we can now update the state
estimates with one equation:

x̂k+1 = F (I −KH)x̂k +Guk + FKyk (4.17)

4.5.2 Extended Kalman filter

A set of nonlinear difference equations can be described as

xk+1 = fk(xk, uk) + wk (4.18)
yk = gk(xk) + vk, (4.19)

where we have the same conditions for x, y, u, w, and v as for the discrete Kalman filter.
Estimating the states can now be done by linearizing about the filter’s estimated

trajectory, yielding the extended Kalman filter (EKF). The EKF for this system is
summarized below [9].
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Filtering

Entering the sequence with the prior estimate χ̂−0 and its error covariance P−0 , the
Kalman gain is computed as

Kk = P−k H̄
>
k

[
H̄kP

−
k H̄

>
k +Rk

]−1
, (4.20)

the estimate is updated with the measurement yk as

x̂k = x̂−k +Kk

[
yk − gk(x̂−k )

]
, (4.21)

and the error covariance for the updated estimate is computed as

Pk =
[
I −KkH̄k

]
P−k . (4.22)

Prediction

The next estimate is computed from the state equations

x̂−k+1 = fk(x̂k, uk), (4.23)

and the error covariance is projected ahead as

P−k+1 = F̄kPkF̄
>
k +Qk. (4.24)

The linearization about the estimated trajectory is given by the Jacobian matrices
for the state and measurement equations:

F̄k =
∂fk

∂x>k
(x̂k, uk), H̄k =

∂gk

∂x>k
(x̂−k ) (4.25)

4.5.3 Estimation of unknown parameters, exogenous inputs, and ran-
dom bias

In this section we will here explain how to augment a state-space description in order
to estimate unknown parameters, unknown exogenous inputs, and unknown random
bias, using the Wiener process model. This is primarily based on [12]. The parameter
estimation makes this a nonlinear problem, to which the EKF should be amenable [9, 4].

Given the following discrete equations

xk+1 = A(θk)xk +Bu(θk)uk +Bd(θk)dk +Bb(θk)bk + wxk (4.26)

dk+1 = dk + wdk (4.27)

bk+1 = bk + wbk (4.28)

θk+1 = θk + wθk (4.29)
yk = C(θk)xk + Cb(θk)bk + vk (4.30)

41



where x ∈ Rn, y ∈ Rm, and u ∈ Rl. d ∈ Rr is the vector of unknown exogenous
disturbances, b ∈ Rq is the unknown bias vector, and θ ∈ Rp is the vector of unknown
parameters. d, b, and θ are all described as Wiener processes. wxk , wdk, w

b
k, w

θ
k, and vk

are Gaussian white noise sequences.
Defining an augmented state vector and noise sequence vector as

χk =


xk
dk
bk
θk

 , wk =


wxk
wdk
wbk
wθk

 ,
we can further define an augmented state, input and output matrix as

F (θk) =


A(θk) Bd(θk) Bb(θk) 0
0 Ir 0 0
0 0 Iq 0
0 0 0 Ip



G(θk) =


Bu(θk)
0
0
0


H(θk) =

[
C(θk) 0 Cb(θk) 0

]
.

The process noise covariance matrix and the measurement noise covariance matrix are
given by:

E[wkw>i ] = Qkδki

E[vkv>i ] = Rkδki

E[wkv>i ] = 0, ∀ k, i

Because of the unknown parameters, this is a set of nonlinear equations:

f(χk, uk) = F (θk)χk +G(θk)uk =


A(θk)xk +Bu(θk)uk +Bd(θk)dk +Bb(θk)bk

dk
bk
θk


(4.31)

g(χk) = H(θk)χk = C(θk)xk + Cb(θk)bk. (4.32)

Linearizing the state and measurement equations about the estimated trajectory, we find
the linearized state matrix as

F̄k =
∂f(χk, uk)

∂χ>k
=

[
F (θk) ∂

∂θ>k
[F (θk)χk +G(θk)uk]

0 Ir+q+p

]
χk=χ̂k,θk=θ̂k

, (4.33)
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and the linearized output matrix as

H̄k =
∂g(χ−k )
∂χ>k

=
[
H(θk) ∂

∂θ>k
[H(θk)χk]

]
χk=χ̂−k ,θk=θ̂−k

. (4.34)

Given that the complete, linearized system is observable, the parameters, exogenous
inputs, and random bias can now be estimated using the EKF.

If the model of the system is deterministic and can be assumed to be accurate, the
process noise covariance for the states in x are typically set to zero.

E[wxkw
x
i
>] = Qxk = 0, ∀ k, i

The process noise variances for the unknown sizes in d, b and θ,

E[wdkw
d
i
>

] = Qdkδki

E[wbkw
b
i
>

] = Qbkδki

E[wθkw
θ
i
>

] = Qθkδki,

should roughly correspond to the possible range of variation. If it is known that, for
example, θi is likely to change by an amount of ∆θi over the interval of interest ∆t, we
can require

ith diagonal element of Qθk =
∆θi2

∆t
. (4.35)

This should provide, at minimum, a starting point for tuning the process noise covariance
matrix elements [9].

4.5.4 Kalman filter for thermal model

Since the housing temperature is made available for measurement in the experimental
instrumentation, the winding temperature could be observed using a state estimator
and the thermal model from Section 2.2. The observer used was the stationary Kalman
filter (4.17). The filter was found in a straightforward manner using MATLAB’s kalman
function. The MATLAB script is described in Appendix B.1.2.

4.5.5 Motor model with Butterworth filter

To avoid anti-aliasing, the current measurement is filtered by a second-order low-pass
Butterworth filter. The Butterworth filter alters the system dynamics to such a degree
that a Kalman filter will not be stable when using only the motor model. Adding the
Butterworth filter from (2.19) to the system yields the following state matrix

A =


−R
L 0 0 −KE

L 0
ωc −ωc

√
2 −ωc 0 0

0 ωc 0 0 0
KT
J 0 0 0 0
0 0 0 1 0

 , (4.36)
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where we define the new state vector to be:

xk =


ik
i′f k
if k
ωk
θk


Descriptions of the denotations are given in Table 4.2.

Table 4.2: Descriptions of denotations.

Denotation Description
i Armature current.
i′f Internal state of the Butterworth filter.
if Output of the Butterworth filter, the filtered armature current.
ω Angular velocity of the motor’s rotor.
θ Angular position of the motor’s rotor.

The eigenvalues of this system are given by:

det(A− λI) = λ
1
JL

(JLλ2 + JRλ+KEKT )(λ2 + ωc
√

2λ+ ωc
2)

λ1,2 = −JR±
√
J2R2 − 4JLKTKE

2JL
, λ3 = 0, λ4,5 = −ωc

(√
2

2
± i
√

2
2

)
The eigenvalues of the motor and the Butterworth filter are not changed by a serial
connection.

For simplicity, we can define a damping factor, µ, and frequency, ν, from the eigen-
values corresponding to the Butterworth filter as:

µ , −ωc
√

2
2
, ν , ωc

√
2

2
, µ = −ν

Further, we can define the factors of the above determinant to be:

∆1 ,
1
JL

(JLs2 + JRs+KEKT )

∆2 , s2 + ωc
√

2s+ ω2
c =

(
s+ ωc

√
2

2

)2

+

(
ωc

√
2

2

)2
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We can then find the transfer matrix as follows:

G(s) = (sI −A)−1 =



s
∆1

0 0 − KE
L∆1

0
s2ωc

∆1∆2

s
∆2

− ωc
∆2

− sωcKE
L∆1∆2

0
sωc2

∆1∆2

ωc
∆2

s+ωc
√

2
∆2

− ωc2KE
L∆1∆2

0
KT
J∆1

0 0 s+R/L
∆1

0
KT
sJ∆1

0 0 s+R/L
s∆1

1
s

 (4.37)

For a system of this size, it was more straightforward to find the transition matrix
using the transfer matrix than using, e.g., similarity transforms or the Cayley-Hamilton
theorem. The transition matrix is given by the inverse Laplace transform:

eAt = L−1
[
(sI −A)−1

]
Laplace transform pairs

To find the time domain solutions for the terms introduced by the Butterworth filter,
we need the following standard Laplace transform pairs:

1
s− a

L= eat (4.38)

s− α
(s− a)(s− b)

L=
1

a− b
(aeat − bebt) (4.39)

1
(s− α)2 + β2

L=
1
β

eαt sinβt (4.40)

1− α
(s− α)2 + β2

L= eαt cosβt (4.41)

s

(s− α)2 + β2

L= eαt
(
α

β
sinβt+ cosβt

)
(4.42)

Using these, we find the inverse transform for the terms with both factors ∆1 and ∆2

in the denomintator, starting with a general Laplace transform expressed with partial
fractions as:

g(s) =
k

(s− a)(s− b)((s− α)2 + β2)
=

A1

s− a
+

A2

s− b
+

Ms+N

(s− α)2 + β2
⇒

A1(s3 − 2αs2 + α2s+ βs− bs2 + 2αbs− α2b− β2b)+

+A2(s3 − 2αs2 + α2s+ βs− as2 + 2αas− α2a− β2a)+

+M(s3 − (a+ b)s2 + abs) +N(s2 − (a+ b)s+ ab) = k (4.43)

Gathering the coefficients for each power of s gives the following system of equations:

A1 +A2 +M = 0
−2A1α−A1b− 2A2α−A2a−M(a+ b) +N = 0

A1α
2 +A1β

2 + 2A1αb+A2α
2 +A2β

2 + 2A2αa+Mab−N(a+ b) = 0

−A1α
2b−A1β

2b−A2α
2a−A2β

2a+Nab = k
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Solving with respect to the coefficients in the partial fractions gives us:

δ1 , 2αa− a2 − α2 − β2

δ2 , 2αb− b2 − α2 − β2

A1(kij) =
kij

δ1(b− a)

A2(kij) =
kij

δ2(a− b)

M(kij) =
kij(a+ b− 2α)

δ1δ2

N(kij) =
kij(3α2 − β2 − 2α(a+ b) + ab)

δ1δ2

The inverse transform of (4.43) and corresponding time derivatives (assuming a re-
laxed system) are:

u =
N(kij) + αM(kij)

β

v = M(kij)

f1(kij , a, b, α, β, t) = L−1 [g(s)] = A1eat +A2ebt + (u sinβt+ v cosβt) eαt (4.44)

u =
αN(kij) + α2M(kij)− β2M(kij)

β

v = N(kij) + 2αM(kij)

f2(kij , a, b, α, β, t) = L−1 [s · g(s)] = aA1eat + bA2ebt + (u sinβt+ v cosβt) eαt (4.45)

u =
α2N(kij) + α3M(kij)− β2N(kij)− 3αβ2M(kij)

β

v = 2αN(kij) + 3α2M(kij)− β2M(kij)

f3(kij , a, b, α, β, t) = L−1
[
s2 · g(s)

]
= a2A1eat+b2A2ebt+(u sinβt+ v cosβt) eαt (4.46)

Transition matrix

We can now set up, inserting for the sampling time, T , the discrete state matrix for
the system, using the elements already found for the discretized model of the motor in
Equation (3.43).
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eAT = Φ =


φ11 φ12 φ13 φ14 φ15

φ21 φ22 φ23 φ24 φ25

φ31 φ32 φ33 φ34 φ35

φ41 φ42 φ43 φ44 φ45

φ51 φ52 φ53 φ44 φ55

 (4.47)

φ12 = φ13 = φ15 = φ25 = φ35 = φ42 = φ43 = φ45 = φ52 = φ53 = 0

φ11 =
1

λ1 − λ2

(
λ1eλ1T − λ2eλ2T

)
φ14 =

1
λ1 − λ2

KE

L

(
eλ2T − eλ1T

)
φ21 = f3(ωc, λ1, λ2, µ, ν, T )

φ22 = eµT (cos νT − sin νT )

φ23 = −ωc
1
ν

eµT sin νT

φ24 = f2(−ωc
KE

L
, λ1, λ2, µ, ν, T )

φ31 = f2(ωc2, λ1, λ2, µ, ν, T )

φ32 = ωc
1
ν

eµT sin νT = −φ23

φ33 = eµT (sin νT + cos νT )

φ34 = f1(−ωc2
KE

L
, λ1, λ2, µ, ν, T )

φ41 =
1

λ1 − λ2

KT

J

(
eλ1T − eλ2T

)
φ44 =

1
λ1 − λ2

(
λ1eλ2T − λ2eλ1T

)
φ51 =

1
λ1 − λ2

KT

J

(
1
λ1

(
eλ1T − 1

)
− 1
λ2

(
eλ2T − 1

))
φ54 =

1
λ1 − λ2

(
λ1

λ2

(
eλ2T − 1

)
− λ2

λ1

(
eλ1T − 1

))
φ55 = 1

The input matrix for the system will now be given as:

B =


1
L 0
0 0
0 0
0 − 1

J
0 0
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To find the exact discretization easily, we use the elements already found in Equation
(3.44), and for the rest, we can find the terms introduced by the Butterworth filter using
the relation of time integration in the s-domain:

L
[∫ t

0
f(τ)dτ

]
=

1
s
L [f ]

For the integration of the transition matrix, this yields:

L
[∫ T

0
eAτdτ

]
=

1
s

(sI −A)−1

It is now straightforward to find two of the needed expressions, since they will be the
same as Equations (4.45) and (4.44):

L−1

[
1
s
s2 · g(s)

]
= f2(kij , a, b, α, β, t)

L−1

[
1
s
s · g(s)

]
= f1(kij , a, b, α, β, t)

The last one will be given by:

u =
N(kij) + αM(kij)

β

v = M(kij)

f0(kij , a, b, α, β, t) =
∫ t

0
f1(kij , a, b, α, β, τ)dτ =

= A1
1
a

(
eat − 1

)
+A2

1
b

(
ebt − 1

)
+

+
(
u
(
(α sinβt− β cosβt) eαt + β

)
+ v

(
(α cosβt+ β sinβt) eαt − α

)) 1
α2 + β2

(4.48)

(∫ T

0
eAτdτ

)
B = ∆ =


δ11 δ12

δ21 δ22

δ31 δ32

δ41 δ42

δ51 δ52

 (4.49)
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δ11 =
1

λ1 − λ2

1
L

(
eλ1T − eλ2T

)
=

J

KTL
φ41

δ21 = f2(ωc
1
L
, λ1, λ2, µ, ν, T )

δ31 = f1(ωc2
1
L
, λ1, λ2, µ, ν, T )

δ41 =
1

λ1 − λ2

KT

JL

(
1
λ1

(
eλ1T − 1

)
− 1
λ2

(
eλ2T − 1

))
=

1
L
φ51

δ51 =
1

λ1 − λ2

KT

JL

(
1
λ1

2

(
eλ1T − 1

)
− 1
λ2

2

(
eλ2T − 1

)
+
(

1
λ2
− 1
λ1

)
T

)
δ12 =

1
λ1 − λ2

KE

JL

(
1
λ1

(
eλ1T − 1

)
− 1
λ2

(
eλ2T − 1

))
=

KE

KTL
φ51

δ22 = f1(ωc
KE

JL
, λ1, λ2, µ, ν, T )

δ32 = f0(ωc2
KE

JL
, λ1, λ2, µ, ν, T )

δ42 =
1

λ1 − λ2

−1
J

(
λ1

λ2

(
eλ2T − 1

)
− λ2

λ1

(
eλ1T − 1

))
= − 1

J
φ54

δ52 =
1

λ1 − λ2

−1
J

(
λ1

λ2
2

(
eλ2T − 1

)
− λ2

λ1
2

(
eλ1T − 1

)
+
(
λ2

λ1
− λ1

λ2

)
T

)

4.5.6 Complete system model

Since the full state-space description is used, the load TL, must be estimated as an
unknown exogeneous input. The current measurement is known to have an unknown
varying bias component, ib, which needs to be estimated in order to improve the accuracy
of all the estimated quantities. Setting up the system as in (4.26) yields the following
description (interchanging θ with α so as not to confuse angular velocity with unknown
parameters)

xk+1 = Φ(α)xk + ∆u(α)uk + ∆TL(α)TLk + ∆ib(α)ibk+1 + wxk (4.50)

TLk+1 = TLk + wTLk (4.51)

ibk+1 = ibk + wibk (4.52)
αk+1 = αk + wαk (4.53)
yk = C(α)xk + Cib(α)ibk + vk, (4.54)
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where Φ is as defined in (4.47), and we split (4.49) into

∆u(α) =


δ11

δ21

δ31

δ41

δ51

 , ∆TL(α) =


δ12

δ22

δ32

δ42

δ52

 .
The current bias should be present only in the measurement, therefore ∆ib = 0. The
augmented state and noise sequence vectors will be

χk =



ik
i′f k
if k
ωk
θk
TLk
ibk
αk


, wk =


wxk
wTLk
wibk
wαk

 ,

and the state and input matrices will be

F (α) =


Φ(α) ∆TL(α) 0 0
0 Ir 0 0
0 0 Iq 0
0 0 0 Ip



G(α) =


∆u(α)
0
0
0

 .
The physical measurements available in this context will be the current and the

angular position, thus

yk =
[
if k + ibk

θk

]
, vk =

[
v
if
k

vθk

]
.

This gives us the output matrices

C(α) =
[

0 0 1 0 0
0 0 0 0 1

]
, Cib(α) =

[
1
0

]
,

which in the augmented system will be

H(α) =
[
C(α) 0 Cib(α) 0

]
.
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If we choose to estimate one parameter from the model, the state, input and output
matrices will then be:

F (α) =



φ11 φ12 φ13 φ14 φ15 δ12 0 0
φ21 φ22 φ23 φ24 φ25 δ22 0 0
φ31 φ32 φ33 φ34 φ35 δ32 0 0
φ41 φ42 φ43 φ44 φ45 δ42 0 0
φ51 φ52 φ53 φ44 φ55 δ52 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, G(α) =



δ11

δ21

δ31

δ41

δ51

0
0
0


,

H =
[

0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0

]
.

4.5.7 Jacobians

In order to estimate model parameters with the EKF, we need to find the linearization
of the system’s equations about the filter’s estimated trajectory. Thus, we need the
Jacobians as defined in (4.33) and (4.34)

∂

∂θ>k
[F (θk)χk +G(θk)uk],

∂

∂θ>k
[H(θk)χk].

For the rest of this section, we change α back to θ to denote parameters. We can
immediately see that

∂

∂θ>k
[H(θk)χk] = 0,

since no parameters appear in the output matrix. For the motor, the parameters we can
linearize for are:

θ ∈ {J,KE ,KT , L,R}

For convenience, we define some symbols to save some writing:

l1 = λ1(θ)
l2 = λ2(θ)

e1 = eλ1(θ)T = el1T

e2 = eλ2(θ)T = el2T

w = λ1(θ)− λ2(θ) = l1 − l2

The partial derivatives of these expressions with respect to some parameter θ are:

l′1 =
∂u1

∂θ
, l′2 =

∂l2
∂θ

, e′1 =
∂e1

∂θ
= l′1Te1, e′2 =

∂e2

∂θ
= l′2Te2, w′ =

∂w

∂θ
= l′1 − l′2
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From the discretization of the motor with Butterworth filter model, we know that
the following elements must be zero:

∂

∂θ
φ12 =

∂

∂θ
φ13 =

∂

∂θ
φ15 =

∂

∂θ
φ25 =

∂

∂θ
φ35 =

=
∂

∂θ
φ42 =

∂

∂θ
φ43 =

∂

∂θ
φ45 =

∂

∂θ
φ52 =

∂

∂θ
φ53 = 0

Also, if we restrict ourselves to parameters for the motor, elements with parameters
due solely to the Butterworth filter will be zero when linearizing with respect to motor
parameters:

∂

∂θ
φ22 =

∂

∂θ
φ23 =

∂

∂θ
φ32 =

∂

∂θ
φ33 = 0

In addition to these, ∂
∂θφ55 = ∂

∂θ (1) = 0.

Pattern for elements related to the motor alone

All the elements related to the motor alone will have the following pattern:

φij = kij(θ) ·
1
w
· gij(l1, l2, e1, e2)

kij
′ =

∂

∂θ
kij(θ), gij

′ =
∂

∂θ
gij(l1, l2, e1, e2)

All of the derivatives with respect to a parameter, θ, will thus have the form:

∂

∂θ
φij = kij

(gij ′w − gijw′)
w2

+ kij
′ 1
w
gij

We can therefore calculate all these derivatives finding gij ′ and kij ′ for the corresponding
elements in the discrete state and input matrices.

Pattern for elements related to the motor and the Butterworth filter

Looking at the functions (4.48), (4.44), (4.45) and (4.46), the arguments involving motor
parameters will lead to expressions in terms of the partial fractions as:

a(θ), b(θ), kij(θ) ⇒ δ1(θ), δ2(θ), A1(θ), A2(θ), M(θ), N(θ)

Finding the derivatives of a(θ), b(θ), kij(θ)

∂

∂θ
a = a′,

∂

∂θ
b = b′,

∂

∂θ
kij = kij

′,

we can now find the partial derivatives for these functions with respect to some parameter
θ, using the following expressions.

δ1 = 2αa− a2 − α2 − β2

δ1
′ =

∂

∂θ
δ1 = 2αa′ − 2aa′
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δ2 = 2αb− b2 − α2 − β2

δ2
′ =

∂

∂θ
δ2 = 2αb′ − 2bb′

A1 =
kij

δ1(b− a)

A1
′ =

∂

∂θ
A1 =

kij
′δ1(b− a)− kij

(
δ1
′(b− a) + δ1(b′ − a′)

)
(δ1(b− a))2

A2 =
kij

δ2(a− b)

A2
′ =

∂

∂θ
A2 =

kij
′δ2(a− b)− kij

(
δ2
′(a− b) + δ2(a′ − b′)

)
(δ2(a− b))2

M =
kij(a+ b− 2α)

δ1δ2

M ′ =
∂

∂θ
M =

(
kij
′(a+ b− 2α) + kij(a′ + b′)

)
δ1δ2 − kij(a+ b− 2α)(δ1

′δ2 + δ1δ2
′)

(δ1δ2)2

N =
kij(3α2 − β2 − 2α(a+ b) + ab)

δ1δ2

p =
(
kij
′(3α2 − β2 − 2α(a+ b) + ab) + kij(−2α(a′ + b′) + a′b+ ab′

)
δ1δ2−

− kij(3α2 − β2 − 2α(a+ b) + ab)(δ1
′δ2 + δ1δ2

′)

N ′ =
∂

∂θ
N =

p

(δ1δ2)2

The partial derivatives of the functions are then given by:

∂

∂θ
f0(kij , a, b, α, β, t) = f ′0(kij , k′ij , a, b, a

′, b′, α, β, t) =

A1
′ 1
a

(
eat − 1

)
+A1

1
a2

(
a′teata−

(
eat − 1

)
a′
)

+

+A2
′ 1
b

(
ebt − 1

)
+A2

1
b2

(
b′tebtb−

(
ebt − 1

)
b′
)

+

+
(
u′
(
(α sinβt− β cosβt) eαt + β

)
+ v′

(
(α cosβt+ β sinβt) eαt − α

)) 1
α2 + β2
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where

u′ =
∂

∂θ
u(θ) =

N ′ + αM ′

β

v′ =
∂

∂θ
v(θ) = M ′

∂

∂θ
f1(kij , a, b, α, β, t) = f ′1(kij , k′ij , a, b, a

′, b′, α, β, t) =

A1
′eat +A1a

′teat +A2
′ebt +A2b

′tebt +
(
u′ sinβt+ v′ cosβt

)
eαt

where

u′ =
∂

∂θ
u(θ) =

N ′ + αM ′

β

v′ =
∂

∂θ
v(θ) = M ′

∂

∂θ
f2(kij , a, b, α, β, t) = f ′2(kij , k′ij , a, b, a

′, b′, α, β, t) =

a′A1eat + aA1
′eat + aA1a

′teat + b′A2ebt + bA2
′ebt + bA2b

′tebt+
+
(
u′ sinβt+ v′ cosβt

)
eαt

where

u′ =
∂

∂θ
u(θ) =

αN ′ + α2M ′ − β2M ′

β

v′ =
∂

∂θ
v(θ) = N ′ + 2αM ′

∂

∂θ
f3(kij , a, b, α, β, t) = f ′3(kij , k′ij , a, b, a

′, b′, α, β, t) =

2aa′A1eat + a2A1
′eat + a2A1a

′teat + 2bb′A2ebt + b2A2
′ebt + b2A2b

′tebt+
+
(
u′ sinβt+ v′ cosβt

)
eαt

where

u′ =
∂

∂θ
u(θ) =

α2N ′ + α3M ′ − β2N ′ − 3αβ2M ′

β

v′ =
∂

∂θ
v(θ) = 2αN ′ + 3α2M ′ − β2M ′
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Matrix elements
∂
∂θφ11

kφ11 = 1, g11 = l1e1− l2e2, g11
′ = l1

′e1 + l1e1
′− l2′e2− l2e2

′, kφ11

′
=

∂

∂θ
(1) = 0

∂
∂θφ14

kφ14 =
KE

L
, g14 = e2 − e1, g14

′ = e2
′ − e1

′, kφ14

′
=

∂

∂θ

(
KE

L

)
∂
∂θφ21

kφ21 = ωc, kφ21

′
=

∂

∂θ
(ωc) , f ′3(kφ21, k

φ
21

′
, l1, l2, l

′
1, l
′
2, µ, ν, T )

∂
∂θφ24

kφ24 = −ωc
KE

L
, kφ24

′
=

∂

∂θ

(
−ωc

KE

L

)
, f ′2(kφ24, k

φ
24

′
, l1, l2, l

′
1, l
′
2, µ, ν, T )

∂
∂θφ31

kφ31 = ωc
2, kφ31

′
=

∂

∂θ

(
ωc

2
)
, f ′2(k31, k

φ
31

′
, l1, l2, l

′
1, l
′
2, µ, ν, T )

∂
∂θφ34

kφ34 = −ωc2
KE

L
, kφ34

′
=

∂

∂θ

(
−ωc2

KE

L

)
, f ′1(k34, k

φ
34

′
, l1, l2, l

′
1, l
′
2, µ, ν, T )

∂
∂θφ41

kφ41 =
KT

J
, g44 = e1 − e2, g41

′ = e1
′ − e2

′, kφ41

′
=

∂

∂θ

(
KT

J

)
∂
∂θφ44

kφ44 = 1, g44 = l1e2− l2e1, g44
′ = l1

′e2 + l1e2
′− l2′e1− l2e1

′, kφ44

′
=

∂

∂θ
(1) = 0

∂
∂θφ51

kφ51 =
KT

J
, g51 =

1
l1

(e1 − 1)− 1
l2

(e2 − 1) ,

g51
′ = − l1

′

l1
2 (e1 − 1) +

1
l1
e1
′ +

l2
′

l2
2 (e2 − 1)− 1

l2
e2
′,

kφ51

′
=

∂

∂θ

(
KT

J

)
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∂
∂θφ54

kφ54 = 1, g54 =
l1
l2

(e2 − 1)− l2
l1

(e1 − 1) ,

g54
′ =

l1
′l2 − l1l2′

l2
2 (e2 − 1) +

l1
l2
e2
′ − l2

′l1 − l2l1′

l1
2 (e1 − 1)− l2

l1
e1
′,

kφ54

′
=

∂

∂θ
(1) = 0

∂
∂θδ11

kδ11 =
J

KTL
,

∂

∂θ
δ11 =

∂

∂θ

(
kδ11 · φ41

)
= kδ11

′
φ41 +kδ11

∂

∂θ
φ41, kδ11

′
=

∂

∂θ

(
J

KTL

)
∂
∂θδ21

kδ21 = ωc
1
L
, kδ21

′
=

∂

∂θ

(
ωc

1
L

)
, f ′2(kδ21, k

δ
21
′
, l1, l2, l

′
1, l
′
2, µ, ν, T )

∂
∂θδ31

kδ31 = ωc
2 1
L
, kδ31

′
=

∂

∂θ

(
ωc

2 1
L

)
, f ′1(kδ31, k

δ
31
′
, l1, l2, l

′
1, l
′
2, µ, ν, T )

∂
∂θδ41

kδ41 =
1
L
,

∂

∂θ
δ41 =

∂

∂θ

(
kδ41 · φ51

)
= kδ41

′
φ51 + kδ41

∂

∂θ
φ51, kδ41

′
=

∂

∂θ

(
1
L

)
∂
∂θδ51

kδ51 =
KT

JL
, h51 =

1
l1

2 (e1 − 1)− 1
l2

2 (e2 − 1) +
(

1
l2
− 1
l1

)
T,

h51
′ = −2l1l1′

l1
4 (e1 − 1) +

1
l1

2 e1
′ +

2l2l2′

l2
4 (e2 − 1)− 1

l2
2 e2
′ +
(
l1
′

l1
2 −

l2
′

l2
2

)
T,

kδ51
′
=

∂

∂θ

(
KT

JL

)
∂
∂θδ12

kδ12 =
KE

KTL
,

∂

∂θ
δ12 =

∂

∂θ

(
kδ12 · φ51

)
= kδ12

′
φ51 +kδ12

∂

∂θ
φ51, kδ12

′
=

∂

∂θ

(
KE

KTL

)
∂
∂θδ22

kδ22 = ωc
KE

JL
, kδ22

′
=

∂

∂θ

(
ωc
KE

JL

)
, f ′1(kδ22, k

δ
22
′
, l1, l2, l

′
1, l
′
2, µ, ν, T )
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∂
∂θδ32

kδ32 = ωc
2KE

JL
, kδ32

′
=

∂

∂θ

(
ωc

2KE

JL

)
, f ′0(kδ32, k

δ
32
′
, l1, l2, l

′
1, l
′
2, µ, ν, T )

∂
∂θδ42

kδ42 =
−1
J
,

∂

∂θ
δ42 =

∂

∂θ

(
kδ42 · φ54

)
= kδ42

′
φ54 + kδ42

∂

∂θ
φ54, kδ42

′
=

∂

∂θ

(
−1
J

)
∂
∂θδ52

kδ52 =
−1
J
, h52 =

l1

l2
2 (e2 − 1)− l2

l1
2 (e1 − 1) +

(
l2
l1
− l1
l2

)
T,

h52
′ =

l1
′l2

2 − l12l2l2′

l2
4 (e2 − 1) +

l1

l2
2 e2
′ − l2

′l1
2 − l22l1l1′

l1
4 (e1 − 1)− l2

l1
2 e1
′+

+
(
l2
′l1 − l2l1′

l1
2 − l1

′l2 − l1l2′

l2
2

)
T,

kδ52
′
=

∂

∂θ

(
−1
J

)
Calculating the partial derivatives (and thus the Jacobians) this way, we need only

specify the partial derivatives for the eigenvalues, λ1,2 = l1,2, and the constants appearing
in some of the expressions, kij , with respect to the chosen parameter.

The partial derivatives of the eigenvalues for some motor parameters

The partial derivatives with respect to resistance are:

l′1R =
∂

∂R
λ1 = − 1

2L

(
1 +

JR√
J2R2 − 4JLKTKE

)

l′2R =
∂

∂R
λ2 = − 1

2L

(
1− JR√

J2R2 − 4JLKTKE

)

The partial derivatives with respect to the electromagnetic constant are, assuming KT =
KE = K:

l′1K =
∂

∂K
λ1 =

2K√
J2R2 − 4JLK2

l′2K =
∂

∂K
λ2 = − 2K√

J2R2 − 4JLK2
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4.5.8 Observability

To be able to estimate states in a given system using a Kalman filter, the states of the
system must be observable. In the case where we have augmented the state vector to
include unknown inputs, biases and parameters, the new states must also be observable,
which is a stricter requirement. The system must also be driven by a persistently exciting
signal of sufficient order, to be sure that the parameter estimates converge. Discretization
and nonlinearities might remedy the situation somewhat.

The observability of a system can be determined by computing the rank of the
observability matrix

Ob =


C
CA
CA2

...
CAn−1

 .
If rank(Ob) = n, the system is observable. Finding the rank numerically with finite
precision arithmetic is unreliable. Finding the singular value decomposition of Ob and
looking at the singular values should tell us about the effective rank of the system [17].
Small singular values mean that the corresponding states might be marginally observable.
For the Kalman filter, this means that estimates of any states which yield small singular
values from the observability matrix will either converge slowly or diverge.

Observability analysis for the linearized filter is provided in the MATLAB script
described in Appendix B.1.1. Here, we have calculated the singular values for various
combinations of unknown current measurement bias, unknown exogenous input (torque
load) and different motor parameters, with and without a velocity measurement. The
system seems to have a limit of seven well-conditioned observable states without a ve-
locity measurement, and eight well-conditioned observable states when adding a velocity
measurement. Adding additional states yielded small singular values, meaning that they
might be marginally observable. In practice, the extended Kalman filter implementation
performed well when the process noise variances were tuned properly.

4.6 Regression with least squares

To find the parameters in the models given in Section 2.3.1, one can use regression
on datasets that show the relationship between the current and the resistance. The
models above are nonlinear with respect to both the free variable x, and the parameters,
θS1 = (a, b, c)>, θS2 = (α, β, γ)>. This can be solved as a nonlinear least squares problem.

In [16], the least squares problem is formulated using an objective function of the
form

f(θ) =
1
2

m∑
j=0

rj
2(θ), (4.55)
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where rj is a called a residual and is a smooth function with mapping Rn → R. That is,
there are n parameters and m measurements. If we define the residual as

rj(θ) = yj − Sp(θ;xj), (4.56)

taking y to be a measurement and Sp(θ;xj) to be the value of the chosen model, p ∈
{1, 2}, at the point where the measurement was taken, we can subject Equation (4.55)
to

min
θ
f(θ) = min

θ

1
2

m∑
j=0

(yj − Sk(θ;xj))2 (4.57)

and find a fit for the parameters for the chosen model.
Because of the way the objective function is formulated, the gradient and the Hessian

will have a special structure. With the Jacobian of r(θ) = (r1(θ), r2(θ), . . . , rm(θ))>

defined as

J(θ) ,

[
∂rj
∂θi

]
j = 1, 2, . . . ,m
i = 1, 2, . . . , n

(here J(θ) denotes the Jacobian, not the cost criterion) we get the gradient using the
chain rule as

∇f(θ) =
m∑
j=0

rj(θ)∇rj(θ) = J(θ)>r(θ), (4.58)

and taking the Jacobian of the gradient we get the Hessian as

∇2f(θ) =
m∑
j=0

∇rj(θ)∇rj(θ)>+
m∑
j=0

rj(θ)∇2rj(θ) = J(θ)>J(θ)+
m∑
j=0

rj(θ)∇2rj(θ). (4.59)

Finding (4.57) can be done using a line search method, where one iteratively searches
along a chosen direction pk from the current iterate θk for a new iterate θk+1, which
should yield a lower value for the objective function (4.55):

θk+1 = θk + µkpk

µk is the step length along the chosen direction. The search direction typically has the
form

pk = −Bk−1∇fk(θ),

where Bk is a symmetric and nonsingular matrix. The steepest descent direction is given
by the identity matrix Bk = I. Newton’s method uses the Hessian Bk = ∇2f(θk). In the
least squares problem, one often uses an approximation to the Hessian (4.59), ∇2f(θk) ≈
J(θk)>J(θk), ignoring the last term. This is called the Gauss-Newton method. The
search direction is then found solving the resulting Newton equations, using (4.58), for
pGNk :

∇2f(θk)pk = −∇f(θk) ⇒ J(θk)>J(θk)pGNk = −J(θk)>r(θ)
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Solving for pGNk numerically, directly using the inverse of J(θk)>J(θk), is not gener-
ally recommended because of round-off errors. If the Jacobian J(θk) is rank-deficient,
or close to rank-deficient, the Levenberg-Marquardt method is recommended. The Op-
timization Toolbox in MATLAB provides a function lsqnonlin for the nonlinear least
squares problem that can be set to use either method.

lsqnonlin also implements a large-scale algorithm, stated to be using a subspace
trust region method based on a interior-reflective Newton method. This method can use
numerical approximations to the Jacobians. Using the large-scale algorithm provided
a better fit than the other methods when the dataset was large. The differences in
parameters found for smaller datasets were very small, method-to-method. The large-
scale algorithm was selected for finding the various model parameters, as seen in Chapter
6.

4.6.1 Jacobians for resistance models

The Jacobian of (4.56) with θS1 = (a, b, c)>, using the model (2.21), is given by:

J1(θS1) =
[

ebxj axjebxj (1, . . . , 1)>1×m
]
m×3

,

The Jacobian of the model (2.22) with θS2 = (α, β, γ)> is given by:

J2(θS2) =
[
− (β+γxj)xj

(1+αxj)2
1

1+αxj

xj
1+αxj

]
m×3

,

4.6.2 Implementation

The Gauss-Newton method was implemented as a MATLAB script. MATLAB functions
intended for use with lsqnonlin were written to implement the two models presented
in Section 2.3.1 (as well as other models, which performed rather badly.) The scripts
used are described in Appendix B.1.4.
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Chapter 5

Experiments

5.1 Laboratory setup

5.1.1 Instrumentation

The instrumentation setup used in the experiments is shown in Figure 5.1. A com-
puter was equipped with a data acquisition (DAQ) card, with possibilities for digital to
analog (D/A) conversion, analog to digital (A/D) conversion and decoding of position
encoders. The voltage actuation signal was generated by software and outputted to the
D/A converter before it was amplified using a linear amplifier. The amplified signal was
connected to the motor. A Hall effect current transducer was connected in series with
the motor. The output signal from the transducer was then filtered through a low-pass
Butterworth filter with Sallen-Key topology, before being inputted to the A/D converter.
The position was measured using an encoder, which was connected to the DAQ card’s
decoder. A type K (Chromel-Alumel) thermocouple was fixed on the motor’s housing,
and the signal was amplified by a custom thermocouple amplifier before being inputted
to the A/D converter. The parts used for the measurement instrumentation are shown
in Table 5.1.
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Figure 5.1: Laboratory setup.
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Table 5.1: Parts list

Manufacturer Part No. Description
LEM HX 05-NP Hall effect current transducer
N/A N/A Position encoder
Analog Devices AD595AQ Thermocouple amplifier
Texas Instruments TL082CP Operational amplifier

5.1.2 Experimental rig

An experimental rig was built to be able to apply load to motors in a convenient manner.
It is shown in Figure 5.2(a). It consists of a wooden vertical plate mounted on a wooden
horizontal base. Motors are mounted in a rack made out of a plastic plate on top of the
vertical plate, shown in Figure 5.2(b).

Spindles with an attached thread provide the ability to add weights or a spring as
load, and run these up and down, coiling the thread around the spindles. A hole was
drilled in the base to be able to run weights for a longer distance than would otherwise
be possible.

A tray was used to hold several weights at the same time, yielding more resolution in
the load. The tray was weighed using a scale, and the mass was found to bemtray = 0.087
[kg].

Three different sizes of spindle were used. Measuring their geometries and finding
their masses, the moment of inertia for each spindle was found using

Jz =
1
2
m(r1

2 + r2
2),

which is the formula for a hollow cylinder with inner radius r1, outer radius r2, and
mass m, about the symmetry axis z. The details are in the MATLAB script described
in Appendix B.1.2. The values found are listed in Table 5.2. Each spindle had an outer
radius of r2 = rspindle = 7.5× 10−3 [m].

Table 5.2: Moment of inertia for each spindle.

Jsz 0.85× 10−6 [kg m2]
Jmz 1.1× 10−6 [kg m2]
J lz 1.6× 10−6 [kg m2]
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(a) Experimental rig. (b) Motor mounting.

(c) Power supply, linear amplifier and DAQ
interface.

(d) Instrumentation.

Figure 5.2: Laboratory setup.
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5.1.3 Computer setup

The hardware consisted of a workstation with a DAQ card, and a combined power supply
and linear amplifier. The hardware components are listed in Table 5.3.

The software used was MATLAB with Simulink and Real-Time Workshop, together
with WinCon, which is software that aids with rapid prototyping and hardware-in-the-
loop simulations. This ran on a workstation with the Windows operating system and
VenturCom RTX, which is an extension to Windows that makes it more suitable for
real-time applications. The various software components are listed in Table 5.4.

Table 5.3: Hardware

Workstation:
Intel Pentium 4 CPU @2.80 GHz, 512 MB RAM (DataRespons Norge AS)
Data acquisition card:
MultiQ-3 (Quanser Consulting, Inc.)
Power supply and linear amplifier:
UPM-2405 (Quanser Consulting, Inc.)

Table 5.4: Software

MATLAB 6.1.0.450 (R12.1) MathWorks, Inc.
Simulink and Real-Time Workshop 4.1 (R12.1) MathWorks, Inc.
WinCon Server and Client 3.3 Quanser Consulting, Inc.
WinCon Toolbox 3.2.0 Quanser Consulting, Inc.
Quanser Toolbox 1.2.0 Quanser Consulting, Inc.
Windows XP Professional SP1 Microsoft Corp.
VenturCom RTX 5.1 VenturCom

5.1.4 Position measurement and velocity estimate

Encoders were used to measure the angular positions of the motor rotors. The encoders
that were used give out a quantized signal with 2000 counts per revolution. The quan-
tization interval for these is therefore ∆θ = 2·π

2000 [rad/count]. The quantized signal is
sampled after being decoded.

The error of the position measurement is within eθ ∈ (−∆θ
2 ,

∆θ
2 ). If the quantizer

noise is assumed to be uniformly distributed, the variance of the quantization noise
should be given by

σe
2 = E[e2] =

1
∆

∫ ∆
2

−∆
2

e2de =
∆2

12
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yielding the variance of the noise on the position measurement as

σθ
2 =

(
2π

2000

)2 1
12
. (5.1)

An estimate of the angular velocity is needed in the adaptive control law and the
gradient method estimator. This is found using the first difference

ωk =
θk − θk−1

T
,

where T is the sampling time used. The velocity estimate will then have a quantization
interval of ∆ω = ∆θfs, where fs = 1

T is the sampling frequency. The velocity error will
be within eω ∈ (−∆ω

2 , ∆ω
2 ), yielding the variance of the noise on the velocity estimate as

σω
2 =

(
2π

2000

)2 1
12
fs

2. (5.2)

The noise will increase with increasing sampling frequency.

5.1.5 Current measurement

A Hall effect current transducer was used to measure the current. This was put in
series with the connection to the motor, and outputted a voltage, Vout, suitable for the
A/D converter. The configuration of the transducer yielded a transfer function for the
measured size as i = 5/4Vout. The output of the current transducer was filtered by a
Sallen-Key filter before being read by the A/D converter. The filter is equivalent to
the filter present on the SCU. Some output bias was experienced during the use of the
transducer. The bias exhibited a hysteresis effect, and was to some degree proportional
to the magnitude of the motor current. Higher motor current yielded a larger bias with
the same polarity as the motor current. The bias was never observed to be outside of
the transducer’s specified limits, ±40 [mV], or ±50 [mA].

The Sallen-Key filter is shown in Figure 5.3, [15]. It is an active filter, producing a
two-pole low-pass response using two resistors, two capacitors and a unity-gain buffer
amplifier. It has a transfer function given by

G(s) =
1

R1R2C1C2s2 + C2(R1 +R2)s+ 1
. (5.3)

To make this filter equivalent to a Butterworth filter, one can compare the coeffi-
cients in Equation (2.18) with those in (5.3) to compute the values for the resistors and
capacitors. The two relations become:

1
ωc2

= R1R2C1C2,

√
2

ωc
= C2(R1 +R2)
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Figure 5.3: Sallen-Key filter.

The Sallen-Key filter was set up with R1 = 8.06 [kΩ], R2 = 95.3 [kΩ], C1 = 0.15 [µF]
and C2 = 0.022 [µF], the same as the filter present on the SCU. This should give a
cut-off frequency of

fc =
ωc
2π

=
1

2π
√
R1R2C1C2

≈ 100 [Hz].

The operational amplifier listed in Table 5.1 was used as the buffer amplifier.
Because of commutation, the noise in the current measurement tends to grow with

angular velocity. Figure 5.4 presents a graph of the standard deviation of the current
measurement found while running the motor at various speeds. For each of the points
produced, the motor was at some steady-state operating point, so the standard deviation
found should be representative of the noise. A linear fit was found, and the noise variance
was hence found and updated according to the following expression:

σif
2(ω) = (0.00025|ω|+ 0.0020)2 (5.4)

5.1.6 Thermocouple

Thermocouples are a type of temperature sensor that utilise the Seebeck effect, which
dictates that when two dissimilar conductors forming a loop are subjected to a temper-
ature gradient, an electromotive force, e, is produced. This electromotive force can be
measured and will give a relationship between the measured voltage and the tempera-
ture gradient. This relationship is typically nonlinear, and can be approximated by a
polynomial:

∆T (e) =
N∑
n=0

ane
n (5.5)

If the coefficients, an, and the temperature at one end of the loop are known, the
temperature at the other end can be calculated. The coefficients are standardized for
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Figure 5.4: Current measurement noise as a function of angular velocity.

various combinations of conductors. A type K thermocouple, consisting of conductors
made of the metal alloys Chromel (Nickel-Chromium) and Alumel (Nickel-Aluminium),
was used during the experiments. The coefficients needed for this type of thermocouple
were obtained from [6], and are shown in Table 5.5. They are valid on a domain of
e ∈ (0.000, 20.644) [mV], yielding a range of T ∈ (0, 500) [�]. The error, if the voltage
measurement is correct, should be within (−0.05, 0.04) [�].

The thermocouple voltage was amplified by a custom thermocouple amplifier, listed
in Table 5.1. The output voltage, Vout, of this amplifier was then converted back to the
thermocouple voltage using the following expression:

e =
1

247.3
Vout − 11× 10−6 (5.6)

The thermocouple amplifier had built-in cold junction compensation, so the thermocou-
ple voltage should be referenced to 0 [�].

In practice, the above ideal conditions did not apply. The measurements were very
noisy, and deviated from what would be expected in a few ways.

There was a coupling from the motor current, causing some voltage to be superim-
posed onto the signal from the AD595 measurement amplifier. This was not a magnetic
coupling, since a steady-state current induced the same amount of voltage as a time-
varying current. The source of this disturbance was not found, but the search suggested
that the disturbance might have been picked up after the terminals connecting the volt-
age output signals to the A/D converter. The voltage was compensated for in software,
where the following relation would yield the same mean value for the measurement before
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Table 5.5: Type K thermocouple e→ T coefficients, e ∈ (0.000, 20.644) [mV].

a0 0.000000× 100

a1 2.508355× 101

a2 7.860106× 10−2

a3 −2.503131× 10−1

a4 8.315270× 10−2

a5 −1.228034× 10−2

a6 9.804036× 10−4

a7 −4.413030× 10−5

a8 1.057734× 10−6

a9 −1.052755× 10−8

and after some voltage with resulting current i, would be applied to the motor:

V ′out = Vout − 0.0032i

The noise from the measurement amplifier was very low when the motor was qui-
escent. The noise increased with increasing current and velocity. The highest variance
found was about σTh

2 ≈ 1.0.
Figure 5.5 shows the measurements obtained from the AD595 measurement amplifier

vs. measurements made with a Fluke 54II thermometer. The Fluke thermometer was
used as a reference, and the temperature calculated using the measurement amplifier
was then calibrated using the linear fit

Tcalibrated = 1.35TAD595 − 9.75,

also shown in Figure 5.5.
The reason the Fluke 54II thermometer was not used for all of the experiments was

that it could only hold 500 datapoints, had to be started and stopped manually, and
transferring the collected data was cumbersome, making it impossible to automate the
gathering of experimental data.

5.2 Implementation

The estimators were implemented in Simulink, and built for the WinCon target us-
ing Real-Time Workshop. The extended Kalman filter was implemented as a Simulink
S-Function in C, the gradient method/least mean squares filter was implemented as a
regular block diagram, and the Kalman filter for the thermal model was implemented us-
ing MATLAB’s kalman function and added as a discrete state-space block. The resulting
Simulink diagram is shown in Figure 5.6.
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Figure 5.5: Temperature measurement calibration.

5.2.1 Position control

A proportional angular position controller, shown in Figure D.5, was used to have control
over how to move the attached weights. A gain of KP = 10 was used, as lower values
yielded an unpractical steady-state error for heavy weights. A trajectory generator was
used to generate smooth references for positioning the weight vertically. The MATLAB
script is described in Appendix B.1.2.

A sinusoidal position reference was also used. This was added to the generated
trajectory at some specified instant in time, and ramped up to the desired amplitude.
For reference, we will list the function generating the angular position reference, and the
resulting angular velocity, angular acceleration, and angular jerk.

θ′r = Ar sin(ωrt)
ω′r = Arωr cos(ωrt)

α′r = −Arωr2 sin(ωrt)

ϕ′r = −Arωr3 cos(ωrt)

For all of the experiments with weights, Ar = 3π was used to ensure that all of the
coils in the winding would be excited. It was found that using an angular frequency of
ωr = 3π was practical. For higher angular frequency, the vertical speed of the weights
could not keep up with the tangential speed of the spindle, and they would be suspended
in air for about half a period. Other frequencies that were tried were close to some
resonant mode of the system of thread and tray (effectively a double pendulum), and
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Figure 5.6: Simulink implementation.

would make it oscillate excessively.

5.2.2 Extended Kalman filter

The extended Kalman filter from Section 4.5.3 was implemented in C. C was used so
that the source code would be portable to other platforms, and because it was the only
supported format for implementing S-Functions in the version of Simulink/Real-Time
Workshop used. Functions to do basic matrix operations like addition and multiplication
were written. The Kalman filter requires a matrix inversion, so a numerically reliable
method was needed to do this. A Gauss-Jordan elimination algorithm was implemented
for this purpose. It was compared to the implementation of the same algorithm from
[19]. The implementation from [19] was more general, well-tested, and simpler to use,
so this was the one used in the implementation of the filter. Gauss-Jordan elimination
was used because the algorithm is fairly easy to understand and implement, and yields
good numerical precision if the matrix to be inverted is well-conditioned, which always
seemed to be the case for this particular filter.

Because the full state-space description of the motor was used, it was necessary to
model the the torque load disturbance, TL, as an unknown exogenous input. Because of
the time-varying property of the bias in the current measurement, ib, estimation of this
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bias was added of this as well. This gave us seven states to estimate. To estimate model
parameters, we thus needed to estimate at least eight states, meaning that we might be
close to a marginally observable system. In practice, the filter performed well, with no
diverging states, when the process noise variances were properly tuned.

The output signal for the D/A converter was used as the voltage input, and the
filtered current and the position encoder signal were used as measurements. Using the
noisy first difference estimate of the angular velocity as a measurement, in the hopes
of improving observablility, did not seem to have any noticeable effect on the various
estimates. It was therefore not used, simplifying the filter.

We chose to estimate only the motor’s terminal resistance, R, for the experiments.
There was no reason to believe that the other motor parameters would change signifi-
cantly while running the motor. The inductance and the moment of inertia for the rotor
and spindle could confidently be assumed to be constant. The motor’s electromagnetic
constant was estimated with the extended Kalman filter (in addition to the terminal
resistance), using a sinusoidal position reference, Ar = 3π, ωr = 3π, while the motor was
loaded with a weight of m = 0.500 [kg]. The time-series of the estimated value is shown
in Figure 5.7. As can be seen, the estimated values are a little higher than what the
manufacturer has stated (Table 2.1.) Other loads were also tried, with similar results.
The value provided by the manufacturer was used.
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Figure 5.7: Estimated electromagnetic constant, K = KT = KE .

The minimum sampling time that could reliably be used with WinCon was T =
5 × 10−4. This was the value used for most of the experiments, with the hopes of
increasing accuracy. For the comparisons of the adaptive schemes, the same sampling
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time as the SCU, T ′ = 1× 10−3, was used.
For the measurement noise covariance matrix R, the value for position noise variance

found in (5.1) was used, and for the filtered current, we used the expression found in
(5.4) to update the variance using the estimated angular velocity.

Rk =
[
σif

2(ωk) 0
0 σθk

2

]
For deterministic processes, the elements of the process noise covariance matrix, Q,

are typically set to zero. However, to ensure numerical stability of the error covariance
matrix, P , [4] recommends using small, positive values in the major-diagonal elements
of the process noise covariance matrix. Otherwise, the error covariance matrix might
become non-positive-definite when the number of steps become large, which will lead to
divergence problems. The diagonal elements of Qxk were set to 10−21.

Taking into consideration (4.35), we could get some idea of the variation of the torque
load as follows: taking the time derivative of (2.10), ignoring the current dynamics,
assuming the torque load would otherwise be constant, and solving for ṪL, yields:

ṪL = KT
di
dt
− Jω̈ ≈ −Jϕ

Using Euler integration,

ẋ = au ⇒ xk+1 = xk + ∆t auk ⇒ ∆x
∆t

= auk.

One would expect the maximum variance of this quantity to be

σTL
2 ≈ ∆TL2

∆t
= (−Jmax ϕmax)2 T ≈ 4.4× 10−6,

using T = 5 × 10−4, ϕmax = Arωr
3 (from Section 5.2.1), and Jmax = J + J lz (from

Tables 2.1 and 5.2.) Since the maximum jerk will only occur briefly at the inflection
points of the acceleration, and because of friction and noise effects, the variance should
be somewhat lower than this. A value of

σTL
2 = 1× 10−6

was chosen when we were interested in tracking the load as fast as possible. The estimates
were typically very close to TL ≈ rspindlemweight g, using g = 9.81 [m/s2]. One would
expect friction and rotor/spindle acceleration to account for any discrepancy.

Trial and error were used to find variances for the current measurement bias and
the resistance that yielded estimates for these quantities which seemed reasonable. The
current measurement bias was expected to vary slowly, so a very small variance should
be used. Estimates for both bias and resistance diverged if the process variance for the
measurement bias was set too low. Using

σib
2 = 1× 10−15,
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at T = 5× 10−4, gave an estimate that corresponded well to multimeter measurements
(the current transducer’s output voltage was measured when the motor was quiescent.)

The quantity with the most variability was the resistance. When estimating with
the purpose of finding a dataset for fitting a model with nonlinear regression, it was
preferable to find a value close to the optimal mean and averaging away noise than to
have fast convergence. When using a sampling time of T = 5 × 10−4, the resistance’s
variance was selected to be

σR
2 = 1× 10−7.

The variance for the torque estimate was also reduced for these experiments, and a value
of

σTL
2 = 1× 10−9

was chosen. When interested in tracking the terminal resistance as quickly as possible,
a variance of

σR
2 = 1

was used. A higher value did not seem to result in faster tracking, just noisier estimates.
The resulting process covariance matrix, using Qdk = σTL

2, Qθk = σR
2, and Qbk = σib

2

became:

Qk =


Qxk 0 0 0
0 Qdk 0 0
0 0 Qθk 0
0 0 0 Qbk


The different variances were scaled if other sampling times were used. Changing

from T = 5× 10−4 to T ′ = 1× 10−3, Qk was multiplied with T ′/T = 2.

5.2.3 Kalman filter for thermal model

For the steady-state Kalman filter used for the thermal model, the measurement noise
variance found in Section 5.1.6 was used, R = σTh

2 = 1.0. This is a rather high value,
but it did not seem to have any adverse effects on the filter’s ability to track the housing
temperature, since the thermal dynamic for the motor housing is very slow. The process
noise covariance matrix was set to

Qk =
[

0.10 0
0 0.25

]
,

so as to trust the model for the winding temperature more than the model for the housing
temperature, and each of those more than the measurement.

5.2.4 Extended Kalman filter behavior

Figure 5.8 presents plots of the voltage input and various states for the EKF when
loaded with a spring and given a sinusoidal position reference. It should be noted that
the resistance estimate tends to be higher when the magnitude of the current is low,
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and that the torque load estimate is higher when the spring is more stretched (at higher
values of angular position.) This experiment also utilized a different motor than was used
in all other experiments. The resistance estimates might not be directly comparable.
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Figure 5.8: Kalman filter input and states, motor loaded with a spring.

Bias rejection

Figure 5.9 compares the measured, filtered current and the corresponding Kalman filter
estimate. This dataset was collected while running the motor against its friction only,
with a sinusoidal position reference of Ar = 3π and ωr = 3π. Under these conditions, one
should expect the friction to produce about the same load in both the positive and the
negative direction, and therefore the current to have a mean value of zero. The arithmetic
mean of the measured, filtered current was 〈if 〉 = 0.028, and the corresponding estimate
had an arithmetic mean of 〈̂if 〉 = −0.0019. The arithmetic mean of the estimated bias
was 〈̂ib〉 = 0.030, indicating that the filter can track and reject measurement bias.
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Figure 5.9: Filtered current measurement compared to the Kalman filter estimate.

5.3 Performed experiments

5.3.1 Winding resistance and its temperature dependency

Rationale

This experiment was performed in order to achieve three things: firstly, it was desired
to check the extended Kalman filter’s ability to estimate the resistance, compared with
the model for temperature dependent resistance in (2.23).

Secondly, it was necessary to calibrate the measurements from the AD595 thermo-
couple measurement amplifier. A Fluke 54II thermometer was used as a reference (the
results of this calibration are presented in Section 5.1.6.) Also, using the measurements
from the Fluke 54II thermometer when estimating the winding temperature should pro-
vide more accurate estimates.

Thirdly, an estimate of the lower bound on the terminal resistance was desired. From
what we know about the contact resistance, it should be expected that at high currents,
it will be very small and have little variability because of its asymptotic behavior. What
we are left with then, is the winding resistance, in addition to a small, almost constant,
contact resistance. This should form a lower bound for the terminal resistance. It
provides a sanity check for any adaptive scheme for estimating resistance: the actual
resistance in the motor will never be lower than this value.

Using the lower bound as an estimate of the winding resistance at a reference tem-
perature, Rw0, in addition to the estimated winding temperature, we should find the

75



approximate proportion of the estimated terminal resistance due to the winding. Ap-
plying the inverse of (2.23) to the approximate proportion and referencing to a given
temperature, we can remove the temperature dependency of the winding resistance in
the terminal resistance estimates.

Procedure

At higher currents, the Joule losses are also high. This results in rising winding temper-
ature and higher winding resistance, as predicted by (2.23). The motor was therefore
run with a high current load. It was loaded with a weight of m = 1.495 [kg], and run
up and down with a sinusoidal position reference, with Ar = 3π and ωr = 3π, for about
5 minutes. The root mean square (RMS) value of the current was irms ≈ 2.3. WinCon
was set to use a sampling time of T = 5× 10−4 [s] during the course of this experiment.

In addition to the estimates from the extended Kalman filter and the Kalman filter
for the thermal model, the housing and ambient temperature were recorded with a Fluke
54II thermometer, with a sampling time of 1 [s].

Additional data processing

The data recorded with the Fluke 54II thermometer were used to reconstruct an estimate
of the winding temperature in Simulink, using the Kalman filter for the thermal model.
The diagram is shown in Figure D.8.

5.3.2 Contact resistance and its current dependency

Rationale

The intent of this experiment was to identify the relationship between the terminal re-
sistance and the armature current. The chosen approach was to run the motor with
different loads, producing different armature currents and corresponding terminal resis-
tances. Collecting a large dataset of estimates for the armature current and terminal
resistance should provide a good basis for finding a fit to the models in Section 2.3.1,
using nonlinear regression.

A sinusoidal position reference, as described in Section 5.2.1, was used when estimat-
ing with the purpose of finding a dataset for fitting a model with nonlinear regression.
This was because of the limited vertical distance we could run with weights attached.
This required a rather large process noise variance for the resistance to ensure fast con-
vergence, so we feared that transients and noise might provide poorer estimates than
what could be achieved by using average values (the arithmetic mean of the Joule losses
and the root mean square of armature current were used to find average values for the
armature current and terminal resistance.) It also proved to be more practical and
time-efficient, since the motor could be left running for a long period of time, instead of
recording many short time-series.
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Procedure

The motor was loaded in two different ways. To get estimates at low currents, the motor
was run against its own friction and inertia. To produce higher currents, the motor was
loaded with weights.

Running against friction, either a fixed amplitude of Ar = 3π was used and the
frequency was varied, or the motor was run with a fixed frequency of ωr = 3π and the
amplitude was varied. This way we control the load because viscous friction will increase
with increasing velocity, and the inertia will contribute to higher current magnitudes with
increasing acceleration. The details are given in Appendix C.

Since nothing needed to be done with the experimental rig between each run when
loading the motor using it’s own friction, the gathering of data was automated and
typically, the system was run overnight.

When loading the motor with different weights, the motor was run using combinations
of weights to obtain the following set of masses:

mweight ∈ {0.050, 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, 0.500, . . .
0.600, 0.700, 0.800, 0.900, 1.000, 1.495}

The system was set to run using the sinusoidal position reference with Ar = 3π and
ωr = 3π, after lifting the weight off the floor using a generated trajectory reference.
Details are given in Appendix C.

Before running the system to collect a set of time series, the initial housing temper-
ature and ambient temperature were measured using the Fluke 54II thermometer. The
ambient temperature was assumed to be close to constant for the duration of the run.

WinCon was set to use a sampling time of T = 5× 10−4 [s].

Additional data processing

The estimate of the terminal resistance, R, should be a combination of the contact
resistance and the winding resistance:

R = Rt = Rc(i) +Rw(Tw)

To remove the temperature dependency of the winding resistance, we can start by writing
Equation (2.23) as:

Rw0 = Rw − α(Tw − Tw0)Rw0 (5.7)

What we would like to obtain is the terminal resistance referencing the winding resistance
to a given temperature:

R0 = Rt0 = Rc +Rw0 (5.8)

Inserting (5.7) into (5.8) we get

R0 = Rt0 = Rc +Rw − α(Tw − Tw0)Rw0 = Rt − α(Tw − Tw0)Rw0.
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If we have an estimate of Rw0, the temperature dependency of the winding resistance
can be removed by subtracting α(Tw−Tw0)Rw0 from the estimated terminal resistance.

The average power dissipated by the terminal resistance when the current and resis-
tance are time-varying should be

〈QJ〉 = 〈R(i)i2〉,

while the average power for time-varying current and a constant resistance is

〈QJ〉 = 〈R̄i2〉 = R̄〈i2〉 = R̄irms
2.

The equivalent constant terminal resistance given time-series of the estimated armature
current and terminal resistance should then be:

R̄ =
〈R(i)i2〉
irms

2

The set of numbers constituting the RMS value of the armature current and the equiva-
lent constant terminal resistance is what was used to find a fit for the resistance models
in Section 2.3.1, using nonlinear regression.

For reference, the arithmetic mean of a set of numbers is defined as

〈x〉 ,
1
n

n∑
i=1

xi,

and the root mean square of a set of numbers is defined as

xrms ,
√
〈x2〉 =

√√√√ 1
n

n∑
i=1

xi2.

5.3.3 Comparison of adaptive schemes

Rationale

It was desirable to get an indication of how well the different adaptive schemes performed.
To this end, we compared the measured current with current reference produced by the
PD regulator, (3.1), while using the estimated resistance from the different adaptive
schemes and the adaptive control law from Equation (3.2). The error should ideally
be zero, so the RMS value of the time-series of the error should be a measure of the
performance. Additionally a test was conducted using a PI regulator for the current.

PD regulator and adaptive control law setup

For this experiment, the control structure shown in Figure 3.1 was implemented. This
control structure was already implemented in the Simulink simulator of the system devel-
oped in the preceding project during the Fall of 2006. It was copied and re-implemented
for use with WinCon.
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The adaptive control law/feedforward controller from Equation (3.2) was used to
control the motor’s armature current. The resistance in this equation is updated with
the most recent resistance estimate, Rk, and the velocity estimate, ωk, when running.
The resulting control signal is therefore given as:

uk = Rkirk +KEωk (5.9)

We also added the one-sample time delay that is present in the SCU implementation.
The corresponding Simulink diagram is shown in Figure D.10.

The PD regulator gains, from Equation (3.1), were chosen as specified in Equations
(3.6) and (3.7), that is

Kp = ω0
2J

Kd = 2ζω0J

where ω0 (the bandwidth) was set to ω0 = 2π · 27, and ζ (the damping) was set to
ζ =

√
2. The value of the moment of inertia J was the sum of the rotor inertia from

Table 2.1 and the inertia for the chosen spindle, from Table 5.2. When using the EKF, its
angular position and velocity estimates were used as the feedback to the PD regulator.
The Simulink implementation is shown in Figure D.10.

We also ran a test with a PI regulator for the armature current. The expression from
(3.45) was implemented, using a proportional gain of KP = 5, and an integral gain of
KI = 100. The Simulink diagram is shown in Figure D.11.

LMS parameter estimator setup

Figure D.1 shows the block diagrams of the parameter estimator from Equation (4.5).
The Butterworth filter present after the summation of the induced voltage and the output
voltage is added so as to match the Butterworth filter on the current measurement in
the top level diagram.

The scaling constant µ = hγ (see (4.5)) was chosen to be the same as in the SCU
implementation, µ = 0.02. The initial value of the estimated conductance was set to
G0 = 1/2.74, the reciprocal of the nominal value from Table 2.1.

Gain-scheduler setup

As will be shown in Section 6.2, the model that best fit the experimental data, was
the rational model from Equation (2.22). The obtained parameter values were used as
presented in Table 6.1. The computed resistance inputted to the adaptive control law
in Equation (5.9) was therefore:

Rk =
β + γ|ik|
1 + α|ik|

(5.10)

Equation (5.10) is thus the gain-scheduler (GS), and its Simulink diagram is shown in
Figure D.13. The absolute value of the current was used, since we wanted the resistance
attenuation to be symmetric and bounded.
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As will be shown in Section 6.3, the above computation did not immediately yield a
very good result. It was therefore attempted to adapt one of the parameters in (5.10) in
the hopes of adjusting the shape of the model somewhat, to give a better fit. The shape
is controlled mostly by the parameters α and γ. They also determine the asymptotic
behavior. To find an estimator similar to the one found in Section 4.2, we chose to
estimate α. The derivation of the estimator follows.

1
R(i)

= G(i) =
1 + α|i|
β + γ|i|

ϕ(i, uR) ,
|uR|

β + γ|i|

|̂i| = (1 + α|i|)ϕ ⇒ ε = |i| − |̂i| = |i| − (1 + α|i|)ϕ

J(α) =
ε2

2
⇒ ∇J(α) = −ε|i|ϕ

α̇ = −γ∇J(α) = γε|i|ϕ (5.11)

This was implemented as a discrete estimator in the same fashion as (4.5), using Euler
integration. The resulting Simulink diagram is shown in Figure D.14.

We will denote the gain-scheduler using the estimated parameter α as GSα. The
scaling constant was chosen to be µGS = 100. It can be noted that this estimator is
estimating a slowly varying parameter.

Procedure

The motor was either run using a sinusoidal reference with Ar = 3π and ωr = 3π, or
with a generated trajectory specified to lift the tray of weights from the floor to the
highest possible vertical position physically allowed by the rig, and down again. When
using the sinusoidal reference, the motor was run for 75 [s], of which the last 60 [s] were
recorded. The generated trajectory is shown in Figure 5.10. A load of mw = 0.250 [kg]
was used. The estimated current measurement bias from the EKF was subtracted from
the current measurement in all the cases.

The sinusoidal reference was used for the EKF, LMS, GS, and GSα. Tests were also
run using a constant resistance in the adaptive law, chosen to be the nominal resis-
tance provided by the motor’s manufacturer, and using the PI regulator. The generated
trajectory reference was used for the EKF, LMS, and GSα.

5.4 Remarks

The D/A converter produced a bias in the voltage actuation signal. The bias seemed to
be constant. It was corrected for in software, subtracting as much as possible allowed
by the D/A converter’s resolution from the signal outputted to the D/A converter in
Simulink. The remaining bias was subtracted from the voltage actuation signal inputted
to the estimators.
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Figure 5.10: Reference trajectory.

All of the experiments, except for the experiment in Section 5.2.4, were done using
one motor. One might expect that other motors will result in slightly different estimated
values, and that the values obtained during these experiments will not necessarily trans-
late directly to other motors of the same type.
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Chapter 6

Results and conclusions

6.1 Winding resistance and its temperature dependency

To find an estimate of the lower bound for the terminal resistance, one could assume
that the contact resistance is negligible at a high current, meaning the lower bound will
also be an estimate of the winding resistance.

Figure 6.1 shows the thermal behaviour of the motor, when loaded at irms ≈ 2.3 [A].
The Joule losses are high, leading to a rapid heating of the motor’s windings, from about
25 to 90 [�] in less than 5 minutes. The temperature increase will lead to a resistance
increase since the temperature resistance coefficient for copper is a positive value.
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Figure 6.1: Thermal behaviour.

82



Figure 6.2 shows the estimated resistance of the motor as a function of the estimated
winding temperature for two different runs, starting a room temperature. The estimated
resistances were filtered with a first-order low-pass Butterworth filter with a cut-off
frequency at fc = 1/τ1 (the fastest thermal time constant), since we were only interested
in the thermal dynamics. The first 15 seconds of data, while the amplitude of the
reference was ramped up to Ar, were skipped, along with an additional few seconds, to
make sure the Kalman filter estimating the resistance had settled.
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Figure 6.2: Resistance as a function of temperature.

A linear fit was found using linear regression in MATLAB. The fit gives us the two
coefficients of the expression:

y = ax+ b (6.1)

They were found to be a ∈ {0.00933, 0.00674} and b ∈ {2.48, 2.66}. Comparing Equation
(2.23) with (6.1), and solving for the values of α and R0 for a given T0, gives us

α =
a

aT0 + b
, R0 = aT0 + b. (6.2)

Using a reference temperature of T0 = 25 [�], the temperature resistance coefficient
found using (6.2) was α ∈ {0.00344, 0.00238} [1/K], both of which are lower than the
coefficient listed for copper in [8] (and Section 2.3.2.) The resistance at T0 becomes
R0 ∈ {2.71, 2.82}[Ω].

This experiment was done only twice, as the motor needed about 5τ2 ≈ 1.5 [hours] to
cool down to room temperature. Thus, it did not give a good statistical basis to provide
point estimates for α and R0, and since we were estimating the terminal resistance, we
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might expect that any temperature effects in the contact resistance influenced the result.
The thermal data cited by the manufacturer might also be somewhat inaccurate for our
particular motor mounting.

The experiment did, however, give a good indication that both the extended Kalman
filter and the Kalman filter for the thermal dynamics works as expected. The values
obtained for the temperature resistance coefficient are close to the listed value for copper,
αCu = 0.0039 [1/K], and the values for the terminal resistance were also close to the value
cited by the manufacturer (2.74 [Ω] at a nominal current of 1.45 [A] and a temperature
of 25 [�].)

We would henceforth use a temperature resistance coefficient of α = 0.0039 [1/K], a
reference temperature of T0 = 25 [�], and set our winding resistance to be Rw0 = 2.74
[Ω]. The lower bound was set to 2 [Ω], to ensure that the extended Kalman filter would
always provide resistance estimates with a higher value than this.

6.2 Contact resistance and its current dependency

There was a large variability in the estimated terminal resistance. Figure 6.3 presents
four different datasets that were collected using friction as load, as described in Appendix
C. It clearly displays the attenuation phenomenon.
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Figure 6.3: Terminal resistance as a function of current.

The most interesting dataset is perhaps No. 4. It is plotted again in Figure 6.4
with the standard error for each point estimate of the resistance. Before this dataset
was collected, the motor had been loaded with weights up to 1.000 [kg] before going
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back to only friction. It suggests that there is some sort of hysteresis. After loading
the motor with a high current, the motor needs to be run for some time at low current
before the resistance grows back to a high value. The standard deviation is also very
large, especially at lower currents, with a tendency to diminish as the current grows;
fewer time-series were therefore gathered when the load was higher. For this dataset, we
found the maximum standard deviation to be σmax = 1.67 [Ω].
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Figure 6.4: Terminal resistance as a function of current with standard error.

The motor always seemed to need some time to “recover” a high resistance when
switching from a high to a low current, but not the other way around. The pattern
seemed to be that the motor needed more time to “recover” the longer it was run at a
high current, and the higher the current was.

A procedure where one successively increases the load, after running the motor with
no load for some time, should therefore ensure that the resistance will have stabilized at
a high value and successively decrease as the load increases.

The highest resistance will probably be dependent on the state of repair of the system
of brushes and slipring at a given point in time. It can be conjectured that a given state
will persist for some time, producing repeatable results, but will eventually change. How
long a given state will persist does not seem deterministic.

The dataset shown in Figure 6.5 was found using the procedure described above.
The maximum resistance was found to be around 10 [Ω], and this was achieved after
running the motor for some time with only friction as a load. The resistance can be seen
to be monotonously decreasing as the load increases.

Figure 6.6 displays the fits obtained for the models from Section 2.3.1, using all
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available data. It is evident that the rational model provides the best fit. The obtained
model parameters are presented in Table 6.1.

Table 6.1: Parameter values from nonlinear regression.

Rational model, equation (2.22).
α 142.256
β 102.330
γ 334.304
Exponential model, equation (2.21).
a 21.3489
b −13.8737
c 3.9170

Since there is such a large variance in the obtained resistance estimates, a static model
will not provide a perfect estimate at a given armature current. The best-fit curve can,
however, be assumed to be that which minimizes the sum of the squared residuals. If
one has obtained a large dataset which includes all, or most of, the variation possible,
the obtained static model should be representative of the mean. It is unlikely that all of
the possible variation will occur during a period of use of the motor, so the mean value
given by the model fit will likely be consistently higher or lower than the true value of
the resistance during that period.

The model fit of the resistance can be called the motor’s i-u characteristic. If a static
gain-scheduler is going to be used, this characteristic should be updated from time to
time to ensure that the model fit represents the resistance attenuation as closely as
possible for the given state of repair of the system of brush and slipring.

As for the temperature dependency, the temperature correction yielded a maximum
difference between uncorrected and corrected resistance as R−R0 ≈ 0.55 [Ω]. This was
for the data obtained using the heaviest weight, mw = 1.495, producing irms ≈ 2.3. For
currents below 0.7 [A], the current limit for the SCU, the difference had a maximum
of R − R0 ≈ 0.073 [Ω]. This suggests that the temperature dependency can be ignored
when using the motor at current magnitudes below the current limit.

During the experiments, a possible dependency on the turning direction of the rotor
was observed, where the resistance would be slightly different in the positive and negative
directions. The resistance when the motor was stalled also seemed to be lower than when
it was running. These effects should be investigated if better accuracy is desired using
a gain-scheduler.
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Figure 6.5: Terminal resistance as a function of current.
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Figure 6.6: Fits for the rational and the exponential model.
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6.3 Comparison of adaptive schemes

Figures 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12 show the results from the runs using the
sinusoidal reference. Two seconds worth of data are shown in each case, since the
behavior is similar throughout all of the time-series. Figures 6.13, 6.14, and 6.10 show
the results when using the generated trajectory reference.

We have chosen to present the voltage actuation signal, current measurement, current
reference, and the current error for all the cases. The estimated resistance is presented
for all but the case where a constant resistance was used in the adaptive control law and
the case where the PI regulator was used.

The estimated current measurement bias from the EKF was subtracted from the
current measurement outputted from the Butterworth filter in all the cases, and the
measurement is therefore given as im = if − îb. The current error is given by e = ir− im.

The resulting RMS values for the current error are calculated using the entire time-
series for the error in all the cases. The RMS error values are presented in Tables 6.2
and 6.3.

Table 6.2: RMS errors for sinusoidal reference.

Scheme RMSE
EKF 0.0274
LMS 0.0424
GS 0.132
GSα 0.0549

Const. R 0.318
PI 0.517

Table 6.3: RMS errors for generated trajectory reference.

Scheme RMSE
EKF 0.0237
LMS 0.0346
GSα 0.0463

The RMS values for the errors in Tables 6.2 and 6.3 suggest that the EKF provides
the best accuracy, followed by the LMS estimator. It is interesting to note that the
PI regulator performs even worse than simply using a constant resistance value in the
adaptive control law/feedfoward controller.

Looking at Figures 6.7 and 6.8, we can see that the EKF and the LMS estimator
have very similar behavior. The EKF seems to provide better accuracy, especially when
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Figure 6.7: EKF when using the sinusoidal reference.
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Figure 6.8: LMS when using the sinusoidal reference.
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Figure 6.9: Gain-scheduler (GS) when using the sinusoidal reference.
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Figure 6.10: Gain-scheduler with one adaptive parameter (GSα) when using the sinu-
soidal reference.
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Figure 6.11: Result when having a constant resistance in the adaptive control law when
using the sinusoidal position reference.
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Figure 6.12: PI regulator when using the sinusoidal reference.
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Figure 6.13: EKF when using the generated trajectory reference.
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Figure 6.14: LMS when using the generated trajectory reference.

92



0 5 10 15
−10

−5

0

5

Time [s]

u 
[V

]

0 5 10 15
0

10

20

30

40

Time [s]

R
 [Ω

]

0 5 10 15
−1

−0.5

0

0.5

Time [s]

i m
 a

nd
 i r [A

]

0 5 10 15
−0.4

−0.2

0

0.2

0.4

Time [s]

E
rr

or
 [A

]

Figure 6.15: Gain-scheduler with one adaptive parameter (GSα) when using the gener-
ated trajectory reference.

the magnitude of the current is small. When the magnitude of the current is small, the
estimated resistance from the EKF can be seen to have high spikes, comparable to the
ones found in the calculated resistance from the gain-scheduler (Figures 6.9 and 6.10.)
This should indicate that the gain-scheduler at least has the correct behavior. Looking
at the voltage actuation signal for the gain-scheduler, there seem to be some jerking
when some of these spikes occur, which is undesirable. It indicates that the calculated
resistance is too high at these points, and not in accordance with the actual resistance.

The static gain-scheduler performs rather badly, but is still better than using a con-
stant resistance and the PI regulator. The gain-scheduler with one adaptive parameter
performs much better. The estimated parameter α was reduced to about 120, from the
value of about 140 from Table 6.1. Recalling that the asymptote of the model is given
by γ/α, this indicates that the model provides a resistance that is too low compared to
the true resistance. This can also be seen in Figure 6.9, where the measured current is
smaller in magnitude than the current reference.

Looking at Figure 6.15, at the points where the motor is stalled, the measured
current is typically of greater magnitude than the current setpoint, indicating that the
calculated resistance is too high. This is in accordance with observations made during
the experiments: the resistance seemed to be lower when the motor was stalled, than
when it was running.

The motor used in the experiments suffered some abuse both when setting up the
different experiments and during some of them. For example: in one instance the thread
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attached to the mounted spindle became jammed, stalling the motor, and resulting in a
winding temperature above the stated maximum permissible winding temperature. The
state of repair of the brushes and slipring might thus have changed in the course of the
experimentation. As such, the obtained model fit is probably less accurate than it might
otherwise be. If time had permitted, a fresh dataset could have been obtained, fitted to
the model, and the resulting parameter values tested in the gain-scheduler.

As a quick test of the notion that a better fit might have been obtained, we tried
to find a fit to the model by hand using a heuristic approach. Since the large spikes
in the resistance calculated using the gain-scheduler seemed somewhat unphysical, we
tried to reduce the maximum resistance in the model by setting it to β = R(0) = 35.
By setting the asymptote to something close to the nominal value for the resistance
γ/α = R(∞) = 2.75, we could tune one parameter, α, by setting γ = 2.75α. We tried
using α = 85. This was reduced to about 70 by the estimator for α when running the
motor for a few seconds with the new fit. We henceforth set the initial value of α to
70. We ran the two tests again with GSα, reducing µGS to 25. The results are shown
in Table 6.4 and Figures 6.16 and 6.17. As we can see, the results are close to what we
got when using the LMS estimator. The largest error in Figure 6.17 is present when
the motor is close to being stalled, indicating that a different set of model parameters
should be used when this is the case.

This simple test suggests two things: the data obtained during the experiments to
find the resistance’s current dependency no longer represents the state the motor is in,
and the nonlinear regression method might tend to find a value for β that is generally too
high. Setting β to a reasonable constant value while doing the regression might prove to
yield a better result when using the values obtained for the remaining two parameters
in the gain-sceduler.

Table 6.4: RMS errors for gain-scheduler fitted by hand.

Scheme RMSE Reference
GSα 0.0417 Sinusoidal
GSα 0.0349 Trajectory

6.3.1 Remarks

We attempted to tune the scaling constant/step length in the LMS estimator to see if
it could perform better, but were unable to match the EKF. The LMS estimator also
became unstable if the scaling constant was set too high, e.g., µ = 0.1.
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Figure 6.16: Gain-scheduler with one adaptive parameter (GSα) when using the sinu-
soidal reference and parameters fitted by hand.
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Figure 6.17: Gain-scheduler with one adaptive parameter (GSα) when using the gener-
ated trajectory reference and parameters fitted by hand.

95



6.4 Conclusions

In the course of this investigation we have found that in order to control the motor’s
armature current using a discrete controller, current feedback provides very poor perfor-
mance. The alternative that has been examined is feedforward control, and as we have
seen, it requires accurate estimates of the motor’s terminal resistance to perform well.

It was found that the resistance attenuation phenomenon due to current load is best
fitted using a rational function. The resulting gain-scheduler based on this model did
not perform as well as estimating the resistance using an LMS estimator (as is presently
being done for the system under consideration) in the tests that we conducted. This is
most likely due to unmodeled effects, resulting in a constantly changing i-u characteristic
for the motor. There is evidence that suggests that the gain-scheduler can be made to
work better if the model parameters are routinely updated (perhaps using some physical
insight when performing the regression), and some adaptive scheme is adopted to adjust
some, or ideally all, the models parameters while it is in use. This has the potential
benefit of estimating (a) slowly varying parameter(s), rather than a quickly varying
one, like the terminal resistance. The gain-scheduler should also be augmented with the
behavior exhibited when the motor is stalled, and if possible, any unmodeled effects that
have not been considered in this investigation.

The extended Kalman filter which was developed to provide resistance and current
estimates for finding a model fit, was shown to be the best performing adaptive scheme,
when used in conjunction with the adaptive law, in the tests that we conducted. The
extended Kalman filter is very complex compared to the LMS algorithm, and might
therefore be not be suitable for implementation in the digital signal processor used on
the segment control unit.

6.5 Recommendations

If it is desirable to take up and investigate further the feasibility of using a gain-scheduler
for adapting to the changing resistance, it may be required to augment it with a model fit
for the attenuation when the motor is stalled, as well as accommodating for unmodeled
phenomena, either using a more complex model incorporating those phenomena, or using
some form of online parameter estimation for the model parameters. One could perhaps
suggest employing batch processing of current measurements and resistance estimates,
using nonlinear regression, in higher layers of the control system, or while the system is
idle. Using some physical intuition when fitting data to the model might also prove to
yield better results in practice. It would also be natural to look at a larger sample of
motors, in order to ascertain how much difference actually exist, motor-to-motor.

If the Kalman filter should be adopted, it can be recommended to look at the un-
scented Kalman filter in order to provide more accurate estimates. For this particular
system, the unscented Kalman filter might also prove to be computationally lighter, since
the unscented transform is used, instead of the linearization performed using the Jaco-
bians (which have been shown to require much computation when they are updated.)
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Appendix A

Additional figures

A.1 Open loop gain vs. frequency and resistance
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Figure A.1: Open loop gain vs. frequency and resistance (|Ĝ3(jω,R)|).
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A.2 Closed loop gain vs. frequency and resistance
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Figure A.2: Closed loop gain vs. frequency and resistance (|ĜT (jω,R)|).
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Appendix B

Contents of DVDs

There are five accompanying digital versatile discs (DVDs.) The experimental data
takes up considerable space. The data from the experiments to determine the contact
resistance have been divided into datasets. Here follows a brief description of the contents
of each DVD.

Disc No. 1 Contains experimental data. Dataset No. 1, 5, 6, 7, 8, 10, 11, data to
show the bias rejection ability, data for the test performed with the spring to
show the extended Kalman filters behavior, the data collected to when estimating
the electromagnetic constant, the data from the comparisons, and the processed
datasets.

Disc No. 2 Contains experimental data. Dataset No. 2.

Disc No. 3 Contains experimental data. Dataset No. 3.

Disc No. 4 Contains experimental data. Dataset No. 4.

Disc No. 5 Contains experimental data. Dataset No. 9, and the data for the temper-
ature dependency experiment. Also contains the MATLAB scripts and Simulink
models for processing the experimental data, files for the extended Kalman filter
implementation, source code, Simulink models and related MATLAB scripts for
executing the experiments, the MATLAB scripts used for the analysis and im-
plementing and performing nonlinear regression, and miscellaneous files, such as
datasheets, SPICE (Simulation Program with Integrated Circuit Emphasis) netlist
for the Sallen-Key filer, the first implementation of the Gauss-Jordan algorithm,
and the files used to determine commutation noise.

B.1 MATLAB scripts

This section includes descriptions of the MATLAB scripts used. They are all located on
disc No. 5. There are other MATLAB scripts on the DVD, but the ones described here
are the most important that have been used in the making of the report.
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B.1.1 Analysis

root locus.m

Creates a root locus plot for current feedback.
Location: matlab_scripts/analysis//oot_locus.m

compute discrete ss and jacobi.m

Outputs discrete and linearized state and input matrices for combined DC motor and
Butterworth filter model.
Location: matlab_scripts/analysis/compute_discrete_ss_and_jacobi.m

observability analysis.m

Observability analysis, discrete linearized system.
Location: matlab_scripts/analysis/observability_analysis.m

gain vs resistance and frequency.m

Creates Figures A.1 and A.2.
Location: matlab_scripts/analysis/gain_vs_resistance_and_frequency.m

B.1.2 Experiments

trajectory generator.m

Calculates angular position reference trajectory, given start position, final position, ac-
celeration interval, and desired angular velocity.
Location: ekf_implementation/trajectory_generator.m

spindle inertia.m

Finds the moment of inertia for each of the spindles used.
Location: ekf_implementation/spindle_inertia.m

set params.m

Sets some parameters, such as sampling time, how many consecutive runs of a chosen
Simulink model, and how long to run the model.
Location: ekf_implementation/set_params.m

init.m

Initializes variables before a run, such as the thermal model, controller gain(s), initial
conditions to the EKF etc.
Location: ekf_implementation/spindle_inertia.m
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thermal model.m

Finds state estimator from thermal model.
Location: ekf_implementation/thermal_model.m

run model.m

Sets up the WinCon environment, runs a selected Simulink model, and saves the recorded
data.
Location: ekf_implementation/run_model.m

run different amps.m

Performs an automated experiment sequence, varying the amplitude of the sinusoidal
position reference.
Location: ekf_implementation/run_different_amps.m

run different freqs.m

Performs an automated experiment sequence, varying the frequency of the sinusoidal
position reference.
Location: ekf_implementation/run_different_freqs.m

dc motor init.m

Sets up the needed variables for the DC motor simulator. The simulator was used to de-
bug and validate the EKF implementation. Location: ekf_implementation/dc_motor_init.m

B.1.3 Experimental data processing

load and process data.m

Loads data as saved by WinCon, picks out the desired data, processes it using process_data.m,
and saves the processed data to a new file.
Location: experimental_data/load_and_process_data.m

process data.m

Processes inputted time-series, computing mean values, standard deviations, RMS-
values, etc.
Location: experimental_data/process_data.m

load data.m

Loads data as saved by WinCon, but does not process it. Suitable for looking at indi-
vidual time-series.
Location: experimental_data/load_data.m
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B.1.4 Nonlinear regression

load processed data.m

Loads processed data and prepares it is for use with a nonlinear regression method.
Location: matlab_scripts/regression/load_processed_data.m

linear regression.m

Performs linear regression using Moore-Penrose pseudo-inverse.
Location: matlab_scripts/regression/linear_regression.m

nonlinear regression.m

Performs nonlinear regression using Gauss-Newton iteration.
Location: matlab_scripts/regression/nonlinear_regression.m

run regression.m

Performs nonlinear regression using MATLAB’s lsqnonlin function with a chosen model.
Location: matlab_scripts/regression/run_regression.m

residual exponential vector.m

Vectorized residual and Jacobian using the exponential model, suitable for lsqnonlin.
Location: matlab_scripts/regression/residual_exponential_vector.m

residual rational vector.m

Vectorized residual and Jacobian using the rational model, suitable for lsqnonlin.
Location: matlab_scripts/regression/residual_rational_vector.m

B.2 Extended Kalman filter implementation

This section includes descriptions of the files used in the implementation of the extended
Kalman filter and the Simulink models used for the various experiments. The files are
located on disc No. 5. These are the files that specify the implementation. Other files
are present on the DVD, but are mostly files that have been automatically generated by
Real-Time Workshop.

nr.h

Header file for Gauss-Jordan elimination function, adapted from [19].
Location: ekf_implementation/nr.h
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nrutil.h

Header file for matrix and vector memory allocation functions, adapted from [19].
Location: ekf_implementation/nrutil.h

nrutil.c

Functions for matrix and vector memory allocation functions, adapted from [19].
Location: ekf_implementation/nrutil.c

gaussj.c

Gauss-Jordan elimination algorithm, from [19].
Location: ekf_implementation/gaussj.c

constants.h

Header file defining various constants.
Location: ekf_implementation/constants.h

joint ekf R.h

Header file for function that computes the discrete state-space matrices and their lin-
earizations with respect to the terminal resistance, R.
Location: ekf_implementation/joint_ekf_R.h

comp ss jacobi R.c

Function that computes the discrete state-space matrices and their linearizations with
respect to the terminal resistance, R.
Location: ekf_implementation/comp_ss_jacobi_R.c

joint ekf R K.h

Header file for function that computes the discrete state-space matrices and their lin-
earizations with respect to the terminal resistance, R, and the electromagnetic constant
K = KT = KE .
Location: ekf_implementation/joint_ekf_R_K.h

comp ss jacobi R K.c

Function that computes the discrete state-space matrices and their linearizations with
respect to the terminal resistance, R, and the electromagnetic constant K = KT = KE .
Location: ekf_implementation/comp_ss_jacobi_R.c
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matrix operations.h

Header file for functions that perform various matrix operations.
Location: ekf_implementation/matrix_operations.h

matrix operations.c

Functions that perform various matrix operations, such as matrix addition and multi-
plication.
Location: ekf_implementation/matrix_operations.c

joint ekf R ib.c

Implementation of the extended Kalman filter as a Simulink S-Function, estimating five
states, torque load, current measurement bias, and terminal resistance.
Location: ekf_implementation/joint_ekf_R_ib.c

joint ekf R K ib.c

Implementation of the extended Kalman filter as a Simulink S-Function, estimating five
states, torque load, current measurement bias, terminal resistance, and electromagnetic
constant.
Location: ekf_implementation/joint_ekf_R_ib.c

kalman R ib.mdl

Simulink model implementing the EKF S-Function for estimating motor and Butter-
worth filter states, resistance, current measurement bias and torque load/disturbance.
Also implements LMS estimator and Kalman filter for the thermal model.
Location: ekf_implementation/kalman_R_ib.mdl

kalman R K ib.mdl

Simulink model implementing the EKF S-Function for estimating motor and Butter-
worth filter states, resistance, electromagnetic constant, current measurement bias and
torque load/disturbance. Also implements LMS estimator and Kalman filter for the
thermal model.
Location: ekf_implementation/kalman_R_K_ib.mdl

comparison.mdl

Simulink model for comparing control schemes. Implements EKF, LMS estimator, gain-
scheduler, and adaptive law/feedforwad controller. Also implements a PI regulator.
Location: ekf_implementation/comparison.mdl
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Appendix C

Experimental setups

The collected data are provided on the accompanying digital versatile discs (DVDs).
Details for the experimental setup for each of the datasets are presented here. It is the
data from the experiments to determine the contact resistance.

A sinusoidal position reference was used. When loading the motor with its own fric-
tion and inertia, here denoted by µ, either the amplitude was fixed, while the frequency
was varied, or the frequency was varied. Loading the motor with weights, the amplitude
was fixed at Ar = 3π, and the frequency was fixed at ω = 3π. The different references
were then given by

θ′r1 = Ar sin(ωrnt)
θ′r2 = Arn sin(ωrt)
θ′r3 = Ar sin(ωrt).

When stepping through the different frequencies we used

ωrn = n
1
4
π, {n : n ∈ Nj},

and when stepping through different amplitudes we used

Arn = n
1
4
π, {n : n ∈ Nj},

taking the index, n, from one of the following sets:

N1 ∈ {4, 5, 6, . . . , 20}
N2 ∈ {4, 6, 8, . . . , 20}

When loading the the motor with weights, we successively increased the load, using
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weights with masses from the following sets:

M1 ∈ {0.150, 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, 0.500, 0.550}
M2 ∈ {0.600, 0.650, 0.700, 0.750, 0.800, 0.900, 1.000}
M3 ∈ {1.495}
M4 ∈ {0.200, 0.300, 0.400, 0.500}
M5 ∈ {0.600, 0.700, 0.800, 0.900, 1.000}
M6 ∈ {0.050, 0.100}
M7 ∈ {0.050, 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, 0.500, 0.550}
M8 ∈ {0.600, 0.700, 0.800, 0.900, 1.000}

We recorded a number of time-series for each load, Nts. The length of the time-series
is denoted ∆t, and is presented in Table C.1, together with combinations of the above
relations, which should specify how each dataset was produced. The motor typically
ran for about 15 seconds before a time-series was recorded, in order to ensure that the
amplitude of the reference had been ramped up to the desired magnitude, and that any
unwanted transients in the extended Kalman filter had settled.

Table C.1: Experimental setup for each dataset.

Dataset no. Load Position reference Nts ∆t
1 µ θr1, N1 3 60 [s]
2 µ θr1, N1 30 60 [s]
3 µ θr1, N1 30 60 [s]
4 µ θr1, N1 30 60 [s]
5 {mw : mw ∈M1 ∪M2} θr3 {15, 5} 60 [s]
6 {mw : mw ∈M3} θr3 3 60 [s]
7 µ ∧ {mw : mw ∈M4 ∪M5} θr1, N2 ∧ θr3 {5, 5, 3} 60 [s]
8 {mw : mw ∈M6} θr3 {10, 5} 60 [s]
9 µ θr1, N1 50 15 [s]
10 {mw : mw ∈M7 ∪M8} θr3 {30, 15} 15 [s]
11 µ θr2, N1 15 15 [s]
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Appendix D

Simulink diagrams
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Figure D.1: Least mean squares parameter estimator.
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