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Summary

Closed-loop reservoir management consists of two main tasks; state and parameter estima-
tion & control and optimization. This thesis focuses on control and optimization. First, two
cases are considered. The first case is optimization of oil production under gas coning con-
ditions. In this case, the problem is formulated as a boundary control problem. We develop
a novel control and optimization approach to design optimal well rate controllers using Lya-
punov and backstepping methods. The results are presented in Chapter 2. The second case
is optimization of oil production under water-flooding conditions. In this case, we propose
a switching time approach based on gradient calculation for bang-bang control. Bang-bang
control has a major practical advantage because it can be implemented with simple on-off
valves. The results are presented in Chapter 3.

Second, we observed that the optimal solution depends on the length of the time horizon.
Therefore, the optimization may be divided into a short-term and a long-term horizon. In
Chapter 4, we propose a method which combines long-term and short-term optimization
using an approach that is based on a priori articulation of preferences, i.e., the decision maker
is allowed to specify preferences in terms of the relative importance between long-term and
short-term objectives.

Finally, we extended the boundary control problem in Chapter 2 to a theoretical study of
more general fluid flow systems which in this case means surface wave models. These results
are presented in Chapter 5. A summary of each chapter is presented below.

Summary of Chapter 2: Gas coning control

Quite often, a well is produced with a constant oil rate and a constant gas-oil ratio (GOR)
during the subcritical phase, i.e., before gas breakthrough. The presence of gas coning in
production wells may reduce the oil production since free gas, which occurs after gas break-
through, will occupy significant volumes in the well and pipeline system. From an econom-
ical and operational point of view, this condition will be undesirable for several reasons; the
gas price is much lower than the oil price, the afflicted well may be abandoned early, and
the gas handling capacity often is a constraint. Therefore, there is an incentive to produce
such wells in their subcritical phase for an extended period of time. In this chapter, the gas
coning process in a gas-oil reservoir completed with a single horizontal well is analytically
modeled, simulated, and analyzed applying a nonlinear control approach. The horizontal
well model which describes the interaction between the well and the reservoir may be cast
into a boundary control problem of the porous media equation with two boundary conditions;
a homogeneous Neumann boundary condition describing a no-flow at the outer boundary of
the reservoir, and a nonlinear boundary condition describing the well production rate. A well
rate controller for the boundary control problem is designed using the Lyapunov and back-
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stepping methods for linear and nonlinear cases. Using the backstepping method, one can
construct an observer for the particular system if measurements inside the domain, i.e., not
on the boundary, are required in a similar way to the backstepping control design itself. To
this end, we consider a case where influx occurs at the outer boundary of the reservoir. In
this case, the controller requires the use of an observer. A convergent observer was presented
for this purpose. The controllers hold some formal performance guarantees and require in-
formation on the gas-oil contact (GOC) at the well heel only. Furthermore, the controller has
a tuning parameter which can be used to maximize a suitable performance measure, e.g., the
net present value (NPV). The controller is evaluated using a detailed Eclipse simulator of a
gas coning reservoir. Simulation results show significant improvement of production profit
of the proposed method compared to a conventional method which usually uses a constant
rate until gas breakthrough.

Summary of Chapter 3: Water-flooding control

Production optimization involving water injection has successfully improved oil production
by increasing recovery. This technique is now combined with information obtained from
gradient-based methods for calculating optimal flow rates or bottom hole pressures (BHPs)
for long-term optimization. It has been shown that if the objective function is linear in the
control inputs and the only constraints are the upper and lower bounds on the control input,
then because of its particular structure, the problem may has bang-bang (on-off) optimal so-
lutions. This chapter discusses an optimal control approach to life cycle optimization which
computes optimal switching times for the bang-bang controls. Bang-bang control has a major
practical advantage because it can be implemented with simple on-off valves. The optimal
switching times are obtained from the adjoint method combined with the halving interval
method. Two numerical examples which use realistic reservoir settings are included to illus-
trate the application of the proposed method.

Summary of Chapter 4: Long-term and short-term optimization

Optimization of oil production may be performed on different time horizons. Long-term
optimization (typically years) is usually conducted by reservoir engineers while short-term
optimization (typically days or weeks) is done by production engineers. Long-term objectives
focus on finding the best strategy to drain as much oil as possible from reservoirs. However,
in reality it is often short-term goals like maximizing daily oil rates that dictate the operational
strategy. Unfortunately, these goals may be in conflict with each other. Therefore, incorpo-
rating long-term goals into short-term objectives makes sense. In this chapter, we present
a novel approach to systematically combine long-term and short-term production optimiza-
tion. The approach is based on a priori articulation of preferences, i.e., the decision maker
is allowed to specify preferences which may be articulated in terms of goals or the relative
importance between long-term and short-term objectives. To this end, the long-term strategy
is computed using an adjoint-based method while the short-term strategy is computed using
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the reactive control method. The approach is applied to a simplified model of the south wing
of the Voador field in the Campos basin, Brazil. The results are presented as Pareto-like plots
which can be used for decision support to balance long-term and short-term goals.

Summary of Chapter 5: Boundary stabilization of the wave equations

The boundary stabilization problem for the generalized Korteweg-de Vries-Burgers (KdV-
Burgers) and Benjamin-Bona-Mahony-Burgers (BBM-Burgers) equations are considered.
For the KdV-Burgers equation, the control laws achieve global exponential stability in the
L2-sense. Adaptive control laws are also constructed when the dissipation coefficient is un-
known. Finally, an observer for the control laws where measurements inside the domain is
needed is derived. Again closed-loop exponential stability is shown. For the BBM-Burgers
equation, the proposed control laws are used to achieve global exponential stability for the
linear system and semi-global exponential stability for the nonlinear system in the H1-sense.
An H2 bound of the solution for the nonlinear system is also derived. A numerical example
is included to illustrate the application of the proposed control laws.
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Chapter 1
Introduction

It is a fact that fossil fuel is a key energy source today. After more than one hundred years
in use, petroleum products play an important role in our daily lives. For some countries, oil
has become the backbone of their economies. The discovery of gas and oil fields in the North
Sea in the late of 60s has helped Norway to become a prosperous country with the highest
living standard in the World (Larsen, 2005). The discoveries of giant oil fields in the Middle
East countries have placed them onto the map and they are currently the top oil exporters
(Matsumoto et al., 2012). Advanced industrial countries like the USA and EU countries are
among the largest importers (Chu and Chang, 2012). The rise of China and India with a total
population of over two and half billions combined will require much more energy in the years
to come (Li and Du, 2004).

On a different note, the discoveries of (giant) oil fields have been decreasing and most
of the remaining oil is from unconventional resources like in Canada (Isaacs, 2008). Even
though in recent years Brazil has announced the discovery of giant fields in the Santos basin
(Huang et al., 2009), the overall world oil reserve has been decreasing significantly during
the last decades. Today, many oil reservoirs are in their mature stage as can be observed from
high water cut and gas oil ratio (GOR).

On a high level, a petroleum production system can be divided into two categories; sur-
face and sub-surface production systems. Surface production systems consist of all facilities
to separate and treat produced oil and gas, e.g., pipes and separator tanks. Sub-surface pro-
duction systems consist of reservoirs and wells. It may be noted that surface production
systems according to this division may include sub-sea equipment. This thesis focusses on
optimization and control of the sub-surface production system. To this end, we introduce
some control theory techniques such as optimal control method, switching time method, and
backstepping method to solve the gas coning and water-flooding problems.

This chapter starts by providing a brief background on oil petroleum production systems
and closed-loop reservoir management. Subsequently, the choice of research topics is moti-
vated before some background theory on control and optimization is included. Finally, the
thesis contributions and publications are listed.

1



1.1 Sub-surface Production Systems
In this section, we present a brief introduction to sub-surface petroleum production systems
which consist of reservoirs and injection/production wells.

1.1.1 Petroleum Reservoirs

A petroleum reservoir is a subsurface pool of hydrocarbons (oil and gas) contained in porous
or fractured rock formations and trapped by overlying rock formations with zero permeability.
Since the reservoirs are located hundreds or thousands of meters beneath the ground, it is
a challenge to obtain a description of such reservoir. The common way to visualize the
reservoir is to model it based on the first principles, i.e., a model of a physical process from
the continuity equations and the Darcy law (Aziz and Settari, 1979). The model can be written
as a system of partial differential equations (PDEs). The number of differential equations
varies depending on how we consider the fluids. If we consider the fluids as gas, oil, and
water, (known as the black-oil formulation) then we will have three differential equations
with three unknown; oil pressure, water saturation, and gas saturation. On the other hand,
if we consider the fluids as individual chemical components (known as the compositional
formulation) then the number of the differential equations will be equal to the number of the
chemical components. Thus, theoretically the former is easier to solve.

Figure 1.1: An example of a reservoir model: The Norne field.

In general the reservoirs are heterogeneous with respect to permeability and porosity.
Therefore, solving the PDEs analytically is almost impossible and hence numerical schemes
are needed (Ertekin et al., 2001). An important consideration when discretizing the PDEs
is that the reservoir may have a large dimension and an irregular shape (Fig. 1.1). Thus,
selecting appropriate grid cells can be crucial. In practice, the number of grid cells can enter
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the millions. This poses a challenge in the numerical computation. To this end, methods to
reduce model order plays an important role.

1.1.2 Petroleum Wells

To produce the oil, a number of production wells are drilled through the reservoir formations.
The difference between the reservoir pressure and the surface pressure usually becomes the
driving force for lifting the oil and other fluids from the reservoir toward the surface facilities.
If the reservoir pressure is too low, injection wells may be drilled to inject water and/or gas.
When water is used, the process is called water-flooding. Water-flooding is the most common
secondary recovery technique used today. Besides to maintain the pressure, water-flooding
could also be used to sweep the oil in the reservoirs towards the production wells; hence,
it may increase the recovery. There exists numerous other technologies for increased oil
recovery. At a given well, production may increase through artificial lift techniques like gas-
lift or electrical submersible pumps (ESPs), and on a field level there exist injection strategies
which mobilizes immobilized oil through tertiary recovery techniques. For more on this we
refer to Jayawardena et al. (2007); Rooks et al. (2012); Trujillo et al. (2010).

The wells can be placed vertically, horizontally, or at an angle somewhere in-between.
The horizontal wells increase the pay zone considerably compared to vertical wells in many
cases such as thin oil zones and in shale gas reservoirs. Hence, this technology has been an
enabler for the development of many assets. However, the average horizontal well is more
expensive and technically difficult to drill than vertical wells. A development of particular
interest for this study is the increased use of intelligent wells or intelligent completions. This
includes more downhole sensors, and valves which may me operated as control valves. This
is definitely an important enabler for closed-loop control of reservoirs (Jansen et al., 2009;
Foss, 2012; Foss and Jensen, 2011).

The well connects the reservoir to the surface facilities; thus, control and optimization
of oil and gas production must be done via injection and production wells. In practice, the
amount of fluid rates can be set by changing bottom hole pressure (BHP). Hence, the main
idea of this thesis is to design optimal fluid rates or BHP values of the injection and production
wells such that the oil revenue can be maximized.

1.2 Closed-loop Reservoir Management
Field development of life cycle oil production optimization can be represented by a closed-
loop reservoir management (Jansen et al., 2009). It has two main blocks; (i) state and param-
eter estimation (or observer design) and (ii) optimization and control (Fig. 1.2). This thesis
focusses on the second block.

Uncertainties are always part of reservoir simulation models. Therefore, having a model
that can be trusted is critical. The idea of the first block is to estimate the reservoir states
(pressure and saturation) and the reservoir parameters (permeability and porosity) to obtain
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Figure 1.2: A simple illustration of closed-loop reservoir management (Suwartadi, 2012).

confidence in the model. There are several (analytic, stochastic, or heuristic) techniques that
can be used. One method commonly used is (automatic) history matching. The accuracy
of the history matching depends on the quality of the reservoir model and the quality and
quantity of pressure and production data as well as other data. In recent years, more advanced
techniques have been developed, e.g., see the ensemble based methods discussed in Aanonsen
et al. (2009); Oliver et al. (2008).

In the second block, the idea is to find optimal production settings (usually the BHPs
of the production and injection wells) such that the oil revenue can be maximized. Since a
reservoir simulation can take up to hours, an efficient optimization technique is required. A
common technique is to use gradient based optimization where the gradients can be efficiently
calculated using the adjoint method (Brouwer and Jansen, 2004; Sarma and Chen, 2008;
Suwartadi, 2012).

1.3 Motivation
In this section, we motivate our choice of research topics. In some senses, it shows relation
between chapters.

Gas coning control

Horizontal well technology is becoming increasingly popular albeit the cost of such wells.
The reason is increased sweep. They are particularly efficient for thin oil layers which are
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sandwiched between a water aquifer below and a large gas cap above. An example of this
is the Statoil Troll B and C oil asset on the Norwegian Continental Shelf. After drilling the
well and starting production, the oil and gas will move to the well perforation. The difference
in mobility between the oil phase and the gas phase will drives the gas layer downwards
and it enters the well. This causes the gas to dominate the flow inside the production well;
thus, reducing the oil production. Since the oil price is much higher than the gas price,
this situation is undesirable. Further, the afflicted well may be abandoned early, and the
gas handling capacity is often a constraint. Therefore, there is an incentive to prolong the
subcritical production phase, i.e., before free gas enters the well.

In this research, we proposed a novel approach to optimize oil production under gas
coning conditions in a closed-loop reservoir management framework. The problem can be
considered as a boundary control problem and is solved using an advanced control theory
called the backstepping method. The rate controller requires measurements at the well only;
thus, it is an advantage from practical point of view. Further, we also consider a case where
the controller requires measurements inside the domain. To this end, an observer is designed.

Water-flooding control

Control of flow rates and BHPs is important for the efficiency of water-flooding schemes.
Hence, control laws for this purpose is of interest. We observed that under certain conditions,
the solution of the optimization problem is equivalent to bang-bang control. Bang-bang con-
trol has a major practical advantage because it can be implemented with simple on-off valves.
Therefore, we develop a method to compute the switching time control of flow rates or BHPs
for bang-bang control. Two examples of realistic reservoirs show that the proposed method
can be used to increase oil revenue significantly.

Long-term and short-term production optimization

Several authors have observed that there is a conflict between long term optimization focusing
on recovery and short term aggressive production schemes such as reactive control, e.g., see
van Essen and Van den Hof (2011). In reality, it is often the short-term goal which dictates the
course of the operational strategy. Therefore, incorporating long-term goals into short-term
objectives is crucial. To this end, we develop a method to systematically combine long-term
and short-term goals. Further, the method is evaluated on a realistic field case.

Boundary stabilization of the wave equations

A possible generalization of reservoir flow models are general wave equations (Vazquez,
2007). Hence, extending results from the gas coning case, in particular the use of Lya-
punov theory, to such models was pursued. The unidirectional wave propagation models
described by the generalized Korteweg-de Vries-Burgers (KdV-Burgers) and the Benjamin-
Bona-Mahony-Burgers (BBM-Burgers) equations were studied.
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To this end, we design boundary controllers for both PDEs using the Lyapunov method.
The controllers only require measurement at the boundary of the systems which is an advan-
tage from a practical point of view. A numerical example is presented to visualize results.
This topic is presented in chapter 5 and it is not directly linked to any petroleum engineering
problems.

1.4 Control Theory
In this section, we present a brief introduction to some methods adopted from control theory
which are used in this thesis.

1.4.1 Boundary control
Based on the location of the actuators and the sensors, control of PDEs can be divided into
two settings; in-domain control where the actuation and sensing are distributed inside the
domain, and boundary control where the actuation and sensing are applied only through
boundary conditions. Physically, boundary control is considered to be more realistic since
the actuation and the sensing are non-intrusive (Krstic and Smyshlyaev, 2008). For example,
when we consider a sub-surface petroleum system which consists of a reservoir and wells,
each well can be considered as the boundary of the system. In this case, the sensor and
actuator are collocated at the well.

The aim of boundary control is to stabilize the solution of the dynamical system into its
equilibrium point via its boundary conditions. Stability of the system in the context of oil
production means that the system state, e.g., the height of an oil column, approaches its equi-
librium point in an exponentially or asymptotically decreasing rate. One may rightly argue
that a reservoir always will exhibit stable behavior. The guarantee of exponential stability
implies that the drainage of oil from the reservoir is exponential, which may be advantageous
from a business point of view. Two methods are presented below.

The Lyapunov method

Whether stable or not, a dynamical system can be analyzed through its explicit solutions.
However, for more complex problems the explicit solution usually cannot be found, and even
physical considerations may not be conclusive. Thus, it is important to develop a tool for
analyzing the stability of such PDEs without actually solving them. For example, consider
the following boundary value problem of the heat equation

wt(x, t) = wxx(x, t), 0 < x < 1, t > 0 (1.1)
w(0, t) = 0, t ≥ 0 (1.2)
w(1, t) = 0, t ≥ 0 (1.3)
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From a physical point of view, this system is clearly stable since there is no heat genera-
tion in the system. Moreover, using separation of variables one can obtain an explicit solution
which is stable, i.e., the solution goes to its equilibrium point as time approach infinity. Us-
ing the Lyapunov method, it is possible to analyze the type of stability of the above equation
without solving it. To this end, consider the following energy function

V (t) =
1
2

∫ 1

0
w2(x, t) dx (1.4)

Computing its time derivative and using integration by parts, yield

V̇ (t) =
∫ 1

0
w(x, t)wt(x, t) dx

=
∫ 1

0
w(x, t)wxx(x, t) dx

= w(x, t)wx(x, t)|10 −
∫ 1

0
w2
x(x, t) dx

= −
∫ 1

0
w2
x(x, t) dx (1.5)

From Poincare inequality, we have

−
∫ 1

0
w2
x(x, t) dx ≤ −1

4

∫ 1

0
w2(x, t) dx (1.6)

Hence

V̇ (t) ≤ −1
4

∫ 1

0
w2(x, t) dx = −1

2
V (t) (1.7)

This implies that the energy decay rate is bounded by

V (t) ≤ V (0)e−
t
2 (1.8)

or by

‖w(t)‖ ≤ ‖w(0)‖e−
t
4 (1.9)

Since the energy function is in the L2 form, the system (1.1)-(1.3) is exponentially stable in
the L2-sense.
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The backstepping method

The idea of backstepping is to use coordinate transformation

w(x, t) = u(x, t)−
∫ x

0
κ(x,y)u(y, t)dy (1.10)

to transform the original system into a target system (Krstic and Smyshlyaev, 2008). The
target system is chosen such that the performance including stability properties of the tar-
get system candidate is known and fit the given problem. In our context, the target system
replicates a preferred outcome of a reservoir drainage strategy. The transformation (1.10) is
called the Volterra integral transformation where κ(x,y) denotes the transformation kernel
to be determined. An important property of the Volterra integral transformation is that it is
invertible, so that stability of the target system translates into stability of the closed-loop sys-
tem consisted the plant plus boundary controller. The inverse of (1.10) can be written in the
following form

u(x, t) = w(x, t) +
∫ x

0
γ(x,y)w(y, t)dy (1.11)

where γ(x,y) is the kernel of the inverse transformation. The problem now is to find the
kernel transformation κ(x,y) which makes the original system behave as the target system.

As an example, consider the following unstable reaction-diffusion equation (Krstic and
Smyshlyaev, 2008)

ut(x, t) = uxx(x, t) +λu(x,y), 0 < x < 1, t > 0 (1.12)
u(0, t) = 0, t ≥ 0 (1.13)
u(1, t) = U (t), t ≥ 0 (1.14)

Under the homogeneous Dirichlet boundary conditions, the term λu is the source of unstabil-
ity for λ > π

4 . Using the coordinate transformation (1.10), the unstable system is transformed
into the stable system (1.1)-(1.3). The kernel transformation can be found by substituting
(1.10) into (1.1)-(1.3) and use the plan equations (1.12)-(1.14). This will result in the follow-
ing three conditions which have to be satisfied

κxx(x,y)−κyy(x,y) = λκ(x,y) (1.15)
κ(x,0) = 0 (1.16)

κ(x,x) = −λ
2
x (1.17)

Solving the above system using the method of successive approximations yields

κ(x,y) = −λy
I
(√
λ(x2 − y2)

)(√
λ(x2 − y2)

) (1.18)
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where I is the first order modified Bessel function of the first kind as follows

I(x) =
∞∑
n=0

(
x
2

)2n+1

n!(n+ 1)!
(1.19)

Finally, from (1.3), (1.10), and (1.14), the boundary controller can be written as

U (t) = −
∫ 1

0
λy
I
(√
λ(x2 − y2)

)(√
λ(x2 − y2)

) u(y, t)dy (1.20)

The measurements in distributed parameter systems are rarely available across the do-
main. It is more common for the sensors to be placed only at the boundaries. This is partic-
ularly true in problems involving fluid flows. Using backstepping method, it is possible to
reconstruct the state in the domain given a measurement at the boundary only.

1.4.2 Optimal control

When formulating an optimal control problem, the variables are divided into two classes,
namely the state variables and the control variables. The change in the control variables
dictates the state variables via a set of differential equations. In a sub-surface petroleum
system, the state variables are the fluid pressure and the saturation, while the control variables
are the flow rates or BHPs of the well. An optimal control problem can be stated in a canonical
form as follows

min
u

J(u) = ψ(x(T )) +
∫ T

0
L(x(t),u(t))dt (1.21)

subject to ẋ(t) = f(x(t),u(t)) (1.22)
x(0) = x̄0 (1.23)
u(t) ∈ U , ∀t ∈ [0,T ] (1.24)
U = {q ∈Rm : umin ≤ q ≤ umax} (1.25)

where x denotes the state variable. Here, the objective function J in a Bolza form is to be
minimized by changing the control variable u subject to the dynamical system (1.22)-(1.23)
and control constraints (1.24)-(1.25) in a fixed time interval [0,T ]. To solve the optimal
control problem (1.21)-(1.25), the gradient can be computed using the adjoint method by
employing the variation principle (Teo et al., 1991). The constraint can be appended into the
cost function by introducing the Lagrange multiplier λ such that

J̄(u) = ψ(x(T )) +
∫ T

0
L(x(t),u(t)) +λᵀ(t)[f(x(t),u(t))− ẋ(t)]dt (1.26)
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where ᵀ is used as a symbol for the transpose. For simplicity, define the so-called Hamilto-
nian as

H(x(t),u(t),λ(t)) = L(x(t),u(t)) +λᵀ(t) (f(x(t),u(t))) (1.27)

Substituting (1.27) into (1.26) and applying integration by parts, yield

J̄(u) = ψ(x(T ))−λᵀ(T )x(T ) +λᵀ(0)x(0)

+
∫ T

0
{H(x(t),u(t),λ(t)) + λ̇ᵀ(t)x(t)}dt (1.28)

For a small variation δu in u, the corresponding first order variations δJ̄(u) can be computed
as follows

δJ̄(u) =
[
∂ψ(x(T ))

∂x
−λᵀ(T )

]
δx(T ) +λᵀ(0)δx(0) (1.29)

+
∫ T

0

{[
∂H(x(t),u(t),λ(t))

∂x
+ λ̇ᵀ(t)

]
δx(t) +

∂H(x(t),u(t),λ(t))
∂u

δu
}

dt

Because the initial condition x(0) is fixed, δx(0) vanishes. Furthermore, because λ is arbi-
trary, we can set it such that

λ̇ᵀ(t) = −∂H(x(t),u(t),λ(t))
∂x

(1.30)

λᵀ(T ) =
∂ψ(x(T ))

∂x
(1.31)

These equations are the so-called costate equations. Because of the first order optimality
condition, if the control u is unconstrained, then

∂H(x(t),u(t),λ(t))
∂u

= 0 (1.32)

If the control is constrained, then the optimal control strategy optimizes H . Hence, for a
minimization problem

H(x(t),uopt(t),λ(t)) ≤H(x(t),u(t),λ(t)) (1.33)

which is called the Pontryagin Maximum Principle (Luenberger, 1979). To calculate the
optimal switching times, first the dynamical system (reservoir) is simulated on the horizon
[0,T ] to obtain the state vector x (pressure and saturation). Afterwards, the costate equation
(1.30)-(1.31) is solved backwards to obtain the Lagrange multiplier λ. The state and the
multiplier are used to calculate the gradient of the objective function J . The gradient can be
combined with a line search algorithm to find the optimal control settings.
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1.4.3 Switching time method

One of the most common types of input function in control systems is the piecewise constant
function, where a sequence of constant inputs is used to control a given system, with appro-
priate switching. As an example, let u be the control variable in u written in the following
form

u =
M∑
k=0

γkχ[tk ,tk+1)(t) (1.34)

where the basis of the piecewise constant function is given as

χI (t) =

1, t ∈ I
0, otherwise

(1.35)

In the form of (1.34), the common control problem is to find the value of γk where the
switching times tk are fixed over the time horizon t ∈ [0,T ]. However, there are some cases
where γk is given or it only can take a few values. For example a well may only have on-off
valves. This means that γk is a binary variable, or known as the bang-bang control.

Using optimal control theory (Teo et al., 1991), the gradient of the switching times with
respect to the objective function J can be computed as follow

∂J
∂tk

=H(x(t−),u,λ(t−))−H(x(t+),u,λ(t+)) (1.36)

where H is defined as (1.27). The gradient is simply the difference between the left and the
right limit of the Hamiltonian with respect to the switching times.

1.5 Contributions of this Thesis

Gas coning control

We proposed a boundary control technique for PDEs, called the backstepping method, for
designing a well rate controller for the gas coning problem. The advantage of using the
backstepping method is that we can construct an observer, in case measurements inside the
domain are needed, in a similar way to the backstepping control design itself. To this end,
a case where flow influx occurs at the outer boundary of the reservoir is considered. In
this case, the controller depends on measurements inside the domain. Thus, an observer is
designed using the backstepping method. Further, the rate controller is tested on a complex
reservoir simulator.
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Switching time method

We proposed a switching time method under bang-bang control for oil production optimiza-
tion in an oil-water reservoir. The gradient is computed using the adjoint method. Further,
we proposed a heuristic interval halving method to find the optimal well settings. We tested
the method in realistic reservoir settings.

Long-term and short-term optimization

We proposed a method to combine long-term and short-term production optimization. The
method is adopted from a multi-objective optimization method called the weighted-sum
method, and is a Pareto-like approach. The proposed method is based on a priori articu-
lation of preferences and can be used in a parallel computation framework. The method is
tested on a simplified reservoir simulator of the south wing of the Voador field in the Campos
basin, Brazil.

Boundary control of PDEs

We proposed two sets of boundary controllers for unidirectional waves governed by PDEs.
The controllers are designed using the Lyapunov method and require measurements only at
the boundary of the systems. A numerical example shows that the proposed scheme is indeed
able to stabilize the solution exponentially.

1.6 Thesis Outline
This thesis is divided into 6 chapters. Chapter 1 and chapter 6 are introduction and discussion
chapters. The rest of the chapters are prepared as follow:

• Chapter 2: Optimization of oil production under gas coning conditions.
We formulate a proxy model of gas coning in a gas-oil reservoir as a boundary control
problem. The model is written as a partial differential equation with two boundary con-
ditions; a Neumann boundary condition representing the condition of the outer bound-
ary of the reservoir (no external influx), and a nonlinear boundary condition represent-
ing the condition of the well. Some well rate controllers are designed for linear and
non-linear cases using Lyapunov and backstepping methods. Each well rate controller
is completed with a parameter that can be used to maximize a performance measure. A
numerical example using a commercial simulator illustrates the merits of the method.

• Chapter 3: Optimal time control of oil production under water-flooding conditions.
We optimize well operation in an oil-water reservoir. The reservoir model uses a state
space representation and the control variables (flow rates or BHPs) are parameterized
as piecewise constant functions over a fix time horizon assuming bang-bang control.
The gradient with respect to the switching time is computed using the adjoint method.
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Further, the gradient is combined with the halving interval method to find the optimal
switching time. A numerical example shows the switching time method can increase
recovery significantly compared to conventional reactive control.

• Chapter 4: Decision analysis for long-term and short-term optimization.
There is much evidence that there exists a trade-off between long-term and short-term
production goals. Here, we propose a method that combines the two goals. The novel
approach is based on a priori articulation of preferences, i.e., the decision maker is
allowed to specify preferences which may be articulated in terms of goals or the relative
importance between long-term and short-term objectives. The method is applied to a
simplified model of a real field.

• Chapter 5: Boundary stabilization of the wave equations.
Unidirectional propagation of long waves in certain nonlinear dispersive systems can be
modelled by the generalized Korteweg-de Vries-Burgers (KdV-Burgers) and Benjamin-
Bona-Mahony-Burgers (BBM-Burgers) equations. For high order nonlinearities, both
equations may have unstable solutions. In this chapter, we propose boundary con-
trollers which stabilize both equations using the Lyapunov method. A numerical ex-
ample is included to illustrate the theory.
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Chapter 2
Optimization of Oil Production under Gas
coning Conditions

This chapter is based on Hasan et al. (2012) which has been published in Applied Mathe-
matics and Computation, vol 219:7, 2012 and Hasan et al. (2013b) which has been accepted
in Journal of Petroleum Science and Engineering, 2013. A brief paper was also selected to
appear in SPE Journal of Petroleum Technology, vol 63:7, 2011 (Hasan et al., 2011b).

2.1 Introduction

We present a brief introduction to reservoir management and gas coning control. Further, we
discuss some literature reviews related to this topic.

2.1.1 Reservoir Management

The use of recovery techniques such as water-flooding and surfactant injection has been
proven successful to increase recovery significantly. These techniques are now being sup-
ported by the growing interest in smart well technologies. A smart well is usually equipped
with several downhole valves that can be regulated over the time (Fig. 2.1). Questions re-
garding how to operate these valves can be partially answered using optimal control theory,
in particular when it is combined with the adjoint method (Brouwer and Jansen, 2004; Liu
et al., 1993; Sarma and Chen, 2008). Adjoint-based optimization can also be used to deter-
mine optimal well placement (Zandvliet et al., 2008) and for history matching (Oliver et al.,
2008; Oliver and Chen, 2011). Optimal control theory combined with data assimilation form
the basis of closed-loop reservoir management. A comprehensive summary of this concept
may be found in (Jansen et al., 2009).

The adjoint method is highly efficient for gradient calculation in large reservoir models.
Hence, it provides a basis for efficient optimization algorithms. The adjoint method is how-
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Figure 2.1: Smart horizontal well consisting of three segments, each having a down-hole control valve
(Brouwer and Jansen, 2004).

ever difficult to implement, in particular for high-fidelity reservoir models. This is because
one needs access to reservoir simulator code in order to implement the algorithm.

An alternative to detailed models are simpler proxy models. Just like high-fidelity mod-
els, a proxy model may be derived from physics applying mass conservation and empirical
correlations like Darcy’s law, however with further simplifying assumptions, or it may be
derived using simulator data. An example of the latter would be proper orthogonal decompo-
sition (POD) (Willcox and Peraire, 2002). Since the proxy model by construction is simpler
than its high-fidelity counterpart, working with a proxy model is certainly much easier than
working with its detailed model counterpart.

2.1.2 Automatic Control of Gas Coning
Fig. 2.2 shows a reservoir containing gas, oil, and water trapped by an overlying rock forma-
tion with zero permeability. The water layer will be assumed to be zero permeability; thus,
water coning is neglected. The reservoir is completed with a single horizontal well located in
the middle of the reservoir at the oil-water contact (OWC). In order for the oil to flow inside
the horizontal well from the well toe to the well heel, the pressure at the well heel should
be lower than the pressure at the well toe. Therefore, the difference between the average
reservoir pressure and the well heel pressure will be larger than the difference between the
average reservoir pressure and the well toe pressure. Since the pressure difference control
fluids movements inside the reservoir, it will determine the velocity and the volume of fluid
phases through the well perforation. The difference in mobility between the oil phase and the
gas phase will drive the gas layer downwards. This depletion will create an inverse cone con-
tour of the gas-oil contact (GOC) towards the well perforation. This phenomenon is called
gas coning.

Typically, a well is produced with a constant oil rate with constant gas-oil ratio (GOR)
during the subcritical phase, i.e., before gas breakthrough. The presence of gas coning in the
production wells may reduce the oil production. The decline in the oil rate will be followed by
an increase in the well head pressure. As oil price is higher than the gas price, this condition
is not desirable. Moreover, the gas handling capacity often is a constraint. Therefore, there is
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Figure 2.2: Gas coning process in a reservoir with a horizontal well.

an incentive to produce such wells in their subcritical phase, i.e., before the GOC reaches the
horizontal well perforation for an extended period of time.

2.1.3 Literature Review

The first gas coning model was proposed by Muskat (1937). The model was derived from the
thermodynamic relations under isothermal expansion. Using a different approach, Konieczek
(1990) arrives at the same equation. In addition, in his article he introduced the boundary
conditions at the outer boundary of the well and at the well heel. Mjaavatten et al. (2008),
based on Konieczek’s work, developed a mathematical model that could predict gas coning
behaviour. Despite a simple model structure and short computation time, the accuracy of
the predictions has been reported to be good. Furthermore, the model forms the basis of the
gas-oil ratio model (GORM) computer program which has been used for production planning
and optimization at the Troll B and C since 2003.

The use of control theory for the gas coning problem using a linear proxy model was first
proposed by Sagatun (2010). In his article, he formulates an optimal oil production problem
as a boundary control problem. This work was the basis for further studies where some non-
linear control designs like Lyapunov and backstepping methods are introduced (Hasan et al.,
2012, 2011c, 2010b,a). Other approaches on gas coning control for smart wells using a dy-
namic coupled well-reservoir simulator may be found in (Nennie et al., 2009) and (Leemhuis
et al., 2008).
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2.2 Reservoir Model

The following assumptions are used in the forthcoming reservoir model (Mjaavatten et al.,
2008).

1. Only one transversal section of the reservoir will be studied; this is the section where
the gas breakthrough will occur first.

2. The flow in the longitudinal direction, i.e., parallel with the well, in the reservoir is
neglected. This can be justified for long reservoirs where transversal width is much
less than the longitudinal distance.

3. There will be hydrostatic equilibrium in the vertical direction.

4. The vertical flow component is neglected. This may be justified because the reservoir
thickness is much smaller than the reservoir width. The flow close to the wellbore is
neglected.

5. It is assumed that the reservoir section is rectangular, isotropic, and homogeneous with
respect to porosity and permeability. Later, we assume that the well is located in the
middle of the reservoir at the OWC; thus, only half of the reservoir needs to be consid-
ered.

6. The reservoir has a free gas cap with constant pressure in time and space covering the
entire reservoir top.

7. The reservoir bottom is assumed to be no-flow boundary; thus, water coning is ne-
glected.

8. The reservoir outer boundary is a no-flow boundary.

9. The capillary forces are neglected, and a segregated flow is assumed; thus, there is a
well-defined GOC. A consequence of this is that we neglect the effect of connate-water
saturation and residual oil.

10. The oil and gas pressure-volume-temperature (PVT) properties are assumed constant in
the reservoir. Thus, the oil is treated as incompressible. Investigation of the PVT prop-
erties reveals that this assumption is valid for many homogeneous horizontal reservoir.
The model used can be updated for slowly varying PVT properties if required.

11. Horizontal reservoir pressure gradients are neglected.

12. Only Darcy’s flow from the gravity based pressure gradient is considered.
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Assumptions 4 and 11 are the so-called Dupuit assumption (Bear, 1972).
The model may now be derived. The equation of continuity may be written as

−∇q+ s = (hφ)t (2.1)

where q is the volumetric flux per unit well length, s represent the source per unit well area,
φ is the effective porosity, i.e., the volume fraction occupied by movable oil, and h is the
height of the oil column. Assumptions 7 and 8 ensure that s = 0.

Figure 2.3: Cross section of GOC at the well heel (half domain).

Since the pressure difference between the average reservoir pressure and the horizontal
well pressure is higher at the well heel than at the well toe, gas coning will occur first at the
well heel. Considering the subcritical phase only, i.e., before the free gas reaches the well
perforation, the model can be reduced into a one dimensional problem at the well heel (Fig.
2.3). Here, h0 denotes the thickness of the gas and oil layers. Denote the pressure in the
reservoir at level z = h0 by p0. By assumptions 1 and 3, the pressure in the oil column in the
range z ∈ [0,h(x, t)] at any point x ∈R[0,L] and any given time t ∈R > 0 is given by

p(x,z, t) = p0 + ρgg[h0 − h(x, t)] + ρog[h(x, t)− z] (2.2)

where ρo and ρg denote the oil and gas densities, respectively, and g is the gravity constant.
Thus, the pressure gradient in the oil column along the x-direction is given by

px = ∆ρghx (2.3)

where ∆ρ = (ρo − ρg). The oil velocity in the reservoir is described by Darcy’s law as

ν =
K

µo
px =

K

µo
∆ρghx (2.4)
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where K is the permeability tensor while µo is the oil viscosity. By assumption 5, the perme-
ability tensor is reduced to K = kh. The volumetric flow rate q per unit well length is given
by

q = −
∫ h(x,t)

0
νdz = −kh

µo
∆ρghhx (2.5)

Substituting (2.5) into (2.1), the height of the oil column in Fig. 2.3 can be described by a
nonlinear diffusion equation (Muskat, 1937; Konieczek, 1990)

ht(x, t) = α(h(x, t)hx(x, t))x (2.6)

where α = khg∆ρ
µoφ

. For a thin oil reservoir (L >> h), the outer boundary of the well drainage
area is modeled as a no-flow boundary (assumption 8)

hx(0, t) = 0 (2.7)

Accounting for the half well symmetry, the well production rate is given by (Konieczek,
1990)

u(t) = −2αφh(L,t)hx(L,t) (2.8)

Further, (5.9)-(5.12) are made dimensionless by the following transformation

h̄ =
h
L
, x̄ =

x
L
, t̄ = t

khg∆ρ

µoφL
, ū = u

µ

khg∆ρL
(2.9)

This yields the following partial differential equation (PDE)

h̄t̄(x̄, t̄) = (h̄(x̄, t̄)h̄x̄(x̄, t̄))x̄, 0 < x̄ < 1, t > 0 (2.10)
h̄x̄(0, t̄) = 0, t̄ ≥ 0 (2.11)

h̄(1, t̄)h̄x̄(1, t̄) = −1
2
ū(t̄), t̄ ≥ 0 (2.12)

where x̄ ∈R[0,1] and t̄ ∈R > 0. The initial condition for this system is given by

h̄(x̄,0) = h0(x̄), 0 < x̄ < 1 (2.13)

where h0 is constant over x̄ ∈ R[0,1]. For brevity, in the following section the bars denoting
dimensionless parameters will be omitted.

Remark that system (2.10)-(2.12) is a boundary control problem of a nonlinear diffusion
equation with nonlinear boundary conditions. Equation (2.10) is called the Boussinesq equa-
tion (in some literature referred to as the porous media equation). According to Kochina
(1962), (2.10) can be simplified to any of the following equations

ht(x, t) = hchxx(x, t), 0 < x < 1, t > 0 (2.14)
ht(x, t) = h2

x(x, t), 0 < x < 1, t > 0 (2.15)
ht(x, t) = hchxx(x, t) + h2

x(x, t), 0 < x < 1, t > 0 (2.16)
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where the subscript c denotes a constant and hc represents the height where the GOC is
assumed to be when depleting the reservoir subcritically. Without loss of generality choose
hc = 1. Equation (2.14) is known as the heat equation, an important PDE that describes the
distribution of heat. This approximation is valid when h(x, t) ≈ 0 which occurs when the
oil layer thickness (h0) is much less than reservoir width (L). Equation (2.15) is known as
the Eikonal equation, a first-order equation of the Hamilton-Jacobi type that propagates along
characteristics. This approximation is valid when h(x, t) ≈ 1 which occurs when the reservoir
width is close to the reservoir thickness. The equation(2.16) combines (2.14) and (2.15) and
is called the inhomogeneous heat equation. In the following section, the boundary control of
the linear and nonlinear equations above will be discussed in more detail.

2.3 Well Rate Lyapunov Based Design
In this section, the well production rate u(t) will be constructed using the Lyapunov method
for different cases. The aim is to design simple control laws. The first subsection starts with
the quadratic control law for the heat equation in Sagatun (2010), inspects the models and
uses stability criteria to arrive at the proposed controllers.

Recall that there is an incentive to produce as much oil as possible before the gas reaches
the well perforation (subcritical phase). Thus, the question on how to control the gas through
the reservoir is translated into a question on how to construct the control input u(t) such that
the oil thickness h(x, t)→ 0 asymptotically or exponentially. In other words, the task is to
design a well rate controller u(t) such that the system (2.10)-(2.12) is exponentially (or at
least asymptotically) stable. Exponential stability means that the system state, i.e., the height
of oil column h, approaches its equilibrium point (h ≡ 0) in a way which is bounded above
by an exponentially decreasing function. One may rightly argue that a reservoir always will
exhibit stable behavior. The guarantee of exponential stability in this context implies that the
drainage of oil from the reservoir is exponential, thus advantageous from a business point of
view. Furthermore, the exponential stability property is useful when the well rate controller
u(t) is combined with more advanced production strategies involving injection. Furthermore,
the controller will include a parameter that can be tuned to maximize a suitable measure such
as net present value before gas breakthrough.

Investigation during the subcritical phase also means that the height of the oil column will
be above the well diameter hw. Thus, h(x, t) is bounded by

inf
x∈[0,1]

‖h(x, t)‖ = hw ≤ h(x, t) ≤ h0 = sup
x∈[0,1]

‖h(x, t)‖ (2.17)

The Lyapunov method will be applied to construct the controllers for the systems. This
method is a common tool to analyze the stability of the dynamical system (Khalil, 2001).

Definition 1. A Lyapunov function is a scalar function V (x) defined on a region D that is
continuous, positive definite (V (x) > 0,∀x , 0), and has continuous first-order derivatives at
every point of D.
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The existence of a Lyapunov function for which V̇ (x) is negative definite on some region
D containing the origin guarantees asymptotic stability of the zero solution of the system.
Exponential stability is a stricter form of asymptotic stability bacause it requires exponential
decay towards the origin.

2.3.1 Linear Heat Equation
Consider the boundary value problem of the linear heat equation as follows

ht(x, t) = hxx(x, t), 0 < x < 1, t > 0 (2.18)
hx(0, t) = 0, t ≥ 0 (2.19)

h(1, t)hx(1, t) = −1
2
u(t), t ≥ 0 (2.20)

Define the Lyapunov function as

V (t) =
∫ 1

0
h2(x, t)dx (2.21)

Computing its time derivative and using integration by parts, yields

V̇ (t) = −u(t)− 2
∫ 1

0
h2
x(x, t)dx (2.22)

Let

u(t) = αh2(1, t) (2.23)

hence

V̇ (t) = −αh2(1, t)− 2
∫ 1

0
h2
x(x, t)dx (2.24)

Using Poincare’s inequality∫ 1

0
h2(x, t)dx ≤ 2h2(1, t) + 4

∫ 1

0
h2
x(x, t)dx (2.25)

yields

V̇ (t) ≤ −1
2

min(1,α)
∫ 1

0
h2(x, t)dx = −1

2
min(1,α)V (t) (2.26)

which implies that the Lyapunov function is bounded by

V (t) ≤ V (0)e−min( 1
2 ,
α
2 )t (2.27)
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or by

‖h(t)‖ ≤ ‖h0‖e−min( 1
4 ,
α
4 )t (2.28)

where h0 = h(x,0) is the initial condition and ‖ · ‖ denotes the L2-norm of a function of x,
namely

‖h(t)‖ =
(∫ 1

0
h2(x, t)dx

) 1
2

(2.29)

Furthermore, this equation implies that the equilibrium h(x, t) ≡ 0 is globally exponentially
stable in L2[0,1]. Hence, the control law (2.23) where α > 0, exponentially stabilizes the
zero solution h(x, t) ≡ 0 of the system (2.18)-(2.20) in the L2-norm. Remark that the control
law (2.23) is equal to the control law proposed in Sagatun (2010).

2.3.2 Eikonal Equation
For the second case, consider the following boundary value problem

ht(x, t) = h2
x(x, t), 0 < x < 1, t > 0 (2.30)

hx(0, t) = 0, t ≥ 0 (2.31)

h(1, t)hx(1, t) = −1
2
u(t), t ≥ 0 (2.32)

Differentiating (2.30) with respect to x yields

htx(x, t) = 2hx(x, t)hxx(x, t) (2.33)

Let

w(x, t) = hx(x, t) (2.34)

then

h(x, t) =
∫ x

0
w(ξ, t)dξ (2.35)

Substituting (2.34) into (2.33) yields

wt(x, t) = 2w(x, t)wx(x, t) (2.36)

Further, let

u(t) = −2h(1, t)q(t) (2.37)

23



Then, the nonlinear boundary condition (2.32) becomes a Neumann boundary condition

hx(1, t) = q(t) (2.38)

and system (2.30)-(2.32) is equivalent to the following system

wt(x, t) = 2w(x, t)wx(x, t) (2.39)
w(0, t) = 0 (2.40)
w(1, t) = q(t) (2.41)

Next, define the Lyapunov function

V (t) =
∫ 1

0
w2(x, t)dx (2.42)

and compute its time derivative using the transformed system above, which yields

V̇ (t) =
4
3
q3(t) (2.43)

Choose

q(t) = − 3

√
3
4
β

∫ 1

0
|wx(x, t)|3 dx (2.44)

where β > 0, which yields

V̇ (t) = −β
∫ 1

0
|wx(x, t)|3 dx (2.45)

From Poincare’s and Holder’s inequalities∫ 1

0
w2 dx ≤ 2

∫ 1

0
w2
x(x, t)dx (2.46)

≤ 2
(∫ 1

0
|wx(x, t)|3 dx

) 2
3
(∫ 1

0
13 dx

) 1
3

(2.47)

≤ 2
(∫ 1

0
|wx(x, t)|3 dx

) 2
3

(2.48)

This yields

V̇ (t) ≤ −
β

2
3
2

V
3
2 (t) (2.49)
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It then follows that ∫ 1

0
w(x, t)2 dx ≤

∫ 1
0
w(x,0)2 dx(

1 + t β8

√∫ 1
0
w(x,0)2 dx

)2 (2.50)

This implies that the equilibrium w(x, t) ≡ 0 is globally asymptotically stable in L2[0,1].
Because w(x, t) = ∂h

∂x (x, t), the equilibrium h(x, t) ≡ 0 is globally asymptotically stable in
H1[0,1]. Thus, The control law

u(t) = 2h(1, t) 3

√
3
4
β

∫ 1

0
|hxx(x, t)|3 dx (2.51)

where β > 0, asymptotically stabilizes the zero solution h(x, t) ≡ 0 of the system (2.30)-(2.32)
in H1[0,1]. Remark that the control law (2.51) requires measurements from the interior
of the domain. Thus, we have an in-domain controller. Because these measurements may
be impossible to obtain, an observer who estimates ∂2h

∂x2 (x, t) should be constructed. This
observer could be obtained using a backstepping method (Hasan et al., 2010b).

2.3.3 Inhomogeneous Heat Equation
For the third case, consider the following boundary value problem

ht(x, t) = hxx(x, t) + h2
x(x, t), 0 < x < 1, t > 0 (2.52)

hx(0, t) = 0, t ≥ 0 (2.53)

h(1, t)hx(1, t) = −1
2
u(t), t ≥ 0 (2.54)

Define the Lyapunov function

V (t) =
∫ 1

0
h2(x, t)dx (2.55)

and compute its time derivative, which yields

V̇ (t) = 2
∫ 1

0
h(x, t)

(
hxx(x, t) + h2

x(x, t)
)

dx (2.56)

Using integration by parts, (2.56) yields

V̇ (t) = 2h(x, t)hx(x, t)|10 − 2
∫ 1

0
h2
x(x, t)dx+ 2

∫ 1

0
h(x, t)h2

x(x, t)dx (2.57)
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Substituting (2.53) and (2.54) into (2.57) and using (2.17) yields

V̇ (t) ≤ −u(t)− 2
∫ 1

0
h2
x(x, t)dx+ 2 sup

x∈[0,1]
‖h(x, t)‖

∫ 1

0
h2
x(x, t)dx (2.58)

Choose

u(t) = λh2(1, t) (2.59)

hence

V̇ (t) = −λh2(1, t) ≤ 0 (2.60)

This implies that the equilibrium h(x, t) ≡ 0 is globally asymptotically stable in L2[0,1].
Thus, the control law (2.59) where λ > 0, asymptotically stabilizes the zero solution h(x, t) ≡
0 of the system (2.52)-(2.54) in the L2-norm.

2.3.4 Boussinesq Equation
Now, consider the following boundary value problem

ht(x, t) = h(x, t)hxx(x, t) + h2
x(x, t), 0 < x < 1, t > 0 (2.61)

hx(0, t) = 0, t ≥ 0 (2.62)

h(1, t)hx(1, t) = −1
2
u(t), t ≥ 0 (2.63)

Define the Lyapunov function

V (t) =
∫ 1

0
h2(x, t)dx (2.64)

and compute its time derivative

V̇ (t) = 2
∫ 1

0
h(x, t)

(
h(x, t)hxx(x, t) + h2

x(x, t)
)

dx (2.65)

Using integration by parts, (2.65) yields

V̇ (t) = 2h2(x, t)hx(x, t)|10 − 4
∫ 1

0
h(x, t)hx2(x, t)dx (2.66)

+2
∫ 1

0
h(x, t)h2

x(x, t)dx (2.67)

= 2h2(x, t)hx(x, t)|10 − 2
∫ 1

0
h(x, t)h2

x(x, t)dx (2.68)
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Substituting (2.62) and (2.63) into (2.68), and using (2.17), yields

V̇ (t) ≤ −u(t)h(1, t)− 2 inf
x∈[0,1]

‖h(x, t)‖
∫ 1

0
h2
x(x, t)dx (2.69)

= −u(t)h(1, t)− 2hw

∫ 1

0
h2
x(x, t)dx (2.70)

Choose

u(t) = γh(1, t) (2.71)

This equation yields

V̇ (t) ≤ −γh2(1, t)− 2hw

∫ 1

0
h2
x(x, t)dx (2.72)

Using Poincare’s inequality∫ 1

0
h2(x, t)dx ≤ 2h2(1, t) + 4

∫ 1

0
h2
x(x, t)dx (2.73)

yields

V̇ (t) ≤ −1
2

min(hw,γ)
∫ 1

0
h2(x, t)dx = −min

(
hw
2
,
γ

2

)
V (t) (2.74)

This result implies that the equilibrium h(x, t) ≡ 0 is globally exponentially stable in L2[0,1].
Thus, the control law (2.71) where γ > 0 exponentially stabilizes the zero solution h(x, t) ≡ 0
of the system (2.61)-(2.63) in L2[0,1].

2.3.5 Model Comparison
As mentioned in Section 2, the Boussinesq equation (2.10) can be approximated by the heat
equation (2.14), the Eikonal equation (2.15) or the inhomogeneous heat equation (2.16). The
heat equation and the inhomogeneous heat equation are valid when the reservoir thickness is
much less than the reservoir width, i.e., h(x, t) ≈ 0, while the Eikonal equation is valid when
the reservoir thickness is close to the reservoir width, i.e., h(x, t) ≈ 1. For these reasons, the
comparison will be divided into two cases; h(x, t) ≈ 0 and h(x, t) ≈ 1.

Fig. 2.4 shows comparisons of GOC using (2.10), (2.14), and (2.16), respectively. These
are cases where the reservoir thickness is much less than the reservoir width. It can be ob-
served that the heat equation (linear model) and the inhomogeneous heat equation give a
good approximation to the nonlinear Boussinesq equation. In practice, the linear model is
often used for modeling a thin oil rim reservoir because it is easier to analyze a linear system
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Figure 2.4: The nonlinear Boussinesq equation (red), the inhomogeneous heat equation (green), and
the heat equation (blue) with the initial height of the oil column set at 10m. The surface shows the
GOC as a function of time. The well heel is placed at x = 80m.

rather than a nonlinear system (Sagatun, 2010; Hasan et al., 2010b). Note that the figures
show depletion at the well heel, which is only plotted along the time horizon t.

When the reservoir thickness is close to the reservoir width, the Eikonal equation (2.15)
serves as a good approximation for the Boussinesq equation (2.10). This is confirmed by Fig.
2.5 where the initial height of the oil column is increased to 80m. This approximation works
because when h(x, t) ≈ 1, the gradient term ∂

∂xh(x, t) will be the main factor for the fluid to
flow through porous media.

The simulation is done using the pdepe.m function in MATLAB, which was written based
on Skeel and Berzins (1990).

2.4 Well Rate Backstepping Based Design
In this section, the well production rate (2.12) is designed using the backstepping method.
Backstepping and boundary control can be seen as a perfect match as explained by Krstic
and Smyshlyaev (2008). Furthermore, using the backstepping method, one can construct
an observer for the particular system if measurements inside the domain, i.e., not on the
boundary, are required in a similar way to the backstepping control design itself. This feature
is an advantage of the backstepping method over other methods, e.g., the Lyapunov method.
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Figure 2.5: The nonlinear Boussinesq equation (red) and the Eikonal equation (green) are overlap-
ping, with the initial height of oil the column set at 80m. The surface shows the GOC as a function of
time. The well heel is placed at x = 80m.

The following dimensionless gas coning model is first considered.

ht(x, t) = hxx(x, t) (2.75)
hx(0, t) = 0 (2.76)

h(1, t)hx(1, t) = −1
2
u(t) (2.77)

The idea of backstepping is to use coordinate transformation

ω(x, t) = h(x, t)−
∫ x

0
κ(x,y)h(y, t)dy (2.78)

to transform system (2.75)-(2.77) into a target system. The target system is chosen such that
the performance including stability properties of the target system candidate is known and
fit with the given problem. In this context, the target system replicated a preferred reservoir
drainage strategy. The transformation (2.78) is called the Volterra integral transformation
with κ(x,y) denotes the transformation kernel to be determined. An important property of
Volterra integral transformation is that it is invertible, so that stability of the target system
translates into stability of the closed-loop system consisting the plant plus boundary con-
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troller. The inverse of (2.78) can be written in the following form

h(x, t) = ω(x, t) +
∫ x

0
γ(x,y)ω(y, t)dy (2.79)

where γ(x,y) is the kernel of the inverse transformation. The problem now is to find the
kernel transformation κ(x,y) that makes the system (2.75)-(2.77) behave as the target system.

The target system which is chosen for system (2.75)-(2.77) is the following heat equation
with Robin and Neumann boundary conditions

ωt(x, t) = ωxx(x, t) (2.80)

ωx(0, t) =
λ
2
ω(0, t) (2.81)

ωx(1, t) = 0 (2.82)

where λ > 0, which is exponentially stable in the sense of an L2-norm. Exponential stability
in the L2-norm means that the quantity of

∫ 1
0
h2(x, t)dx decays to zero exponentially.

To construct the controller u(t) using the backstepping method, first calculate the second
derivative of the transformation (2.78) with respect to x. This yields

ωxx(x, t) = hxx(x, t)− h(x, t)
d

dx
κ(x,x)−κ(x,x)hx(x, t)

−κx(x,x)h(x, t)−
∫ x

0
κxx(x,y)h(y, t)dy (2.83)

Next, calculate the first derivative of the transformation (2.78) with respect to time t.

ωt(x, t) = hxx(x, t)−κ(x,x)hx(x, t) +κ(x,0)hx(0, t) +κy(x,x)h(x, t)

−κy(x,0)h(0, t)−
∫ x

0
κyy(x,y)h(y, t)dy (2.84)

Subtracting the last two equations, leads to

ωt(x, t)−ωxx(x, t) = 2h(x, t)
d

dx
κ(x,x)−κy(x,0)h(0, t)

−
∫ x

0
(κyy(x,y)−κxx(x, t))h(y, t)dy (2.85)

In view of the target system (2.80)-(2.82), this leads to the three following conditions which
should be satisfied

κyy(x,y) = κxx(x,y) (2.86)
κy(x,0) = 0 (2.87)

κ(x,x) = −λ
2

(2.88)
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The solution of this system is given by

κ(x,y) = −λ
2

(2.89)

Note that

ωx(1, t) = hx(1, t) +
λ
2
h(1, t) (2.90)

Since ωx(1, t) = 0, then

hx(1, t) = −λ
2
h(1, t) (2.91)

Hence, the rate controller is obtained by substituting (2.91) into (2.77), that is

u(t) = λh2(1, t) (2.92)

The controller (2.92) is equal to the controller developed by Sagatun (2010). The control
gain λ is a tuning parameter that can optimize a cost function, e.g., the accumulated oil
production or the net present value (NPV) until gas breakthrough. The positive parameter λ
can then be found using a simple search optimization method. This implies that one searches
within a class of controllers which guarantees exponential behavior. Since the control rate
(2.92) is developed for the subcritical phase, this method will be more suitable for a new well.

As an alternative, the optimal decay may be specified with multiple parameters, using
e.g., polynomial basis functions of which the coefficients serve as the to be optimized param-
eters. However, based on criteria presented in this chapter, we perform a single-parameter
optimization as given by (2.92).

2.5 Backstepping Based Design with Boundary Influx

In this section, consider the area around the well where the oil influx occurs; thus, the gradient
of the oil column in the reservoir ∂xh(x, t) , 0. Let d ∈ R[0,1] be a distance from the
well where the height of oil column starts to decrease significantly. This distance can be
interpreted as an artificial boundary. Furthermore, assume that the gradient of the oil column
is given by the following inflow condition hx(d, t) = −εh(d, t),∀ε > 0. Without loss of
generality let d = 0 and consider the following system

ht(x, t) = hxx(x, t) (2.93)
hx(0, t) = −εh(0, t) (2.94)

h(1, t)hx(1, t) = −1
2
u(t) (2.95)
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The task is to design the well rate controller u(t) such that the system (2.93)-(2.95) is
exponentially stable. The target system chosen for this case is as follows

ωt(x, t) = ωxx(x, t) (2.96)
ωx(0, t) = 0 (2.97)

ωx(1, t) = −ζ
2
ω(1, t) (2.98)

where ζ > 0, which also exponentially stable in the sense of the L2 norm.
Substituting the Volterra integral transformation (2.78) into the target system (2.96)-

(2.98), yields

ωt(x, t)−ωxx(x, t) = 2h(x, t)
d

dx
κ(x,x) +κ(x,0)hx(0, t)

−κy(x,0)h(0, t)

−
∫ x

0
(κyy(x,y)−κxx(x,y))h(y, t)dy (2.99)

This leads to the three following conditions that should be satisfied

κxx(x,y) = κyy(x,y) (2.100)
κy(x,0) = −εκ(x,0) (2.101)
κ(x,x) = −ε (2.102)

This PDE is a type of hyperbolic equation which has a general solution κ(x,y) = ϕ(x − y) +
ψ(x + y). The fact that κ(x,x) = −ε makes it easy to show that ψ = 0. Thus, the particular
solution for the system is given by

κ(x,y) = −εeε(x−y) (2.103)

Note that, since

ω(1, t) = h(1, t) + ε
∫ 1

0
eε(x−y)h(y, t)dy (2.104)

and

ωx(1, t) = hx(1, t) + εh(1, t) + ε2
∫ 1

0
eε(1−y)h(y, t)dy (2.105)

Substituting (2.104) and (2.105) into (2.98), yields

hx(1, t) = −1
2

(2ε+ ζ)h(1, t)− 1
2

(2ε+ ζ)ε
∫ 1

0
eε(1−y)h(y, t)dy (2.106)
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Hence, the controller is obtained by substituting (5.57) into (2.95), that is

u(t) = (ζ + 2ε)h2(1, t) + (ζ + 2ε)εh(1, t)
∫ 1

0
eε(1−y)h(y, t)dy (2.107)

When the influx parameter ε→ 0, the solution of the closed-loop system (2.93)-(2.95) will
converge to the solution of the closed-loop system (2.75)-(2.77). In particular, the controller
(2.107) will converge to the controller (2.92). Since the kernel κ(x,y) exists for the above
problem, L2 stability is guaranteed. The L2 stability implies that there exists a positive con-
stant M ∈R such that ∫ 1

0
|h(x, t)|2 dx ≤M <∞ (2.108)

Remark that the controller (2.107) requires measurements inside the domain, as opposed
to the controller in (2.92) which only need boundary information. Therefore, an observer
needs to be constructed to implement such a controller. An observer is presented below.

2.5.1 Backstepping Observer Design
Consider system (2.93)-(2.95) with controller (2.107). The boundary condition (2.95) could
be written in the form

hx(1, t) =U (t) (2.109)

with

U (t) = −1
2

(ζ + 2ε)h(1, t)− 1
2

(ζ + 2ε)ε
∫ 1

0
eε(1−y)h(y, t)dy (2.110)

Thus, system (2.93)-(2.95) becomes

ht(x, t) = hxx(x, t) (2.111)
hx(0, t) = −εh(0, t) (2.112)
hx(1, t) = U (t) (2.113)

We assume that h(1, t) is measurable. Hence, the sensor and actuator are collocated. The
observer for system (2.111)-(2.113) are designed as follows

ĥt(x, t) = ĥxx(x, t) +Π(x)[h(1, t)− ĥ(1, t)] (2.114)
ĥx(0, t) = −εĥ(0, t) (2.115)
ĥx(1, t) = U (t) +π[h(1, t)− ĥ(1, t)] (2.116)

The objective is to find a scalar function Π(x) and a constant π such that ĥ converges to
h as time goes to infinity. Define the error

h̃ = h− ĥ (2.117)
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such that (2.111)-(2.117) yields

h̃t(x, t) = h̃xx(x, t)−Π(x)h̃(1, t) (2.118)
h̃x(0, t) = −εh̃(0, t) (2.119)
h̃x(1, t) = −πh̃(1, t) (2.120)

with the invertible transformation

h̃(x, t) = ũ(x, t)−
∫ 1

x
p(x,y)ũ(y, t)dy (2.121)

system (2.118)-(2.120) is mapped into the target system

ũt(x, t) = ũxx(x, t) (2.122)
ũx(0, t) = εũ(0, t) (2.123)
ũx(1, t) = 0 (2.124)

Substituting (2.122)-(2.124) into (2.118)-(2.120), yields the following PDE to be satisfied

pxx(x,y) = pyy(x,y) (2.125)
px(0, y) = −εp(0, y) (2.126)
p(x,x) = −2ε (2.127)

The solution of the PDE above is

p(x,y) = −2εeε(y−x) (2.128)

The observer gains are given by

Π(x) = −2ε2eε(1−x) (2.129)
π = 2ε (2.130)

Hence, the observer for system (2.93)-(2.95) becomes

ĥt(x, t) = ĥxx(x, t)− 2ε2eε(1−x)[h(1, t)− ĥ(1, t)] (2.131)
ĥx(0, t) = −εĥ(0, t) (2.132)
ĥx(1, t) = U (t) + 2ε[h(1, t)− ĥ(1, t)] (2.133)

with U (t) given by (2.110).
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2.5.2 Controller Approximation
Its clear that the controller (2.107) is more complicated than (2.92) since it requires estimation
of the height of oil column in the x-direction which necessitates the observer (2.131)-(2.133).
However, controller (2.92) and (2.107) are closely linked as will be shown below. Using the
Cauchy-Schwartz inequality in the second term of (2.107) and utilizing (2.108), yield∣∣∣∣ ∫ 1

0
eε(1−y)h(y, t)dy

∣∣∣∣ ≤ ( ∫ 1
0
|eε(1−y)|2 dy

) 1
2
( ∫ 1

0
|h(y, t)|2 dy

) 1
2

≤
(
e2ε−1

2ε

) 1
2
√
M (2.134)

the Taylor series expansion gives

e2ε − 1
2ε

=
∞∑
n=1

(2ε)n−1

n!
≤
∞∑
n=1

1
n!
≤ e − 1 ≤ 2 (2.135)

This yields ∣∣∣∣ ∫ 1
0
eε(1−y)h(y, t)dy

∣∣∣∣ ≤ √2M (2.136)

Since
∣∣∣∣ ∫ 1

0
eε(1−y)h(y, t)dy

∣∣∣∣ is bounded, it is important to note that for small flow influx
ε, the controller (2.107) can be approximated as

u(t) ≈ (ζ + 2ε)h2(1, t) (2.137)

Please note that the second term in (2.107) vanishes as ε→ 0.
Clearly, controller (2.137) is much easier to implement compared to controller (2.107)

since it only requires measurements at the well heel. The flow influx at the outer boundary
of the reservoir was characterized by the coefficient ε in (2.137). If there is no-flow at the
outer boundary of the reservoir, then the coefficient ε = 0; hence, the controller (2.92) will
be equal to (2.137) by taken λ = ζ. This shows that the derivation of the controller using the
backstepping method is consistent.

2.6 Numerical Example
To evaluate the theoretical results, consider a reservoir with a rectangular shape as shown in
Fig. 2.6. A horizontal well is placed in the middle of the reservoir. The reservoir consists of
gas, oil, and water with the oil layer located in the middle of the reservoir with a thickness
of 25 m. The gas and water layers are set to be 100 m. The reservoir size is 2040 m x 1001
m x 225 m and is divided into 110 x 67 x 26 grid blocks. Porosity is 0.25 and assumed
homogeneous in all parts of the reservoir. The permeability in the oil and the gas layers is
300 mD while in the water layer it is 0 mD. Permeability in the water layer is assumed to

35



Figure 2.6: Reservoir model with a single horizontal well in the middle. The grid around the wells is
refined using geometric progression rules

be zero to avoid the water coning effects which is not a topic of interest in this chapter. The
initial pressure is set to be 140 Bara at the OWC. The capillary pressures at the GOC and the
OWC are for simplicity assumed to be zero; hence, there is clear segregation between gas,
oil, and water. In order to capture the dynamics of the gas coning, the grid around the wells
is refined using geometric progression rules. The model is implemented in Eclipse. Fig. 2.7
shows the variation of GOC from the beginning until the occurrence of gas breakthrough at
the well heel using the control rate (2.92).

The NPV is used as a performance indicator for the rate controller. The NPV is written
as follow

NPV =
∫ tf

0
λh2(1, t)︸   ︷︷   ︸

u(t)

ro(1 + I)−ct dt (2.138)

Here, tf denotes the duration of the production time, c denotes the time constant, ro
denotes the oil price, and I is the discount factor. The oil price is set to be 80 US$/bbl or
504 US$/Sm3 while the discount factor is set to be 10 %. The objective is to maximize
the NPV over the production time tf . The simulation will be done by using two different
constraints. The first constraint is the production time, where production will be stopped
when gas breakthrough occurs. The second constraint is related to the total gas produced,
since the gas processing capacity may be a bottleneck.

Assuming no-flow at the outer boundary of the reservoir, the proposed control rate is cal-
culated using (2.92). The control gain λ is found using a simple line search method since
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Figure 2.7: Simulation of gas coning in Eclipse using control rate (2.92). The colors represent the oil
saturation with red as the highest. TOP: shows the initial GOC while BOTTOM: shows the GOC after
33 days. The snapshot was taken at the well heel.

there is only one parameter to be optimized. The gradient is computed using forward differ-
encing. The optimal control rate will then be compared with five different constant control
rates ranging from the minimum to the maximum rate which is the usual strategy in opera-
tion. The maximum and minimum rates are present due to operational limitation. For this
simulation the minimum oil production limit is set to 400 Sm3/day while the maximum is
set to 1200 Sm3/day.

Fig. 2.8 shows the NPV with gas breakthrough time as the production constraint. It can
be observed that in a relatively short time the optimal production rate (2.92) gives higher
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Figure 2.8: NPV in the subcritical phase for 5 different constant rates and the control rate (2.92).

Oil Rate (Sm3/day) NPV (MMUS$) tf (day)
Constant 400 14.2 71
Constant 600 10.8 36
Constant 800 9.2 23
Constant 1000 8.5 17
Constant 1200 7.8 13
Controller (2.92) 10.9 33

Table 2.1: NPV of 5 constant rates and the optimal rate from controller (2.92) with breakthrough time
as the production constraint.

NPV compared to most of the constant control rates. The complete numerical comparison
can be found in Table 2.1. In this case, the smallest constant rates give the highest NPV,
but the production time is also much longer. A relatively fair comparison may be made
between controller (2.92) and the constant control rate of 600 Sm3/day where both rates
achieve almost the same NPV. Arguably (2.92) is best since it achieves a slightly higher NPV
in shorter time than the constant rate approach. The rates profile can be seen from Fig. 2.9.

Fig. 2.10 shows the GOR for different control strategies. The highest constant rate (1200
Sm3/day) gives the fastest gas breakthrough while the lowest constant rate (400 Sm3/day)
gives the longest gas breakthrough time, as expected.
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Figure 2.9: Oil production rates in the subcritical phase for 5 different constant rates and the control
rate (2.92).

Oil Rate (Sm3/day) NPV (MMUS$) tf (day)
Constant 400 15.3 78
Constant 600 13.7 50
Constant 800 12.9 37
Constant 1000 12.3 29
Constant 1200 11.6 23
Controller (2.92) 14.2 49

Table 2.2: NPV of 5 constant rates and the optimal rate from controller (2.92) with total gas production
of 1.5 MMSm3 as the production constraint.

Fig. 2.11 shows the NPV with a total gas production of 1.5 MMSm3 as the production
constraint. It can be observed that the rate controller (2.92) gives higher NPV compared to
some constant control rates. Again, the smallest constant rate gives the highest NPV but in a
longer period. The complete numerical comparison can be found in Table 2.2.

Remark that a very small production rate (e.g., 10 Sm3/day) will be able to drain the
reservoir in a very long period without the well experiences gas breakthrough. However, this
is definitely not a good choice from an operational standpoint. In practice, no one will ever
use a small production rate in the beginning of production. In fact, they tend to produce as
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Figure 2.10: GOR with total gas constraint of 1.5 MMSm3 for 5 different constant rates and the
control rate (2.92).

much as possible in the first weeks in order to clean up the well from the brine set during
completion and to get a good clean up of the near well reservoir. The control law presented
here accommodates this. As can be seen in Fig. 2.9 and Fig. 2.12, in the beginning the
control law takes the maximum rate. After a while it declines step by step until it hits the
minimum rate. Moreover, as discussed earlier lambda may be tuned to maximize any reason-
able production measure. This provides flexibility to the control law since it can be adapted
towards different objectives.

One may consider a model for smart wells as in Fig. 2.1 where the downhole control
valves enable the splitting up of the well into a number of segments which can be controlled
individually. The proposed method may be applied to smart wells by including the control
law for each segment. As a comment, there is a measurement challenge related to real-time
measurements of the GOC at the well heel. This has not been studied in the present work.

2.7 Conclusions
A Lyapunov based design and a backstepping based design methods for the gas coning prob-
lem have been presented for linear and nonlinear cases. The rate controller is written explic-
itly and only requires measurement at the boundary of the reservoir. The controllers come
with a control gain which can be used as a tuning parameter in an optimal control framework.
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Figure 2.11: NPV with total gas constraint of 1.5 MMSm3 for 5 different constant rates and the
control rate (2.92).

For different production constraints, the simulation applying a fine-gridded Eclipse model
shows that the proposed rate controller gives better results in term of usual economic mea-
sures compared with constant rate strategies. Furthermore, an alternative backstepping based
controller was derived for a system with boundary influx. This controller requires the use of
an observer. A convergent observer was presented for this purpose.
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Figure 2.12: Oil production rate with total gas constraint of 1.5 MMSm3 for 5 different constant rates
and the control rate (2.92).

Nomenclature

Symbols

g = gravity constant (m/s2)
h = height of oil column (m)
k = permeability (mD)
L = half length of the reservoir (m)
p = reservoir pressure (Pa)
q = volumetric flux per unit well length (m3/s)
r = price (US$)
s = source per unit well area (m3/s)
u = well rate (Sm3/day)
I = discount factor (%)
µo = oil viscosity (Pa.s)
ν = oil velocity (m/s)
φ = porosity (−)
ρ = density (kg/m3)
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Subscripts
g = gas
h = horizontal
o = oil
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Chapter 3
Optimal Time Control of Oil Production
under Water-flooding Conditions

This chapter is based on a paper which has been accepted for the European Control Confer-
ence 2013.

3.1 Introduction
Subsurface petroleum production comprises two main systems; reservoirs and wells. The
reservoirs contain a large amount of hydrocarbon deposits. These deposits are located hun-
dreds or thousands of meters beneath the ground and are trapped by overlaying rock forma-
tions that have zero permeability. To produce the hydrocarbons, especially oil, a number of
production wells are drilled through the reservoir formations. Traditionally, the difference
between the reservoir pressure and the surface pressure is the only driving force for lifting
the oil from the reservoir toward the surface facilities. However, this method is most effective
to producing oil that is close to the wells. As a result, a large amount of oil that is far from the
production wells can still remain in the reservoir. Furthermore, as time goes by, the pressure
will decline and the wells might be shut down. To sweep the remaining oil, injection wells
are drilled and fluids (water, gas, polymer, or surfactant) are injected. When water is used,
the process is called water-flooding.

3.1.1 Water-flooding
Water-flooding is the second most commonly used recovery technique today in the subsurface
petroleum production system for several reasons; water is available almost everywhere and
it has good sweep efficiency. To push the oil toward the production wells and to maintain
the reservoir pressure, water is injected via injection wells which are usually drilled slightly
above the oil-water contact (OWC). To track the water movement, a state-of-the-art reservoir
simulator that is based on mass conservation and Darcy’s law is usually employed, whereby
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the inputs can be collected from geological data, e.g., seismic, core analysis, and well testing
data (Aziz and Settari, 1979; Ertekin et al., 2001; Dake, 1983).

The water front will vary depending on the permeability and porosity distribution of the
fields. Although the overall recovery could be increased by injecting water, the production
might still be non-optimal. The typical way to operate the production well is to produce at a
maximum rate at an early stage of production. Later, the wells will be completely closed if
the water production is too high because larger water production is costly. The presence of
high permeability channels between the injection and production wells will result in an early
water breakthrough. Thus, water production will be dominant in the production wells, and
the wells could be shut down early because they are not economical to maintain. On the other
hand, low permeability regions will receive less water sweeping in spite of containing a large
amount of oil. As a result, a large amount of recoverable oil still remains in the reservoir.
Therefore, an optimal production setting is needed; the optimal production setting refers to
how much water should be injected or oil should be produced in each injection or production
well such that the production value is optimal. This problem can be partially answered by
optimal control methods based on gradient calculations (Brouwer and Jansen, 2004).

In an optimal control framework, the variables are divided into two classes, namely the
state variables and the control variables. The change in the control variables dictates the
state variables via a set of differential equations. In this chapter, the state variables are the
fluid pressure and the saturation, while the control variables are the flow rates or BHPs.
Furthermore, an objective function is used as a performance measure. It has been shown that
if the objective function is linear in the control and the only constraints are upper and lower
bounds on the control, then because of their specific structure, the problem will sometimes
have bang-bang optimal solutions (Zandvliet et al., 2007). Bang-bang control has a major
practical advantage because it can be implemented with simple on-off valves.

3.1.2 Gradient-based optimization
The idea of gradient-based optimization is to calculate the gradient of the objective function
with respect to the control variables. The objective function can be the net present value
(NPV), the recovery factor, or grid saturations. The most common objective function in life
cycle optimization is the NPV, which is used in this chapter. Furthermore, this function is
linear in the control. The task is then to use gradient information to calculate the optimal
control variables such that the NPV can be maximized. The gradient can be obtained in
several ways; finite difference calculations, the forward sensitivity equation, and the adjoint
method. However, for large-scale systems such as reservoirs for which the number of grids
can be in the millions and the computational time can be up to hours, the first two methods
become impractical. The adjoint method is, thus far, the most efficient way to calculate
the gradient information for large-scale systems because it requires only two simulations; a
forward simulation to calculate the reservoir state (pressure and saturation) and a backward
simulation to calculate the Lagrange multiplier (Sarma and Chen, 2008; Zandvliet et al.,
2008; Suwartadi, 2012).
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The adjoint method has increasingly been used in the production optimization of petroleum
reservoirs. The use of this method has been supported by the availability of the gradient cal-
culation in commercial simulators. The adjoint method is combined with data assimilation
to form the basis of closed-loop reservoir management. A comprehensive summary of this
concept can be found in Jansen et al. (2009) and Foss and Jensen (2011).

The production optimization problem can be viewed as a scheduling problem. Intuitively,
to sweep efficiently, the production wells in a high permeability region should be closed
early on while the production wells in a low permeability region should be opened initially.
In this chapter, a new approach to the optimization of oil production under water-flooding
is presented by computing the optimal switching time control. The parameterized control
variables use a special form of bang-bang (on-off) control settings. Hence, in this case, the
switching time is defined as the time when a well changes from an on to an off mode, and
vice versa. The gradient calculation of a single switching time requires the computation of
the Hamiltonian on the left and the right limit with respect to the time control. It should be
mentioned that the general switching time problem using optimal control theory has received
much attention, see e.g., Teo et al. (1991); Bengea and DeCarlo (2005); Egerstedt et al.
(2003); Lucas and Kaya (2001); Loxton et al. (2008, 2009); Sudaryanto and Yortsos (2000).

3.1.3 Optimal Control Theory
The optimal control problem can be stated in a canonical form as follows

min
u

J(u) = ψ(x(T )) +
∫ T

0
L(x(t),u(t))dt (3.1)

subject to ẋ(t) = f(x(t),u(t)) (3.2)
x(0) = x̄0 (3.3)
u(t) ∈ U , ∀t ∈ [0,T ] (3.4)
U = {q ∈Rm : umin ≤ q ≤ umax} (3.5)

Here, the objective function J is to be minimized (or maximized) by changing the control
variable u subject to the dynamical system (3.2)-(3.3) and control constraints (3.4)-(3.5) in
a fixed time interval [0,T ]. To solve the optimal control problem (3.1)-(3.5), the gradient is
computed using the adjoint method by employing the variation principle. The constraint can
be appended into the cost function by introducing the Lagrange multiplier λ such that

J̄(u) = ψ(x(T )) +
∫ T

0
L(x(t),u(t)) +λᵀ(t)[f(x(t),u(t))− ẋ(t)]dt (3.6)

where ᵀ is used as a symbol for the transpose. For simplicity, define the so-called Hamilto-
nian as

H(x(t),u(t),λ(t)) = L(x(t),u(t)) +λᵀ(t) (f(x(t),u(t))) (3.7)
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Substituting (3.7) into (3.6) and applying integration by parts, yield

J̄(u) = ψ(x(T ))−λᵀ(T )x(T ) +λᵀ(0)x(0)

+
∫ T

0
{H(x(t),u(t),λ(t)) + λ̇ᵀ(t)x(t)}dt (3.8)

For a small variation δu in u, the corresponding first order variations δJ̄(u) can be computed
as follows

δJ̄(u) =
[
∂ψ(x(T ))

∂x
−λᵀ(T )

]
δx(T ) +λᵀ(0)δx(0) (3.9)

+
∫ T

0

{[
∂H(x(t),u(t),λ(t))

∂x
+ λ̇ᵀ(t)

]
δx(t) +

∂H(x(t),u(t),λ(t))
∂u

δu
}

dt

Because the initial condition x(0) is fixed, δx(0) vanishes. Furthermore, because λ is arbi-
trary, we can set it such that

λ̇ᵀ(t) = −∂H(x(t),u(t),λ(t))
∂x

(3.10)

λᵀ(T ) =
∂ψ(x(T ))

∂x
(3.11)

These equations are the so-called costate equations. Because of the first order optimality
condition, if the control u is unconstrained, then

∂H(x(t),u(t),λ(t))
∂u

= 0 (3.12)

If the control is constrained, then the optimal control strategy optimizes H . Hence, for a
minimization problem

H(x(t),uopt(t),λ(t)) ≤H(x(t),u(t),λ(t)) (3.13)

which is called the Pontryagin Maximum Principle (Luenberger, 1979). To calculate the op-
timal switching time, first the dynamical system (reservoir) is simulated on the horizon [0,T ]
to obtain the state vector x (pressure and saturation). Afterward, the costate equation (3.10)-
(3.11) is solved backward to obtain the Lagrange multiplier λ. The state and the multiplier
are used to calculate the gradient of the objective function J (Brouwer and Jansen, 2004).
The gradient can be combined with a line search algorithm to find the optimal switching time
control.

3.1.4 Contributions of this chapter
In this chapter, a novel optimal control problem is formulated to maximize the NPV. The em-
bedded gradient calculation for the bang-bang control comes with a formal proof. Examples
of realistic reservoir settings are presented to show the potential application of the proposed
method.
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3.2 Reservoir Model
Ideally, to model the fluid flow in a reservoir, each component should be considered individ-
ually. However, this task is non-trivial because the number of components can be quite high,
which leads to complex fluid flow models. As a consequence, the computation time could
be extensive. To overcome this issue, a simpler model that considers only oil, water, and
gas, and that is commonly used in the petroleum industry is presented. This type of model is
known as the black-oil model.

3.2.1 Black-Oil Model
In this section, the water-flooding problem in an oil-water system using black-oil formulation
will be considered. The mass conservation for an oil-water system can be written as

∂
∂t

(φρisi) = −∇ · (ρi ūi) + qi , i ∈ {o,w} (3.14)

where φ denotes the porosity, ρ is the density, and s is the saturation. The subscripts o and
w refer to oil and water, respectively. The divergence operator is denoted by ∇·, while the
source or the sink terms, i.e., the well flow rates, are denoted by q. The velocity of the fluid
flow in the reservoir is calculated using the Darcy law as, as follows

ūi = −Kkri
µi
∇pi , i ∈ {o,w} (3.15)

where K denotes the permeability tensor, kr is the relative permeability, µ is the viscosity,
and p is the reservoir pressure. Assuming isotropic conditions, the permeability tensor can be
simplified to K = k. Furthermore, the relative permeability depends on the water saturation.
Hence, it becomes a major source of nonlinearity.

Substituting (3.15) into (3.14) leads to two equations with four unknown variables; oil
saturation (so), water saturation (sw), oil pressure (po), and water pressure (pw). For well-
posed problem, two other equations are required. The first equation is obtained from the
assumption that only oil and water are present in the reservoir, hence

so + sw = 1 (3.16)

Assuming zero capillary pressure, yields

po = pw (3.17)

For brevity, in the remainder of this chapter, s = sw and p = po. Hence, (3.14)-(3.17) can
be reduced into the following system of equations

∂
∂t

(φρo[1− s]) = ∇ ·
(
k
kro
µo
ρo∇p

)
+ qo (3.18)

∂
∂t

(φρws) = ∇ ·
(
k
krw
µw

ρw∇p
)

+ qw (3.19)
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where the unknown variables to be determined are the water saturation (s) and the oil pressure
(p). The system of partial differential equations (3.18)-(3.19) is the standard model for the
oil-water system in the black oil formulation (Aziz and Settari, 1979).

3.2.2 State-Space Representation
Because petroleum reservoirs are usually heterogeneous with respect to permeability and
porosity, solving (3.18)-(3.19) analytically is nearly impossible. The most common proce-
dure is to discretize the equations in the spatial variables into a finite number of grid blocks
while assuming homogeneous geological properties in each block. In general, the larger the
size of the grid blocks is, the lower the accuracy of the predicted solution. On the other hand,
the larger the number of the grid blocks is, the longer the computational time. Hence, select-
ing an appropriate number of the grid blocks is an important issue in reservoir simulation.
For the sake of simplicity, after discretization, (3.18)-(3.19) will be arranged into a canonical
state space representation.

Let N denote the number of active grid blocks of the reservoir. Define the state vector x
as a collection of pressure and saturation in each grid block as

x = [pᵀsᵀ]ᵀ ∈R2N (3.20)

where

p = [p1 · · ·pN ]ᵀ ∈RN (3.21)
s = [s1 · · ·sN ]ᵀ ∈RN (3.22)

Because the injection wells inject only water, the flow rates of each phase in a grid block
j are computed by

q
j
o = 0 (3.23)

q
j
w =

ρw(pj)
vj

qj , j ∈Ninj (3.24)

where vj is the volume of grid block j, qj is the rate of the injected fluid, and Ninj is the set
of grid block indices at which an injector is perforated. By defining the fractional flow rate
of the water as

f
j
w =

krw(sj )
µw

krw(sj )
µw

+ kro(sj )
µo

(3.25)

and because the production wells produce both oil and water, the flow rate of each phase in
grid block j is computed by

q
j
o =

ρo(pj)
vj

(
1− f jw(sj)

)
qj (3.26)

q
j
w =

ρw(pj)
vj

f
j
w(sj)qj , j ∈Nprod (3.27)
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where qj is the rate of produced fluid and Nprod is the set of grid block indices in which a
producer is perforated. The fluid compressibility is defined as

ci(p) =
1

ρi(p)
dρi(p)

dp
, i ∈ {o,w} (3.28)

The porosity will be assumed to be independent of the pressure and, upon applying the chain
rule, we obtain the following

∂
∂t

(φρisi) = φ
(
siρici

∂pi
∂t

+ ρi
∂si
∂t

)
, i ∈ {o,w} (3.29)

After the discretization of (3.18)-(3.19) and with the help of (3.29), the state space model can
be written in the following form

E(x(t))ẋ(t) = Ã(x(t))x(t) + B̃(x(t))u(t) (3.30)
x(0) = x̄0 (3.31)

where E, Ã, and B̃ are sparse matrices. E and Ã store information regarding rock and fluid
properties while B̃ stores information regarding the fractional flow of the wells. The manip-
ulated control variables qj will be stored in the vector column u. By defining

A(x(t)) = E−1(x(t))Ã(x(t)) (3.32)
B(x(t)) = E−1(x(t))B̃(x(t)) (3.33)

the system can be written in its canonical form as

ẋ(t) = A(x(t))x(t) +B(x(t))u(t) (3.34)
x(0) = x̄0 (3.35)

LetNinj denote the number of injection wells, whileNprod denotes the number of produc-
tion wells, and Nw = Ninj +Nprod denotes the total number of wells. Then, the state matrix
A ∈ R2N×2N and, the input matrix is B ∈ R2N×Nw , while the control input is u ∈ RNw . One
can imagine that, for a reservoir with thousands of active grid blocks, A and B are very large
matrices, which indicates an expensive computational time. One trick that can be used is to
split the pressure and saturation equations using an operator splitting method and then to per-
form the computation using different time scales. Because the pressure change is relatively
slow compared with the saturation, we can use a wider time step.

3.2.3 Well Model
The wells are modeled using the standard Peaceman well model as follows

qj(t) = αj(t)wj(sj)(pjR − p
j
bh(t)), j ∈ {Ninj ,Nprod} (3.36)
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where the αj(t) denote the valves opening, pR is the reservoir pressure, and the productivity
index wj is computed by the following formula

wj(sj) =
2πkj∆z

ln
(
0.14

√
∆x2 +∆y2/rw

)
+ S

+
(
kro(sj)
µo

+
krw(sj)
µw

)
(3.37)

If the valve setting αj(t) is considered to be the control variable, then the term qj(t) in
u is replaced by αj(t) and the corresponding entries in B̃ are modified to include the term
wj(sj)(pjR − p

j
bh(t)). On the other hand, if pjbh is considered to be the control variable, then

the term qj(t) in u is replaced by pjbh and the corresponding entries in B̃ and Ã are modified
to include the term wj(sj).

3.3 Gradient Formulas
In this section, the gradient of the switching time control is calculated by using the steps
presented in Teo et al. (1991). Suppose that the valve settings are considered to be the control
variables. We start with the parameterizations of the control input u over the time horizon
[0,T ].

The jth component αj for j = 1, · · · ,Nw of the input control vector u ∈RNw is considered
to be a piecewise constant function over the interval [0,T ] with switches at tj1, · · · , t

j
Mj

. Let

t
j
0 = 0, and tjMj+1

= T ; the switching time tjk , k = 1, · · · ,Mj can be distinguished such that

0 = tj0 < t
j
1 < · · · < t

j
Mj
< t

j
Mj+1

= T (3.38)

Mathematically, αj(t) can be written in the following form

αj(t) =
Mj∑
k=0

γ
j
kχ[tjk ,t

j
k+1)

(t) (3.39)

where the basis of the piecewise constant function is given as

χI (t) =

1, t ∈ I
0, otherwise

(3.40)

and the multiplier coefficient γ jk is given by

γ
j
k =

1, k ≥ 0 is an even number
0, k ≥ 0 is an odd number

(3.41)

52



Let us define the vectors of the switching time as

vj = [tj1, · · · , t
j
Mj

]ᵀ (3.42)

and the augmented vector of the switching time as

v = [(v1)ᵀ, · · · , (vNw)ᵀ]ᵀ (3.43)

The symbol u(·|v) will be used to describe a control input that is determined by the switch-
ing vector v. The Hamiltonian based on (3.7) is defined as follows

H(x(t),u(t),λ(t)) = L(x(t),u(t)) +λᵀ(t) (A(x(t))x(t) +B(x(t))u(t)) (3.44)

Let sj0 = sjMj+1
= 0 and sj = [sj1, · · · , s

j
Mj

]ᵀ be an arbitrary but fixed dummy vector of times.
Furthermore, let ε be a sufficiently small positive constant such that

0 ≤ tj1 + εsj1 ≤ · · · ≤ t
j
Mj

+ εsjMj
≤ T (3.45)

Define a perturbation vector of well j as

ϑj(ε) = [· · · , (vj−1)ᵀ, (vj + εsj)ᵀ, (vj+1)ᵀ, · · · ] (3.46)

Let t ∈ [tjl +εsjl , t
j
l+1 +εsjl+1] for some l ∈ {0, · · · ,Mj}, then the explicit solution for (3.34) can

be written as follows

x(t|ϑj(ε)) = x(0) +
l−1∑
k=0

∫ t
j
k+1+εsjk+1

t
j
k+εsjk

(3.47)(
A(x(τ |ϑj(ε)))x(t|ϑj(ε)) +B(x(t|ϑj(ε)))γ jk

)
dτ

+
∫ t

t
j
l +εs

j
l

(
A(x(τ |ϑj(ε)))x(t|ϑj(ε)) +B(x(t|ϑj(ε)))γ jk

)
dτ

Furthermore, the first variation in the state vector x can be computed as follows

∆x(t) ,
dx(t|ϑj(ε))

dε
|ε=0

=
∫ t

0

∂ (A(x(τ |v))x(τ |v) +B(x(τ |v))u(τ |v))
∂x

∆x(τ)dτ

+
∫ t

0

Mj∑
k=0

(A(x(τ−|v))x(τ−|v) +B(x(τ−|v))u(τ−|v))

×sjkδ(τ − tjk)dτ

−
∫ t

0

Mj∑
k=0

(A(x(τ+|v))x(τ+|v) +B(x(τ+|v))u(τ+|v))

×sjkδ(τ − tjk)dτ (3.48)
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where δ(·) is the Dirac delta function while the right and left limit are defined as x(t+|v) =
limτ→t+ x(τ |v) and x(t−|v) = limτ→t− x(τ |v), respectively. The derivative of the first varia-
tion of the state vector x can be computed as follows

∆ẋ(t) =
∂ (A(x(t|v))x(t|v) +B(x(t|v))u(t|v))

∂x
∆x(t) (3.49)

+
Mj∑
k=0

(A(x(t−|v))x(t−|v) +B(x(t−|v))u(t−|v))sjkδ(t − tjk)

−
Mj∑
k=0

(A(x(t+|v))x(t+|v) +B(x(t+|v))u(t+|v))sjkδ(t − tjk)

The first variation in the objective function J can be computed as follows

dJ(ϑj(ε))
dε

|ε=0 =
∂ψ(x(t|v))

∂x
∆x(T ) +

∫ T

0

∂L(x(t|v),u(t|v))
∂x

∆x(t)dt

+
∫ T

0

Mj∑
k=0

(L(x(t−|v),u(t−|v)))sjkδ(t − tjk)dt

−
∫ T

0

Mj∑
k=0

(L(x(t+|v),u(t+|v)))sjkδ(t − tjk)dt (3.50)

Using the definition of H , (3.49), and the following integration by parts∫ T

0
(λ(t|v))T∆ẋ(t)dt =

∂Φ(x(T |v))
∂x

∆x(T ) (3.51)

+
∫ T

0

∂H(x(t|v),u(t|v),λ(t|v))
∂x

∆x(t)dt

The second term of the right hand side of the above equation can be computed as follows∫ T

0

∂L(x(t|v),u(t|v))
∂x

∆x(t)dt (3.52)

= −
∂ψ(x(T |v))

∂x
∆x(T )

+
∫ T

0
λᵀ(t|v)

Mj∑
k=1

(A(x(t−|v))x(t−|v) +B(x(t−|v))u(t−|v))sjkδ(t − tjk)dt

−
∫ T

0
λᵀ(t|v)

Mj∑
k=1

(A(x(t+|v))x(t+|v) +B(x(t+|v))u(t+|v))sjkδ(t − tjk)dt
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Because

dJ(ϑj(ε))
dε

|ε=0 =
dJ(v)
dvj

sj (3.53)

substituting (3.52) into (3.50) yields

∂J(v)
∂vj

sj =



H(x(t−1 |v),u(t−1 |v),λ(t−1 |v))
−H(x(t+1 |v),u(t+1 |v),λ(t+1 |v))

...
H(x(t−Mj

|v),u(t−Mj
|v),λ(t−Mj

|v))
−H(x(t+Mj

|v),u(t+Mj
|v),λ(t+Mj

|v))



ᵀ

sj (3.54)

Hence, for each j = 1, · · · ,Nw, the gradient of the function J with respect to vj is given by

∂J(v)
∂vj

=



H(x(t−1 |v),u(t−1 |v),λ(t−1 |v))
−H(x(t+1 |v),u(t+1 |v),λ(t+1 |v))

...
H(x(t−Mj

|v),u(t−Mj
|v),λ(t−Mj

|v))
−H(x(t+Mj

|v),u(t+Mj
|v),λ(t+Mj

|v))


(3.55)

where the right and left limit are defined as

H(t+|v) = lim
τ→t+

H(τ |v) (3.56)

H(t−|v) = lim
τ→t−

H(τ |v) (3.57)

3.4 The Halving Interval Method
The switching time gradient obtained from (3.55) is used to determine the optimal switching
time control. Here, we use the halving interval method because it’s convergence is guaran-
teed. The basic idea is to shrink the interval of the time horizon by one-half. The algorithm
is presented below.

Because the method is gradient based, the solution is locally optimal when it converges.
An illustration of the halving interval method can be observed in Fig. 3.1, where the solution
converges in 8 iterations.

3.5 Issues on Practical Implementation
It has been shown that for regular linear and nonlinear optimal control problems involving
nth order systems, the optimal solution has at most n switching times (Bellman, 1956; Suss-
mann, 1979). Because in practice the number of grid blocks might be in the millions and the
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Input: t0, tf ,ε
Output: ts
while |tf − t0| ≥ ε do

ts =
tf −t0

2 ;

Compute ∂J(ts)
∂t ;

if ∂J(ts)∂t < 0 then
t0 = ts;

else
tf = ts;

end
end

Algorithm 1: The halving interval method algorithm.

Figure 3.1: Ilustration of the halving interval method. The interval shrinks by half at each iteration.
Here, the iterations are from 1 to 8.

number of wells might be in the dozens, the method does not appear to have much practical
usefulness. Therefore, a pragmatic approach appears to be possible by setting the number of
switching time to a reasonable number in comparison to the computational time.

Another limitation occurs when computing the left and right limit of the Hamiltonian
sufficiently small time steps are required. On the other hand, one step of the reservoir simu-
lation will require a significant amount of computational time, hence, in practice, larger time
steps are usually used. To overcome this issue, in each simulation, the quality of the gradient
should be checked by the finite difference.

3.6 Numerical Examples

Two cases are presented. The first is a simple two-dimensional case with a two-phase oil-
water system, while the other is a three-dimensional reservoir that has realistic grids and well
settings for a two-phase oil-water system. The aim is to maximize the following NPV
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max
v

JNPV =
∫ T

0

 ∑
j∈Nprod

r
p
o (t)qjo(t)−

∑
j∈Nprod

r
p
wq

j
w(t) +

∑
j∈Ninj

r iwq
j
w(t)


× 1(

1 + I
100

)ct dt (3.58)

subject to the dynamical system described in (3.34)-(3.35) and the control constraint
(3.38). The simulations were run using the MRST simulator (Lie et al., 2012).

3.6.1 Case 1
Consider a two-dimensional oil reservoir with one injection well and two production wells
given in Fig. 3.2. The permeability distribution is composed of high and low permeability
channels (Fig. 3.3). Intuitively, to retrieve as much oil as possible, production well no. 2 will
initially be closed, while production well no. 1 will be fully open. In this example, our aim is
to find the optimal switching times of both production wells such that (3.58) is maximized.

The injection rates are set to be constant for the injection wells at 500 Sm3/day. The
oil and water viscosity are set at 5 × 10−3 Pa.s and 1 × 10−3 Pa.s, while their density is
859 kg/m3 and 1014 kg/m3, respectively. The reservoir pressure pR is 400 bara. The oil
and water production price are rpo = 630 USD/m3 and rpw = 63 USD/m3, while the water
injection price is r iw = −63 USD/m3. The discount factor is I = 10%.

The control variables are the switching times of the valve opening in both production
wells, namely t11 and t21 . The optimization is run for 512 days. The result is compared with
the reactive control method, in which the well is operated at maximum production rates and
will be shut after the well is no longer profitable. In this case, the water cut threshold is 0.82.
Reactive control is commonly used in the petroleum industry.

The saturation result can be observed from Fig. 3.4 and Fig. 3.5. Here, the switching
time method gives a better sweep efficiency compared to the reactive control method. The
well control profile can be observed in Fig. 3.6. It should be noted that, at each iteration,
the gradient quality of the objective function is checked with the finite difference method.
Fig. 3.7 shows the evolution of the objective function from the halving interval method. The
NPV after 512 days from the switching time method is USD 2.84× 108 while from reactive
control, it is USD 2.35× 108.
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3.6.2 Case 2
For the second case, consider the realistic three-dimensional oil reservoir given in Fig. 3.8.
The reservoir is taken from Lie et al. (2012). The number of active grid blocks is 13,420. The
reservoir is completed with two injection wells and one multi-lateral production well. The
multi-lateral production well is connected to two horizontal wells. Each horizontal well is
installed with inflow control devices that can be used to control the flow rates or BHPs, i.e.,
both horizontal wells are controllable via the valves opening. The permeability distribution
is given in Fig. 3.9.

The injection rates are set to be constant for both of the injection wells, at the value of
500 m3/day. All of the reservoir properties and prices are set to be the same with case no. 1.
The control variables are the switching times of the valve opening in both of the horizontal
production wells, namely t11 , t12 , t21 , and t22 , i.e., M1 = M2 = 2. The optimization is run for
512 days.

In practice, the wells will be produced at maximum production rates in the first weeks
to clean up the well from the brine set during completion and to obtain a good clean-up of
the nearby well reservoir. Therefore, in the switching time method the wells will initially
be fully open. In this case, the initial switching times are: t11 = 128 days, t12 = 384 days,
t21 = 256 days, and t22 = 384 days, i.e., the well is closed between 128 days and 384 days
for horizontal well no. 1 and between 256 days and 384 days for horizontal well no. 2.
From this initial condition, the switching time algorithm will be used to find the optimal
switching time.

Fig. 3.10 shows the optimal switching time control for both horizontal wells. Using
the proposed method, we obtain t11 = 222 days, t12 = 342 days, t21 = 342 days, and t22 =
510 days, i.e., the well is shut between 222 days and 342 days for horizontal well no. 1
and between 342 days and 510 days for horizontal well no. 2. The reactive control method
is shown by the dashed line. Fig. 3.11 shows the comparison of the objective function of the
switching time method and the reactive control method. It can be observed that the switching
time method yields a higher NPV. A typical run-time was 4 minutes on an Intel core duo
processor 1.66 GHz computer.

3.7 Conclusions
In this chapter, an optimal switching time method for an oil reservoir, given that the optimal
settings of the wells are to be bang-bang controls, was presented. The bang-bang control has
a major practical advantage because it can be implemented with simple on-off valves. The
reservoir model is written in a state space representation and was assumed to be free from
uncertainty. The optimal control settings are obtained based on a gradient calculation using
the adjoint method combined with the halving interval method. Two examples of realistic
reservoirs show that the proposed method can be used to increase oil revenue significantly.
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Nomenclature

Symbols
A = state matrix
B = input matrix
H = Hamiltonian
J = objective function
u = control vector
U = control space
v = switching time vector
x = state vector
λ = Lagrange multiplier
c = compressibility
f = fraction
I = discount factor
k = permeability
p = pressure
q = source or sink term
r = price
s = saturation
u = fluid velocity
N = number of well
N = set of positive integer
µ = viscosity
φ = porosity
ρ = density

Scripts
0 = initial
o = oil
g = gas
w = water
r = relative
inj = injection
prod = production
bh = bottom hole
ᵀ = transpose
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Figure 3.2: Position of the injection well (red), production well no. 1 (green) and production well no.
2 (black).

Figure 3.3: Permeability distribution of the reservoir comprising high and low permeability regions.
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Figure 3.4: Final oil saturation using the reactive control method.

Figure 3.5: Final oil saturation using the switching time method.
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Figure 3.6: Rate profile from the switching times method for production well no. 1 (up) and produc-
tion well no. 2 (down).

Figure 3.7: Evolution of the objective function using the halving interval method.
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Figure 3.8: Grid and well positions for case 2.
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Figure 3.9: Permeability distribution for case 2.
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Figure 3.10: Comparison of the objective function. The dashed line is from the switching method
while the straight line is from the reactive control.

Figure 3.11: Rate profile from the switching time method for the first horizontal well.
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Chapter 4
Decision Analysis for Long-term and
Short-term Production Optimization

This chapter is based on a paper which has been submitted to the SPE Reservoir Character-
isation and Simulation Conference and Exhibition 2013.

4.1 Introduction
Technically speaking, on average, less than half of the oil in reservoirs that can be produced,
mainly due to low permeability regions and strength of the natural drives. With technological
advances, however, the remaining oil in the reservoirs that have been difficult to produce
is now accessible. The use of secondary recovery techniques such as gas lift and water
injection have increased oil recovery significantly. A more advanced method like enhanced
oil recovery (EOR) is even better (Lakatos, 2005). These methods are now supported by the
installation of inflow control devices (ICD) in horizontal wells to control the production and
injection rates (Fernandes et al., 2009). Since technologies are expensive, the question is how
to use these technologies in an optimal manner.

Optimization may be performed in different field development stages using different kind
of methods by different people. An optimization problem may involve many variables, pa-
rameters, and constraints where the result eventually leads to a decision. In reality, the deci-
sion is often a trade-off where we can’t increase the value of one objective without decreasing
the value of the other. As an example, in an early stage of field development when drilling
a new well, in order to reduce formation damages and thus increasing well productivity, one
may use underbalanced drilling instead of conventional (overbalanced) drilling. However,
underbalanced drilling is much more expensive since more people are involved and some ad-
ditional equipments need to be installed (Eck-Olsen et al., 2004). In this case, an economical
analysis which includes risk analysis needs to be done.

From an operational point of view, a decision on how to operate the wells is also critical.
Optimization is performed by both the reservoir and the production engineers. There is a sig-
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Figure 4.1: Illustration of oil production rate from different approaches.

nificant difference between the two approaches regarding the solution strategy. The reservoir
engineers aim to obtain an optimization strategy for the whole reservoir life time, while the
production engineers tend to optimize the production on a daily basis. The different solution
strategies can be illustrated in Fig. 4.1. Here, the production engineer strategy is to produce
the oil at the maximum rate in the beginning of the production and as the time goes by, the
oil production will decrease. On the other hand, the reservoir engineer strategy is to produce
the oil at a lower rate in the beginning and gradually increase the rate towards the end. The
question is which strategy is the best? Since there are so many and large uncertainties present,
for instance from the oil price, one may prefer to choose the short-term strategy. However,
a significant amount of oil may be left in the reservoir at the end of production. Using the
long-term strategy, one may gain more oil from the reservoir at the end of the production;
however, this will require good information about the reservoir. Therefore, a systematical
decision analysis is needed to balance the short-term and long-term strategy (van Essen and
Van den Hof, 2011; Chen et al., 2012; Stenger et al., 2009).

In this chapter, we present a novel approach to systematically integrate long-term and
short-term production optimization. The approach is based on a priori articulation of prefer-
ences, i.e., the decision maker is allowed to specify preferences which may be articulated in
terms of goals or the relative importance of long-term and short-term objective. The approach
is applied to a simplified model of the south wing of the Voador field in the Campos basin,
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Brazil. The results are presented as surface Pareto-like plots which can be used for decision
support to balance long-term and short-term goals.

4.2 The Voador Field
The Voador field is located in the Campos basin about 100 miles off the coast of Brazil at
an average water depth of 565 m. The reservoir is a friable Marlim Sandstone known as the
Carapebus Formation (Oligo-Miocene age). It is a solution gas drive reservoir that has been
evenly depleted to below the bubble point pressure. It has two non-communicating reservoirs,
namely the north and south wings (Lorenzatto et al., 2004).

The south wing started to produce in November 1992 via production well PROD1. In
order to maintain the reservoir pressure, an injection well INJ1 was drilled in 1999. The
injection well is a multilateral well and has been reported to be the first level five multilat-
eral well (based on Technology Advancement for Multilaterals (TAML) standard) completed
from a semi-submersible rig (Pasicznyk et al., 1999). The injection well installation was a
big success as it boosted the oil production to 6000 Sm3/day. However, the peak production
did not last long. To increase the oil production, several production wells PROD2, PROD3,
and PROD4 were drilled sequentially.

Today, the field is in its mature stage. The total oil production is less than 800 Sm3/day
and the water cut is above 0.9 for some production wells. After the reservoir pressure depleted
below its bubble point pressure, the reservoir is also producing free gas. In 2011, the GOR
for every production well is less than 80 Sm3/Sm3.

4.3 Mathematical Model
In this section, we present the simulator used in this research. Further, the concept of the
adjoint method is also briefly discussed. The simulator is part of the Matlab Reservoir Simu-
lator Toolbox (MRST). It is developed by SINTEF and is available online for free download
under the terms of the GNU General Public License (GPL) (Lie et al., 2012).

4.3.1 Reservoir Model.
The simulator employed here uses the following basic assumptions:

1. Two-phase incompressible flow

2. Neglecting gravity

3. Zero capillary force

4. No-flow at the outer boundary of the reservoir
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Since the presence of gas is not significant is the example, assumption 1 is assumed to hold.
The pressure equation for the model may be given by

~v = −Λ(s)K∇p (4.1)
∇ · ~v = q (4.2)

where ~v denotes the Darcy velocity, Λ is the total mobility, s is the water saturation, K is the
permeability tensor, and q is the fluid source term. The corresponding saturation equation is
given by

φ
∂s
∂t

+∇ ·
[
f (s)~v

]
= qw (4.3)

where φ denotes the effective porosity, f is the water fractional flow function, and qw is the
water source term. Let v denote the outward face fluxes and well-perforation rates, s is the
saturation cell, p is the pressure cell, and π is the face pressures and well pressures. The
system corresponding to the pressure equation (4.1) at time tn can be written in the formB(sn−1) C D

Cᵀ 0 0
Dᵀ 0 0


 vn

−pn
πn

 =

 00
vn
Γ

 (4.4)

where B(sn−1) and C are block diagonal matrices. The block in B corresponds to a cell i is[
Λ(sn−1

i )Ti
]−1

with an extended diagonal entry
[
Λ(sn−1

i )WIi
]−1

for every well perforating
cell i. Here, Ti denotes the transmissibility matrix while WIi is the well productivity index.
Each block in matric C has an ni × 1 vector of ones, where ni is the number of faces plus
the number well perforations in cell i. Further, each column of the matrix D corresponds to
a unique face or well face and has unit entries in the positions of the face/well face in the
cell wise ordering. The vector vn

Γ
has a zero entry corresponding to every face. Splitting the

vector πnᵀ =
[
(π̂n)ᵀ πnD

ᵀ
]

and the matrix D =
[
D̂ DD

]
, the system becomes

B(sn−1) C D̂
Cᵀ 0 0
D̂ᵀ 0 0


 vn

−pn
π̂n

 =

A
n
Du+bnD

0
AnNu+bnN

 (4.5)

where AnD and AnN are sparse matrices and u denotes a control input vector of piecewise con-
stant pressures or rates for a given set of the wells at timestep tn. The subscriptD corresponds
to bhp-controlled wells (Dirichlet boundary condition) while the subscript N corresponds to
rate-controlled wells (Neumann boundary condition). The vectors bnD and bnN are all zeros
except at entries corresponding to non-controllable boundary conditions. For more detail see
Krogstad et al. (2011).

Next, using the standard upstream weighted implicit finite-volume method, the saturation
equation (4.3) may be written in the following form

sn = sn−1 + δtnD−1
P V [A(vn)f (sn) +q(vn)+] (4.6)

where δtn is the timestep, DP V is the diagonal matrix containing the cell pore volumes, A(vn)
is the sparse flux matrix, and q(vn)+ is the vector of positive cell sources (injection rates).
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4.3.2 Adjoint Method.
The adjoint method is the most efficient way to compute gradients for reservoir models (see,
e.g., Foss (2012)) which later will be used for optimization purposes.

The adjoint model for a simulator consisting of a multi-scale pressure solver and a satu-
ration solver that works on flow-adapted grids is implemented in the MRST (Krogstad et al.,
2011). Let xn = (vn,pn,πn,sn) and un as the control input variables. Each time step of
(4.5)-(4.6) can be re-written in a compact form as

Fn(xn,xn−1,un) = 0 (4.7)

where x and u are the stacked state and control inputs for all time steps. The pressure and
saturation equations (4.5)-(4.6) may be written in a compact form as F(x,u). Let J(x,u) be
an objective function and denoted by ∇uJ the gradient of J with respect to u. Introducing an
auxiliary function Jα as

Jα(x,u) = J(x,u) +αᵀF(x,u) (4.8)

where α = α
(
αv,αp,απ̂,αs

)
is a vector of Lagrange multipliers. The gradient ∇uJα is

given by

(∇uJα)ᵀ =
∂J
∂u

+
∂J
∂x

dx
du

+αᵀ
∂F
∂u

+αᵀ
∂F
∂x

dx
du

+Fᵀ
dα
du

(4.9)

which reduces to

(∇uJα)ᵀ =
∂J
∂u

+αᵀ
∂F
∂u

(4.10)

when α obeys the adjoint equations

∂Fᵀ

∂x
α = −∂J

ᵀ

∂x
(4.11)

Remark that in (4.7), the matrix ∂F
∂x has a block structure with blocks ∂F

n

∂xn on the main diagonal

and ∂Fn+1

∂xn on the lower diagonal. Applying this to (4.11), the adjoint equations for time step
n are given as

∂Fnᵀ

∂xn
αn +

∂Fn+1ᵀ

∂xn
αn+1 = −∂J

nᵀ

∂xn
(4.12)

The above equation is solved backward in time to obtain α. Now the gradient with respect to
time step n can be computed by the following equation

∇unJα =
∂Jᵀ

∂un
+
∂Fnᵀ

∂un
αn (4.13)
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For ease of notation, define

g(v,s) = δtD−1
P V [A(v)f (s) +q(v)+] (4.14)

Finally, substituting (4.5) and (4.6) into (4.12), the adjoint equation for timestep n are ob-
tained as follow[

I−
∂g(vn,sn)
∂sn

]ᵀ
αns = αn+1

s − ∂J
nᵀ

∂sn
−
[
∂B(sn)vn+1

∂sn

]ᵀ
αn+1
v (4.15)

B(sn−1) C D̂
Cᵀ 0 0
D̂ᵀ 0 0


α

n
v

αnp
αnπ̂

 =

−
∂Jnᵀ

∂vn + ∂g(vn,sn)ᵀ

∂vn αns
0
0

 (4.16)

Once the adjoint equations have been solved, the gradient of the objective function J at
timestep n is given by

∇unJ =
∂Jᵀ

∂un
−AnᵀD α

n
v −A

nᵀ
N α

n
π̂ (4.17)

4.4 Long-term and Short-term Optimization
In this section, the notation JNPV (x,u;b) will be used to describe an objective function that
depends on the state variable x, control variable u, and parameter b. This objective function
will be maximized (or minimized) using piecewise constant functions of flow rates or well
pressures as the control variables. Suppose the control variable is the flow rate q.

The objective takes the following form of the net present value (NPV)

JNPV (x,q;b) =
∫ T

0

 ∑
j∈Nprod

r
prod
o q

j
o(x(t))−

∑
j∈Nprod

r
prod
w q

j
w(x(t))−

∑
j∈Ninj

r
inj
w q

j
w(x(t))


1(

1 + b
100

)ct dt (4.18)

where rprodo , rprodw , and r injw denote the oil production price, water production cost, and water
injection cost, respectively. The discount factor is denoted by b and consider as the parameter,
while c is the time constant. Due to production constraints, the flow rate vector q has an upper
and lower bound

qLB ≤ q ≤ qUB (4.19)

To solve the optimization problem of (4.18) with respect to the dynamical system (4.5)-
(4.6) and the bound constraints (4.19) on the interval [0,T ], the gradient is calculated by the
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adjoint method described in the previous section. Further, the gradient is used in a line search
algorithm to find an optimal control setting q.

The discount factor b will be used to move emphasis between short-term and long-term
optimization. Setting b = 0 focuses on recovery while large b values stresses high production
on a short-term horizon. There is clear analogy to the reservoir management and reservoir
engineers who focus on long-term effects, and daily operations and production engineers who
emphasize short-term effects. In the following qLT and qST will denote strategies which
focus on long-term and short-term horizons, respectively.

As a consequence of the long-term versus short-term planning horizons, the production
profiles may differ quite substantially, i.e., qLT and qST differs. In the short-time horizon,
the JNPV (x,qST ;b) is usually higher than JNPV (x,qLT ;b), while in the long-time horizon it
is vice versa. When it comes to decision making, one may prefer to choose qST instead of
qLT since there is a lot of uncertainties in the long term prediction provided by the model and
from the future oil price. However, a decision based only on qST might not be well founded
in a life cycle perspective. Therefore, a method to balance these objectives is justified.

In the following, the method will be introduced in a stepwise manner.

1. The NPV (4.18) is maximized using the adjoint method for a reasonable b value; e.g.,
b = 10% along the time horizon. This will be called our ”true” long-term NPV and the
rate strategy will be denoted by qLT .

2. The same NPV (4.18) with b = 10%, is evaluated using the strategy obtained from the
reactive control, where the strategy is defined for an appropriate water cut value, and
plotted in the same figure as the NPV in the first step. This will be called our ”true”
short-term NPV and the rate strategy will be denoted by qST .

3. Define two NPVs using two different discount factors; e.g., bUB = 0% and bLB = 75%,
where UB and LB stand for upper and lower bound, respectively. The idea here is
to introduce a heuristic for some upper and lower bound of the NPV, where the upper
bound represents the long-term objective while the lower bound represents a short-term
perspective.

4. Next, we define a new objective which basically is the convex combination between
the heuristic upper bound (long-term) and the heuristic lower bound (short-term) in
step 3 and perform an optimization, e.g., using the adjoint method. Using this ap-
proach, the long-term and short-term optimization can be solved simultaneously using
an optimization method. For every convex combination, a new production profile qλ
will be obtained. This method is called the weighted-sum and will be presented in the
next section.

5. Every qλ will be used to generate NPV with b = 10%. Remark that the NPV from step
1, step 2, and this step have the same discount factor and each of them will represent a
trade-off between long-term and short-term optimization.
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6. Finally, a Pareto-like plot is generated. The vertical axis shows the NPV on the horizon
T while the horizontal axis shows NPV on a much shorter horizon. This visualizes the
trade-off between long-term and short-term considerations.

It is important to note that the choice of the upper and the lower bound is subjective.
However, to simplify the problem, in this chapter the upper and the lower bound is created
from (4.18) by changing the discount factor b.

4.5 Weighted-Sum Method
Let’s consider the following augmented function

JNPV (x,qλ;bUB,bLB) = λ ∗ JNPV (x,q;bUB)︸            ︷︷            ︸
long-term NPV

+(1−λ) ∗ JNPV (x,q;bLB)︸           ︷︷           ︸
short-term NPV

(4.20)

Here, the function JNPV (x,qλ;bUB,bLB) is a convex combination of the heuristic upper bound
JNPV (x,q;bUB) and lower bound JNPV (x,q;bLB) of the NPV. The parameter λ varies from
zero to one. Solving an optimal control problem with (4.20) as the objective yields a new
input solution (strategy) qλ. By varying λ, a set of input solutions can be obtained. The input
solution qλ will be used to compute the actual JNPV (x,qλ;b). It can be observed from (4.20)
that the choice of λ represents the priori articulation preference of the decision maker.

This approach is adopted from multi-objective optimization (MOO). In MOO, the solu-
tion is not a single point but rather a collection of solutions known as the Pareto frontier
(Marler and Arora, 2004). For bi-objective optimization problems, the frontier may be ob-
tained by plotting both objectives in x and y Cartesian coordinates. It has been shown that
for positive coefficients of the weighted-sum method, the solution is always Pareto optimal
(Zadeh, 1963). Therefore, any solution of (4.20) is a Pareto solution in the design space.
However, since the method presented here in not using the actual objective functions and
since no global solution is guaranteed, we do not claim that our solution is Pareto optimal.
In fact, since the choice of the upper and lower bounds may be different, a solution may be
dominated by the other and hence the solution may not Pareto optimal. In spite of these short-
comings, the solutions may still be used by the decision maker since it considers a trade-off
between short-term and long-term strategies. Using the weighted-sum method, the computa-
tional effort to find a set of solutions can be performed by parallel computation.

4.6 Numerical Simulations
The simulation uses data from the south wing of the Voador field. The permeability and
porosity field are shown in Fig. 4.2 and Fig. 4.3, respectively. The time horizon for this
simulation is 10 years. In this study, we first observed the difference between the long-term
and short-term optimization strategy in term of the NPV. To this end, the long-term strategy
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will be computed using the adjoint-based optimization while the short-term strategy will be
computed by the reactive control.

We consider the actual discount factor as b = 10% while the upper and lower bound of
the NPV may be obtained by using bUB = 0% and bLB = 75%. The oil production price is
chosen at 630 USD/Sm3, water production cost is 63 USD/Sm3, and water injection cost is
63 USD/Sm3. The water cut threshold is 0.82.

In this simulation, all values presented in the figures have been normalized. As can be
seen from Fig. 4.4, using a 10% discount factor, in the short time horizon (less than 700
days) the NPV of the short-term strategy JNPV (qST ;10%) is significantly higher than the
NPV of the long-term strategy JNPV (qLT ;10%). The solution after 10 years, however, is the
opposite. Keep in mind that qST is obtained from reactive control while qLT is obtained from
the long-term adjoint-based optimization.

Next, we introduce the upper and the lower bound of the NPV as can be seen from Fig.
4.5. In this case, the upper bound JNPV (q;0%) and the lower bound JNPV (q;75%) are com-
puted by the adjoint-based optimization. By varying λ, a set of strategies is obtained. A
small λmeans that the decision maker places more weight to the short-term strategy and vice
versa. As an example, Fig. 4.6 and Fig. 4.7 show that using λ = 0.1, we can gain a higher oil
revenue in the short time horizon (500 days) without losing too much revenue after 10 years.
It can be observed also as λ increases, the NPV approaches the long-term objective. This
is consistent with (4.20) where increasing λ means we increase the weight to the long-term
objective.

Fig. 4.8 shows the oil production rate from production well PROD3. It can be observed
that the weighting method solution with λ = 0.1 lies between the long-term and short-term
strategy. This can be interpreted as an intermediate solution between the production engineer
and the reservoir engineer. According to this solution, at the beginning, the oil production
needs to be higher than for the long-term strategy, so that at the end of the production we
can still produce some oil from the well with water cut below its threshold. On the other
hand, using reactive control the well is closed after 8 years of production. To facilitate the
decision maker to choose the desirable strategy, we plot the NPV for the short-term strategy
in a short time horizon and the long-term strategy in a long time horizon as a Pareto-like
curve (Fig. 4.9). As we have explained before, this solution is not Pareto optimal since we
didn’t solve the actual short-term and long-term objectives. The solution, however, shows a
trade-off between the two optimization approaches. It is possible also to use a non-constant
convex coefficient in the augmented function (4.20). To this end, let’s consider the following
augmented function

JNPV (q;bUB,bLB;c) =
(
1− e−µt

)
∗ JNPV (q;bUB) + e−µt ∗ JNPV (q;bLB) (4.21)

In this case µ > 0 acts as a time scale constant. Using the augmented function (4.21), in
the beginning of the production we give more weight to the short-term strategy, while as time
goes by, the weight is shifted to the long-term strategy. However, as can be observed from
Fig. 4.10, using two different time scale constants, no improvement can be made compared
to the constant convex coefficient. Even though it seems the solution resulting from the
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weighed sum method is non-dominated solution, it’s not Pareto optimal. There is a slight
improvement in the oil saturation using the adjoint-based optimization and the weighted-sum
method compared with the conventional reactive control method, as can be seen from Fig.
4.11.

It is also possible to consider bUB and bLB as parameters instead of λ. In this case, λ is
fixed. To this end, we set bUB = 0 while varying bLB. The result for short-term and long-term
optimization is shown in Fig. 4.12 and Fig. 4.13, respectively. Using smaller bLB the NPV
approaches the long-term objective since the bound becomes tighter. Finally, Fig. 4.14 shows
the NPV surface plot for different λ and bLB.

4.7 Conclusions
In this chapter, we have presented a novel approach to short-term and long-term produc-
tion optimization problem. The approach, called the weighed sum method, is adopted from
multi-objective optimization method where the solution is not a single solution but rather a
collection of points. To this end, we introduce upper and lower bounds of the objective func-
tion. The reason to introduce these functions is that the objective function can be written in a
different form, while in reality the short-term and long-term optimization is performed with
the same objective but different methods. The idea is then to solve a bi-objective optimiza-
tion problem for the upper and lower objective functions and project the solution onto the
original objective. Further, the method is tested on a simplified reservoir model of the South
wing of the Voador field located in the Campos basin of Brazil. The result is presented in
a Pareto-like plot and surface plot decision where the decision makers may choose different
strategies based on their articulation of preferences.
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Nomenclature
Symbols

~v = Darcy velocity
Λ = total mobility
λ = weighted coefficient
K = permeability tensor
q = source term
φ = porosity
f = water fractional flow
v = outward face fluxes and well-perforation rate
s = saturation cell
p = pressure cell
π = face and well pressures
α = vector of Langrangian multiplier
J = objective function
k = isotropic permeability
T = final time
b = discount factor
r = price
s = saturation

Scripts
o = oil
g = gas
w = water
inj = injection
prod = production
NPV = net present value
ᵀ = transpose
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Figure 4.2: Permeability distributions.

Figure 4.3: Porosity distributions.
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Figure 4.4: Normalized NPV of the long-term optimization (red) using adjoint-based optimization
and short-term optimization (blue) using reactive control.

Figure 4.5: Normalized upper bound (black line) and lower bound (dashed line) of the NPV. The
long-term and short-term strategy are computed with 10 % discount factor while the upper and lower
bound are computed with 0% and 75% discount factors, respectively.

79



Figure 4.6: Normalized NPV in a short time horizon (500 days) for different λ. The weighted-sum
method (WM) solutions are lies between the long-term and short-term NPV.

Figure 4.7: Normalized NPV in a long time horizon (10 years) for different λ. The weighted-sum
method (WM) solutions are also lies between the long-term and short-term NPV.
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Figure 4.8: Oil rate from production well PROD3 using different strategies; reactive control (blue),
adjoint-based optimization (red), and the weighted-sum method (black).
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Figure 4.9: Pareto-like plot of NPV of the long-term and short-term optimization for bUB = 0% and
bLB = 75%.

Figure 4.10: Pareto-like plot of NPV of the long-term and short-term optimization with red dots
indicated the use of non constant coefficient in the weighted-sum method.
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Figure 4.11: Initial saturation (upper left), final saturation using the reactive control (upper right),
final saturation using the weighted-sum method with λ = 0.1, bUB = 0%, and bLB = 75% (lower left),
and final saturation using the adjoint-based optimization (lower right).
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Figure 4.12: Normalized NPV in a short time horizon (500 days) for different bLB. The weighted-sum
method (WM) solutions are lies between the long-term and short-term NPV.

Figure 4.13: Normalized NPV in a long time horizon (10 years) for different bLB. The weighted-sum
method (WM) solutions are lies between the long-term and short-term NPV.
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Figure 4.14: Surface plot decision of the long-term and short-term NPV. It was created by varying the
weight coefficient λ and the lower bound of the discount factor bLB.
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Chapter 5
Boundary Stabilization of the Wave
Equations

This chapter is based on Hasan and Foss (2011) which has been published in the proceedings
of the 18th IFAC World Congress, ISBN 978-3-902661-93-7, pp. 6771-6776 and Hasan et al.
(2013a) which has been published in Systems and Control Letters, vol 62:1, 2013.

5.1 Introduction
Two equations are usually used as models of waves on shallow water surfaces. The Benjamin-
Bona-Mahony (BBM) equation, sometimes known as the regularized long wave equation,
can be used to approximate the unidirectional propagation of long waves in certain nonlinear
dispersive systems (Benjamin et al., 1972). The equation was proposed as an alternative to
the well-known Korteweg-de Vries (KdV) equation (Korteweg and de Vries, 1895). The main
motivation for introducing the BBM equation is the fact that the local Cauchy problem in the
energy space is much easier for the BBM equation than for the KdV equation, whereas the
BBM equation describes a relevant physical situation as does the KdV equation. However,
while the KdV equation is a completely integrable model, the BBM equation is not. This
limitation prohibits extension of the inverse scattering theory developed for the KdV equation
to the BBM equation. To this point, the difficulty of the KdV equation and the BBM equation
seem to be comparable Martel et al. (2010).

Despite several complications in the mathematical analysis, it is well known that both
equations perform well as mathematical models for long time evolution of the nonlinear
waves phenomenon. The applications are mostly found in the area of fluid dynamics, such
as: surface water waves in a uniform channel (Bona et al., 1980a), near shore surface waves
with sandbar formation (Socha, 2002), and tsunami propagation from the ocean toward the
beach and toward river channels (Tsuji et al., 1991).

In order to obtain good agreement between experimental observations and the prediction
of the theoretical models, a Burgers-type dissipative mechanism is often appended to the KdV
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and the BBM models to form the KdV-Burgers and the BBM-Burgers equations (Bona et al.,
1980b, 1996). In a bounded domain, these two models are given in the following forms

ut − εuxx + (δuxx +up)x = 0, 0 < x < 1, t > 0 (5.1)
ut − εuxx − (δuxt −up)x = 0, 0 < x < 1, t > 0 (5.2)

where (5.1) is the KdV-Burgers equation, and (5.2) is the BBM-Burgers equation. Here, ε,δ >
0 denote dissipation and dispersion coefficients, respectively, and p ≥ 2 is a positive integer.
Both equations can be considered as models of unidirectional long waves of Boussinesq-type,
and can be applied for instance to describe Tsunami waves in an ocean (Dutykh, 2007).

In the application of surface water waves, the dependent variable u is a real-valued func-
tion which denotes the elevation of the free surface waves relative to its undisturbed position.
The independent variables x and t denote the distance along the channel and the elapsed time,
respectively. The parameter ε expresses the effect of dissipative mechanisms of the waves
medium. This quantity can be interpreted as the medium viscosity. The exponent p ≥ 1 is
presented in the equation to model surface waves with highly nonlinear effects, e.g., inter-
nal wave over a continental slope with arbitrary vertical stratification of ocean density and
background shear flow is modeled by (5.1) with p = 2 (Talipova et al., 1997). Increasing the
exponent can be considered as a generalization of (5.1) and (5.2). Unfortunately, for higher
orders of the nonlinearity (p ≥ 4), and ε less than its critical value εc, the solutions form
singularities in finite time, i.e., solutions blow up in finite time (Bona et al., 1996).

Numerous works have been conducted to investigate the applicability as well as the the-
oretical analysis (well possedness problem) of the initial-boundary value problem for both
(5.1) and (5.2), see e.g., Bona and Dougalis (1980); Coleman and Noll (1960). While the
issue of controllability and stability of the KdV-Burgers, or the simpler KdV equation, has
received much attention since it was introduced in 1895 (Balogh and Krstic, 2000b; Krstic
and Smyshlyaev, 2008), there are to date few results concerning controllability and stability
of the BBM-Burgers equation. Moreover, to the best of our knowledge there are no publica-
tions concerning stabilization of the BBM-Burgers equation by boundary control.

In fluid flow systems, stabilization using boundary control is more preferred than using
distributed control. The reason is that it would be more practically feasible to put sensors
and actuators at the boundary of the system rather than mid-flow. One may imagine wave
generation in a water tank where the generator is placed at the boundary of the tank. Hence,
the contribution of this chapter is to analyze and provide a set of boundary conditions (control
laws) which guarantees stability for systems modeled by the generalized KdV-Burgers and
BBM-Burgers equations. The case when the dispersive effect dominates the nonlinear effect
for the generalized KdV-Burgers equation is also discussed. The existence and uniqueness
of the solution in this chapter for the given systems with the proposed boundary conditions
are conjectured. However, one may consider results by Colin and Ghidaglia (2001) and
Bona et al. (2008) where the well-posedness problem of the generalized KdV-Burgers and
BBM-Burgers equations posed in a bounded domain is solved using the contraction mapping
theorem.

88



5.2 Notation and Definitions

Definition 2. (Bona and Luo, 1995) Denoted by Ck(0,1) is a Banach space of k-times con-
tinuously differentiable functions defined on [0,1]. This space is completed with the norm

‖u(t)‖Ck(0,1) = sup
x∈[0,1], j∈Z={0,1,··· ,k}

|u(j)(x)|. (5.3)

Definition 3. The L2-norm of a function u is denoted by

‖u(t)‖2L2 =
∫ 1

0
u2(x, t)dx, (5.4)

while ∀k ≥ 0, the Sobolev norms are defined as

‖u(t)‖2
Hk ,

k∑
i=0

∫ 1

0

(
∂iu

∂xi

)2

dx, (5.5)

and u ∈Hk(0,1) when ‖u(t)‖Hk is finite.

Definition 4. (Balogh and Krstic, 2000b) The trivial solution (u ≡ 0) of a dynamical system
is said to be globally asymptotically stable in an L spatial norm if

‖u(t)‖L ≤ B (‖u0‖L, t) , ∀t ≥ 0,∀u0 ∈ L, (5.6)

where B(·, ·) is a function with the properties that

• for fixed t, B(r, t) is a monotonically increasing continuous function of r such that
B(0, t) ≡ 0,

• for fixed r, B(r, t) is a monotonically decreasing continuous function of t such that
limt→∞B(r, t) ≡ 0.

The trivial solution is globally exponentially stable when

B(r, t) = kre−δt, (5.7)

for some k,δ > 0 independent of r and t, and it is semi-globally exponentially stable when

B(r, t) =D(r)e−δt, (5.8)

where D(r) is a continuous non-decreasing function with D(0) = 0.
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5.3 The Korteweg-de Vries-Burgers Equation
Consider the boundary stabilization problem of the generalized KdV-Burgers equation in the
following form

ut − εuxx + (δuxx +up)x = 0, 0 < x < 1, t > 0 (5.9)
u(x,0) = u0(x), 0 ≤ x ≤ 1 (5.10)
u(0, t) = 0, t ≥ 0 (5.11)
ux(1, t) = f1(u(1, t)), t ≥ 0 (5.12)
uxx(1, t) = f2(u(1, t)), t ≥ 0 (5.13)

The generalized KdV-Burgers equation is a nonlinear mathematical model describing both
dispersion and dissipation phenomenon. In the case of ε = 0, this equation is reduced to
the generalized KdV equation. The KdV equation together with the nonlinear Schrodinger
equation are considered as universal models for Hamiltonian systems in infinite dimension
(Martel and Merle, 2001b). Bona and Luo (1993) have shown that the KdV is well posed in
certain function spaces.

In this section, the boundary u(1, t) is considered as the measurement while ux(1, t) and
uxx(1, t) are considered as the manipulated control inputs. Thus, we consider the case of
co-located sensing and actuation at the boundary x = 1. The functions f1 and f2 are to be
designed and constitutes our static output feedback control laws.

A fundamental feature of the KdV equation is the existence of a family of traveling waves
(soliton) solutions. It has been shown analytically that if 2 ≤ p < 5 (sub-critical case), all
solutions are global and uniformly bounded in H1 (Martel and Merle, 2001a). When p =
5 (critical case), it has been shown by Merle (2001) the existence of finite time blow-up
solution. For p > 5 (super-critical case), blow-up had been predict numerically (Bona et al.,
1995).

In the case when ε = 0 and p = 2, the equation becomes the original KdV equation, a
nonlinear partial differential equation (PDE) which describes waves on shallow water sur-
faces (Korteweg and de Vries, 1895). The KdV equation is an example of a nonlinear PDE
whose solutions can be exactly specified. This equation may also be used to model acoustic
waves on plasma and crystal lattices. In the case when δ = 0 and p = 2, the equation is
reduced to the Burgers equation, a nonlinear PDE which describes gas dynamics and traffic
flow. Further, if ε = 0 the equation becomes the Inviscid Burgers equation. Mathematical
analysis regarding controllability and boundary controllability of the KdV equation may be
found in Russell and Zhang (1996) and Rosier (1997), while an initial-boundary-value prob-
lem of the KdV equation posed on a finite interval has been resolved recently by Bona et al.
(2009) and Colin and Ghidaglia (2001).

As a next step in the analysis of the system, it is natural to consider boundary stabilization
on a bounded domain. Boundary control stabilization of the KdV-Burgers equation has been
studied by Liu and Krstic (2002) and an improved version by Balogh and Krstic (2000a).
Gao and Deng (2007) consider a case where the dissipation coefficient of the KdV-Burgers
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equation is unknown and a case of the KdV-Burgers equation with time delay. Smaoui and
Al-Jamal (2008) proposed a set of control laws for generalized KdV-Burgers equation using
a Lyapunov approach. However, they used zero Neumann boundary condition which has
been shown by Balogh and Krstic (2000a) to have a poor performance. The control inputs
(5.11)-(5.13) for the initial value problem (5.9) and (5.10) are proposed in the following form

u(0, t) = 0 (5.14)

ux(1, t) = −1
ε

(
c+ p2

c(p+1)2u
2p−2(1, t)

)
u(1, t) (5.15)

uxx(1, t) =
1
ε2

(
c+ p2

c(p+1)2u
2p−2(1, t)

)2
u(1, t) (5.16)

where c > 0 is a constant.
The main result of this section can be stated in the following theorem.

Theorem 1. For any initial conditions u0 ∈ H3(0,1), if the initial value problem of the
generalized KdV-Burgers equation (5.9) with boundary conditions (5.14)-(5.16) has a global
classical solution u(x, t) ∈ C(0,∞;L2(0,1)), than the equilibrium u(x, t) ≡ 0 is globally
exponentially stable in L2-sense.

Proof. Lets take the L2 inner product of the generalized KdV-Burgers equation (5.9) with u,
this yields ∫ 1

0
(uut − εuuxx + δuuxxx + pupux)dx = 0 (5.17)

Using integration by parts and boundary control laws (5.14)-(5.16), each terms of (5.17) may
be computed as∫ 1

0
uut dx =

d
dt

(
1
2

∫ 1
0
u2 dx

)
=

d
dt
‖u‖2L2 (5.18)

−ε
∫ 1

0
uuxx dx = −εuux|10 + 2ε

(
1
2

∫ 1
0
u2
x dx

)
= −εu(1, t)ux(1, t) + 2ε‖ux‖2L2

=
(
c+ p2

c(p+1)2u
2p−2(1, t)

)
u2(1, t) + 2ε‖ux‖2L2 (5.19)

δ

∫ 1

0
uuxxxdx = δuuxx|10 − δ

∫ 1

0
uxuxxdx

= δu(1, t)uxx(1, t)−
δ
2
u2
x |10

=
δ

2ε2

(
c+ p2

c(p+1)2u
2p−2(1, t)

)2
u2(1, t) +

δ
2
u2
x (0, t) (5.20)

p

∫ 1

0
upuxdx =

p

p+ 1
up+1(1, t) (5.21)
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Applying the Young inequality to the last term gives

p

p+ 1
up+1(1, t) ≤

p2

2c(p+ 1)2u
2p(1, t) +

c
2
u2(1, t) (5.22)

Putting together all terms above, yields

d
dt
‖u‖2 + 2ε‖ux‖2 +

(
δc2

2ε2 + c
2

)
u2(1, t) +

(
p2

2c(p+1)2 + δp2

ε2(p+1)2

)
u2p(1, t)

+
δp4

2ε2c2(p+ 1)4u
4p−2(1, t) ≤ 0 (5.23)

With the help of Poincare inequality, (5.23) becomes

d
dt
‖u‖2L2 ≤ −2ε‖ux‖2L2 ≤ −2ε‖u‖2L2 (5.24)

which implies that the generalized KdV-Burgers equation (5.9) is globally exponentially sta-
ble in the L2 norm, i.e.

‖u(t)‖ ≤ ‖u0‖L2e−εt (5.25)

The boundary control laws (5.15)-(5.16) only require measurement at the boundary of the
systems, in this case u(1, t). Thus, they are easy to implement. This is an advantage from
a practical point of view where the sensors and actuators are often placed at the boundary.
One may consider water wave propagation where actuation would normally be mounted at
the walls of the flow domain. Further, remark that the control laws (5.15) and (5.16) are
invertible functions, i.e., there are functions g and h such that

u(1, t) = g(ux(1, t)) = h(uxx(1, t)) (5.26)

and therefore they can be used via any of the following three variables actuated at x = 1;
(u,ux), (u,uxx), and (ux,uxx). As we mention earlier, the existence of a classical solu-
tion u(x, t) ∈ C(0,∞;L2(0,1)) to the generalized KdV-Burgers equation (5.9) together with
boundary control laws (5.14)-(5.16) is conjectured. The L2 stability is not sufficient because
it does not guarantee boundedness of the solutions, i.e., the L2 energy can be bounded even
though the solution u(x) can take infinite values on a subset of [0, 1]. Therefore, stability in
higher norms (e.g., H1) may be pursued. The viscosity parameter ε in (5.9) can take an arbi-
trary positive value. In reality, the value of this parameter sometimes is unknown. Since the
control laws (5.15)-(5.16) depend on ε, an adaptive controller which incorporates parameter
estimation as a dynamic component of the control laws may need to be designed.
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5.3.1 Adaptive Control
Suppose that the dissipation coefficient ε in (5.9) is unknown. In this section, an adaptive
boundary control will be constructed for this case.

Let ψ denote an estimate for 1
ε . Define a Lyapunov function

W (t) =
1
2

∫ 1

0
u2 dx+

ε
2γ

(
ψ − 1

ε

)2
(5.27)

and compute its time derivative

Ẇ (t) =
∫ 1

0
uut dx+

ε
γ

(
ψ − 1

ε

)
ψ̇

=
∫ 1

0
u
(
εuxx − δuxxx − pup−1ux

)
dx+

ε
γ

(
ψ − 1

ε

)
ψ̇

≤ −ε
∫ 1

0
u2
x dx − δu(1, t)uxx(1, t) +

δ
2
u2
x (1, t)

+εu(1, t)ux(1, t) +
p2

2c(p+ 1)2u
2p(1, t) +

c
2
u2(1, t) +

ε
γ

(
ψ − 1

ε

)
ψ̇ (5.28)

Using algebraic manipulation, the above inequality yields

Ẇ (t) ≤ −ε
∫ 1

0
u2
x dx − δu(1, t)uxx(1, t) +

δ
2
u2
x (1, t) + εu(1, t)ux(1, t)

+εψu(1, t)
(

p2

2c(p+1)2u
2p−1(1, t) + c

2u(1, t)
)

+
(

p2

2c(p+1)2u
2p(1, t) + c

2u
2(1, t)− ψ̇γ

)
ε
(
−ψ + 1

ε

)
(5.29)

Take the feedback control laws

ψ̇(t) =
γ

2

(
c+ p2

c(p+1)2u
2p−2(1, t)

)
u2(1, t) (5.30)

ux(1, t) = −
ψ

2

(
c+ p2

c(p+1)2u
2p−2(1, t)

)
u(1, t) (5.31)

uxx(1, t) =
ψ2

8

(
c+ p2

c(p+1)2u
2p−2(1, t)

)2
u(1, t) (5.32)

where c > 0, (5.29) yields

Ẇ (t) ≤ −ε
∫ 1

0
u2
x dx (5.33)

Thus, (5.9) is globally L2 stable and the closed-loop system (5.9)-(5.10)-(5.14)-(5.30)-(5.31)-
(5.32) and the initial condition of the estimate

ψ(0) = ψ0 (5.34)

The result of this section can be stated in the following theorem.
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Theorem 2. Suppose that γ > 0, ψ0 ≥ 0 and the initial conditions u0 ∈ H3(0,1). If the
initial value problem of the generalized KdV-Burgers equation (5.9) with boundary conditions
(5.30)-(5.32) has a global classical solution u(x, t) ∈ C(0,∞;L2(0,1)), then the equilibrium
u(x, t) ≡ 0 is globally L2 stable, i.e.

‖u‖2 +
ε

2γ

(
ψ − 1

ε

)2
≤ ‖u0‖2 +

ε
2γ

(
ψ0 − 1

ε

)2
(5.35)

Further, ψ(t) could be written in the form

ψ(t) = ψ0 +
γ

2

∫ t

0

(
c+ p2

c(p+1)2u
2p−2(1, τ)

)
u2(1, τ)dτ (5.36)

Remark that the feedback design (5.30)-(5.32) is decentralized, which means the feedback
calculation at each end of the domain would use measurements only from that end.

5.3.2 The Korteweg-de Vries Equation
Now consider the case when the dissipation coefficient ε = 0. The generalized KdV-Burgers
equation (5.9) reduces to the generalized KdV equation, and the initial-boundary value prob-
lem can be stated as follows

ut + (δuxx +up)x = 0, 0 < x < 1, t > 0 (5.37)
u(x,0) = u0(x), 0 ≤ x ≤ 1 (5.38)
u(0, t) = 0, t ≥ 0 (5.39)
ux(1, t) = g1(u(1, t)), t ≥ 0 (5.40)
uxx(1, t) = g2(u(1, t)), t ≥ 0 (5.41)

Clearly, the boundary control laws (5.15) and (5.16) cannot be used. In this case, the bound-
ary stabilization of (5.37) can be approached using the following control laws

u(0, t) = 0 (5.42)
ux(1, t) = 0 (5.43)

uxx(1, t) =
1

2δ

(
c+ p2

c(p+1)2u
2p−2(1, t)

)
u(1, t) (5.44)

where c > 0. Define the Lyapunov function as the L2-norm (5.4). With the help of the Young
inequality, its time derivative is given by

V̇ (t) =
∫ 1

0
u
(
−δuxxx − pup−1ux

)
dx

= −δ
(
u(1, t)uxx(1, t)− 1

2u
2
x |10

)
−

p

p+ 1
up+1|10

≤ −δ
(
u(1, t)uxx(1, t)− 1

2u
2
x (1, t)

)
+

p2

2c(p+ 1)2u
2p(1, t) +

c
2
u2(1, t) (5.45)
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Substituting the boundary control laws (5.42)-(5.44) into (5.45), yields

V̇ (t) ≤ 0 (5.46)

Hence, the following theorem can be stated

Theorem 3. For any initial conditions u0 ∈ H3(0,1), if the the generalized KdV equa-
tion (5.37) with boundary conditions (5.42)-(5.44) has a global classical solution u(x, t) ∈
C(0,∞;L2(0,1)), then the equilibrium u ≡ 0 is globally asymptotically stable in the L2-sense.

We need to mention that the choice of the control laws is not unique. A more aggressive
control law that achieves better performance in terms of stabilization time could be made by
using an active Neumann boundary condition as follows:

u(0, t) = 0 (5.47)

ux(1, t) =

√
cu2(1, t)

δ
+

p2

cδ(p+ 1)2u
2p(1, t) (5.48)

uxx(1, t) =
u(1, t)
δ

(
c+ p2

c(p+1)2u
2p−2(1, t)

)
(5.49)

5.3.3 The Burgers Equation
The generalized Burgers equation is the case when the generalized KdV-Burgers equation
(5.9) with δ=0.

Neumann Boundary Control for The Generalized Burgers Equation

Consider the following initial-boundary value problem of the generalized Burgers equation

ut − εuxx + (up)x = 0, 0 < x < 1, t > 0 (5.50)
u(x,0) = u0(x), 0 ≤ x ≤ 1 (5.51)
ux(0, t) = v0(u(0, t)), t ≥ 0 (5.52)
ux(1, t) = v1(u(1, t)), t ≥ 0 (5.53)

Here, the manipulated control inputs are in the form of Neumann boundary conditions at the
both ends of the system. Recall the Lyapunov function (5.4) and compute its time derivative.

V̇ (t) =
∫ 1

0
u
(
εuxx − pup−1ux

)
dx

= εuux|10 − ε
∫ 1

0
u2
x dx −

p

p+ 1
up+1|10

= +u(1, t)
(
εv1(u(1, t))− p

p+1u
p(1, t)

)
−u(0, t)

(
εv0(u(0, t))− p

p+1u
p(0, t)

)
− ε

∫ 1

0
u2
x dx (5.54)
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Choose the control laws as

v0(u(0, t)) =
1
ε

(
c0u(0, t) + p

p+1u
p(0, t)

)
(5.55)

v1(u(1, t)) = −1
ε

(
c1u(1, t) + p

p+1u
p(1, t)

)
(5.56)

where c0, c1 > 0. This yields

V̇ (t) = −ε
∫ 1

0
u2
x dx − c1u

2(1, t)− c0u
2(0, t) (5.57)

By Poincare’s inequality, (5.57) yields

V̇ (t) ≤ −min
(
ε
2 , c1, c0

)
V (5.58)

This implies that the equilibrium u(x, t) = 0 is globally exponentially stable in L2-sense.
The control laws (5.55)-(5.56) are not invertible for even p, thus one may seek an invertible
control laws for the generalized Burgers equation (5.64). From (5.54) we have

V̇ (t) = εu(1, t)v1(u(1, t))−
p

p+ 1
up+1(1, t)

−εu(0, t)v0(u(0, t)) +
p

p+ 1
up+1(0, t)− ε

∫ 1

0
u2
x dx (5.59)

Using Young’s inequality, this yields

V̇ (t) ≤ εu(1, t)v1(u(1, t)) +
p2

2c(p+ 1)2u
2p(1, t) +

c
2
u2(1, t)

−εu(0, t)v0(u(0, t)) +
p2

2c(p+ 1)2u
2p(0, t) +

c
2
u2(0, t)− ε

∫ 1

0
u2
x dx (5.60)

Select the control laws

v0(u(0, t)) =
1

2ε
u(0, t)

(
c+ p2

c(p+1)2u
2p−2(0, t)

)
(5.61)

v1(u(1, t)) = − 1
2ε
u(1, t)

(
c+ p2

c(p+1)2u
2p−2(1, t)

)
(5.62)

where c > 0. With the help of the Poincare inequality, the following expression is derived

V̇ (t) ≤ −ε
∫ 1

0
u2
x dx ≤ −ε

∫ 1

0
u2 dx = −2εV (t) (5.63)

Hence, the following theorem can be stated.
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Theorem 4. For any initial conditions u0 ∈ H2(0,1), if the generalized Burgers equa-
tion (5.64) with boundary conditions (5.61)-(5.62) has a global classical solution u(x, t) ∈
C(0,∞;L2(0,1)), then the equilibrium u ≡ 0 is globally exponentially stable in the L2-sense.

Again, the Neumann boundary control laws (5.61)-(5.62) only require measurement at the
boundary of the system. The situation would be different if Dirichlet boundary control laws
are employed as can be seen in the following subsection. Further, if the viscosity parameter
ε in (5.64) is unknown, one may design an adaptive controller as we discussed earlier.

Dirichlet Boundary Control for The Generalized Burgers Equation

Consider the following initial-boundary value problem of the generalized Burgers equation
with two Dirichlet boundary conditions at both ends

ut − εuxx + (up)x = 0, 0 < x < 1, t > 0 (5.64)
u(x,0) = u0(x), 0 ≤ x ≤ 1 (5.65)
ux(0, t) = w0(u(0, t)), t ≥ 0 (5.66)
ux(1, t) = w1(u(1, t)), t ≥ 0 (5.67)

First select

w0(u(0, t)) = 0 (5.68)

Young’s inequality yields

εu(1, t)ux(1, t) ≤
p

2(p+ 1)
|u(1, t)|p+1 +

p2

2(p+ 1)

∣∣∣ 2ε
p ux(1, t)

∣∣∣ p+1
p (5.69)

Substituting (5.68) and (5.69) to (5.54), yields

V̇ (t) ≤ −ε
∫ 1

0
u2
x dx+

p

2(p+ 1)
|u(1, t)|p+1

+
p2

2(p+ 1)

∣∣∣ 2ε
p ux(1, t)

∣∣∣ p+1
p −

p

p+ 1
up+1(1, t) (5.70)

Select

w1(u(1, t)) =
p+1

√
(p+ 1)

∣∣∣ 2ε
p ux(1, t)

∣∣∣ p+1
p + p+1

√
µ|uxx(1, t)|p+1

+ p+1

√
ν

∫ 1

0
ux(x, t)2 dx (5.71)
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where µ,ν > 0, which provides the following expression

V̇ (t) ≤ −
(
ε+ pν

2(p+1)

)∫ 1

0
u2
x dx −

p

2(p+ 1)

∣∣∣ 2ε
p ux(1, t)

∣∣∣ p+1
p

−
pµ

2(p+ 1)
|uxx(1, t)|p+1 (5.72)

Once more, the Poincare’s inequality gives

V̇ (t) ≤ −
(

2ε+ pν
(p+1)

)
V (t) (5.73)

which shows the equilibrium u(x, t) ≡ 0 globally exponentially stable in L2-sense. Control
law (5.71) requires measurements from the interior of the domain. Therefore, an observer
which estimates ux(x, t) inside the domain should be constructed, as we can see in the next
subsection.

Observer Based Dirichlet Control for The Generalized Burgers Equation

Consider the following system of nonlinear observer

ût − εûxx + pûp−1ûx = 0, 0 < x < 1, t > 0 (5.74)
û(x,0) = û0(x), 0 ≤ x ≤ 1 (5.75)
û(0, t) = u(0, t), t ≥ 0 (5.76)
û(1, t) = u(1, t), t ≥ 0 (5.77)

Select the control laws as

u(0, t) = 0 (5.78)

u(1, t) =
p+1

√
(p+ 1)

∣∣∣ 2ε
p ûx(1, t)

∣∣∣ p+1
p + p+1

√
µ|ûxx(1, t)|p+1

+ p+1

√
ν

∫ 1

0
ûx(x, t)2 dx (5.79)

where µ,ν > 0. This controller guarantees

d
dt

(
1
2

∫ 1
0
û(x, t)2 dx

)
≤ −

(
ε+ pν

2(p+1)

)∫ 1

0
û2
x dx −

p

2(p+ 1)

∣∣∣ 2ε
p ûx(1, t)

∣∣∣ p+1
p

−
pµ

2(p+ 1)
|ûxx(1, t)|p+1 (5.80)

Employing Poincare’s inequality, the observer equilibrium û(x, t) ≡ 0 has a globally expo-
nentially L2-stable.
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The Inviscid Burgers Equation

Consider (5.64) with ε = 0. The equation is called the Inviscid generalized Burgers equation,
and the initial-boundary value problem becomes

ut + (up)x = 0, 0 < x < 1, t > 0 (5.81)
u(x,0) = u0(x), 0 ≤ x ≤ 1 (5.82)
u(0, t) = z0(u(0, t)), t ≥ 0 (5.83)
u(1, t) = z1(u(1, t)), t ≥ 0 (5.84)

Differentiating (5.4) for (5.81) yields

V̇ (t) =
∫ 1

0
u
(
−pup−1ux

)
dx = −

p

p+ 1
up+1|10 (5.85)

Choose

z0(u(0, t)) = 0 (5.86)

z1(u(1, t)) = p+1

√
c(p+ 1)
p

( ∫ 1
0
|ux(x, t)|p+1 dx

)
(5.87)

where c > 0 and (5.85) yields

V̇ (t) = −c
∫ 1

0
|ux(x, t)|p+1 dx (5.88)

The Poincare and Holder inequalities gives∫ 1

0
u2 dx ≤ 2

∫ 1

0
u2
x dx

≤ 2
( ∫ 1

0
|ux(x, t)|p+1 dx

) 2
p+1

( ∫ 1
0
|1|

p+1
p−1 dx

) p−1
p+1

≤ 2
( ∫ 1

0
|ux(x, t)|p+1 dx

) 2
p+1 (5.89)

Substituting (5.89) into (5.88) gives

V̇ (t) ≤ −cV
p+1

2 (t) (5.90)

This shows that the equilibrium u(x, t) = 0 is globally asymptotically stable in the L2-sense.

99



5.4 The Benjamin-Bona-Mahony-Burgers Equation
In this section, we discuss a boundary stabilization problem of the BBM-Burgers equation,
however, in a more general form. Consider the boundary stabilization problem for a class of
pseudo-parabolic differential equations in the following form

∂
∂t

(∆u −u) + ε∆u = f (x, t,u,ux), 0 < x < 1, t > 0 (5.91)

u(x,0) = u0(x), 0 ≤ x ≤ 1 (5.92)
u(0, t) = 0, t ≥ 0 (5.93)
ux(1, t) = z(u(1, t)), t ≥ 0 (5.94)

Here, ∆ = ∂2

∂x2 denotes the Laplacian differential operator, ε > 0 is the dissipation coefficient,
while f is the source of nonlinearity. The boundary u(1, t) is considered as the measurement
and ux(1, t) as the manipulated control input. Thus, we consider the case of co-located sens-
ing and actuation at the boundary x = 1. The function z is to be designed and constitutes our
static output feedback control law.

The basic mathematical and physical theory of (5.91) has been the subject of numerous
papers, see e.g., Ting (1969); Showalter and Ting (1970); Quarteroni (1987); Bona and Dou-
galis (1980); Bona and Luo (1995). The applications cover thermodynamic processes (Chen
and Gurtin, 1968; Ting, 1974), fluid flow in porous media (Barenblatt et al., 1990; Cuesta
and Hulshof, 2003), shear in second order fluids (Coleman and Noll, 1960; Ting, 1963), long
waves in dispersive systems (Bona et al., 1980b; Socha, 2002), tsunami modeling (Tsuji et al.,
1991; Dutykh, 2007), and option pricing (Itkin and Carr, 2011). An important case of (5.91)
is represented by the BBM-Burgers equation given as

∂
∂t

(∆u −u) + ε∆u =
∂
∂x

(
u +

1
2
u2

)
(5.95)

which was introduced in Benjamin et al. (1972) as a model for unidirectional propagation of
long waves of small amplitude, an alternative model for the KdV-Burgers equation (Korteweg
and de Vries, 1895). The boundary stabilization problem for (5.95) was solved in Hasan et al.
(2011a).

The class of functions f considered in this chapter is of the following form

f (x, t,u,ux) =
∂
∂x


p+1∑
k=1

ak
k
uk(x, t)

 (5.96)

Here, p is a finite positive integer and ak ≥ 0, ∀k ∈ {1,2, · · · ,p} while ap+1 > 0. If p = 0,
then (5.91) is linear. This special form could be considered as a generalization of the BBM-
Burgers equation. For higher orders of the nonlinearity, p ≥ 5, (5.91) may have unstable
solitary wave solutions Bona et al. (2000).
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The existence and uniqueness of a classical solution satisfying the initial and boundary
value problem (5.91)-(5.94) for general boundary conditions has been solved in Bona and
Dougalis (1980) by converting the differential equation into an integral equation and then ap-
plying Banach’s fixed point theorem to the integral equation. The proof requires that u(1, t)
be a continuously differentiable function of time, which is true, for instance in the case of
homogeneous Dirichlet boundary conditions at x = 1. For the boundary condition (5.94) pro-
posed in this chapter, however, the existence and uniqueness of a classical solution remains
an open problem and hence will be assumed in the results of this chapter.

The contributions of this chapter are:

• development of control laws that stabilize systems governed by the linear and the non-
linear pseudo-parabolic equations,

• derivation of various bounds on the solution, and

• numerical simulations that illustrate the performance of the proposed control laws.

5.4.1 Linear System
This section starts by discussing boundary stabilization of the linear pseudo-parabolic differ-
ential equations. The analysis will be extended in the next section to a nonlinear system by
introducing a compensating term in the control laws for handling the nonlinearity. The initial
value problem of the linear pseudo-parabolic differential equation is simply written as

∂
∂t

(∆u −u) + ε∆u = a1
∂u
∂x
, 0 < x < 1, t > 0 (5.97)

u(x,0) = u0(x) ∈H1(0,1) (5.98)

A set of boundary control laws proposed for the linear pseudo-parabolic equation (5.97) is as
follows

u(0, t) = 0 (5.99)

ux(1, t) = − c
ε
u(1, t) (5.100)

where c > 0 is a positive control gain. Here, the parameter c can be seen as a tuning param-
eter that may affect the performance of the closed-loop. Applying the feedback controller
(5.99)-(5.100) is unnecessary in the linear case, since (5.97) is an open loop stable system.
However, (5.99)-(5.100) will serve as a starting point for developing boundary control laws
in the nonlinear case, where open loop solutions may be unstable.

A result on the boundary stabilization problem of the linear pseudo-parabolic differential
equation is stated in the following theorem.

Theorem 5. Suppose the initial condition u0 ∈ H1(0,1) is consistent with the boundary
conditions (5.99)-(5.100). If the initial value problem of the linear pseudo-parabolic equation
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(5.97)-(5.98) with boundary conditions (5.99)-(5.100) possesses a unique classical solution
u(x, t) ∈ C2,1([0,1]× [0,∞)), then the trivial solution is globally exponentially stable in the
H1-norm.

Proof. Computing the first derivative of theH1 Sobolev norm for the linear pseudo-parabolic
equation (5.97) with respect to time, yields

d
dt
‖u(t)‖2H1 = 2uuxt |10 + 2εuxu|10 − a1u

2|10 − 2ε
∫ 1

0
u2
x dx (5.101)

Substituting (5.99)-(5.100) into (5.101) and using Wirtinger’s inequality (5.162), yields

d
dt

(
‖u(t)‖2H1 +

c
ε
u2(1, t)

)
≤ −ε

(∫ 1

0
u2
x dx+

∫ 1

0
u2
x dx+

c
ε
u2(1, t)

)
≤ −ε

(∫ 1

0
u2 dx+

∫ 1

0
u2
x dx+

c
ε
u2(1, t)

)
≤ −ε

(
‖u(t)‖2H1 +

c
ε
u2(1, t)

)
(5.102)

Integrating the above equation with respect to time, yields

‖u(t)‖2H1 ≤
(
‖u0‖2H1 +

c
ε
u2(1,0)

)
e−εt (5.103)

Since

u(1,0) = u(0,0) +
∫ 1

0
ux(x,0)dx =

∫ 1

0
ux(x,0)dx (5.104)

the Cauchy-Schwarz inequality gives

u2(1,0) ≤
(∫ 1

0
u2
x (x,0)dx

)(∫ 1

0
12 dx

)
≤ ‖u0‖2H1 (5.105)

Hence, (5.103) yields

‖u(t)‖2H1 ≤
(
1 +

c
ε

)
‖u0‖2H1e

−εt (5.106)

which shows that the trivial solution is globally exponentially stable in the H1-sense.

Since the control law z(·) inferred by (5.100) is invertible, the control law may also be
implemented with ux(1, t) as the measurement and u(1, t) as the manipulated control input.
In general, the boundary control law (5.100) is called the Robin boundary condition.
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5.4.2 Nonlinear System

Suppose the initial value problem of the nonlinear pseudo-parabolic equation (5.91) has the
following form

∂
∂t

(∆u −u) + ε∆u − ∂
∂x


p+1∑
k=2

ak
k
uk

 = a1
∂u
∂x
, 0 < x < 1, t > 0 (5.107)

u(x,0) = u0(x) ∈H1(0,1) (5.108)

A set of boundary control laws is proposed as follows

u(0, t) = 0 (5.109)

ux(1, t) = − c
ε
pu(1, t)− 1

ε

p∑
k=1

(k + 1)
(k + 2)2c

a2
k+1u

2k+1(1, t) (5.110)

A result on the boundary stabilization problem of the nonlinear pseudo-parabolic differ-
ential equation is stated in the following theorem.

Theorem 6. Suppose the initial condition u0 ∈H1(0,1) is consistent with the boundary con-
ditions (5.109)-(5.110). If the initial value problem of the nonlinear pseudo-parabolic equa-
tion (5.107)-(5.108) with boundary conditions (5.109)-(5.110) possesses a unique classical
solution u(x, t) ∈ C2,1([0,1]× [0,∞)), then the trivial solution is semi-globally exponentially
stable in the H1-norm, i.e., there exists a non-decreasing positive constant D that depends
on the initial condition, such that

‖u(t)‖2H1 ≤ D(‖u0‖H1)e−εt, ∀t ≥ 0 (5.111)

Furthermore, the solution is bounded in the H2-norm i.e., there exists a positive constant G
that depends on the initial condition, such that

‖u(t)‖2H2 ≤ G(‖u0‖H2), ∀t ≥ 0 (5.112)

Proof. The proof is similar to the proof of theorem 1 in Balogh and Krstic (2000a). Comput-
ing the first derivative of the H1 Sobolev norm for the nonlinear pseudo-parabolic equation
with respect to time, yields

d
dt
‖u(t)‖2H1 = 2uuxt |10 + 2εuxu|10 − a1u

2|10 − 2
p∑
k=1

ak+1

k + 2
uk+2|10

−2ε
∫ 1

0
u2
x dx (5.113)
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Substituting (5.109)-(5.110) into (5.113), the first and the second terms of the right hand side
of (5.113) are

2uuxt |10 = − d
dt

 cεpu2(1, t) +
p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t)

 (5.114)

2εuxu|10 = −2cpu2(1, t)− 2
p∑
k=1

(k + 1)
(k + 2)2c

a2
k+1u

2k+2(1, t) (5.115)

while a bound for the 4th term of the right hand side of (5.113) is obtained through the
following steps. First, note that

p∑
k=1

ak+1

k + 2
uk+2(1, t) =

a2

3
u3(1, t) +

a3

4
u4(1, t) + · · ·+

ap+1

p+ 2
up+2(1, t) (5.116)

Applying Young’s inequality (5.161) to each term in the right hand side gives

a2

3
u3(1, t) ≤ c

2
u2(1, t) +

a2
2

322c
u4(1, t) (5.117)

a3

4
u4(1, t) ≤ c

2
u2(1, t) +

a2
3

422c
u6(1, t) (5.118)

... (5.119)
ap+1

p+ 2
up+2(1, t) ≤ c

2
u2(1, t) +

a2
p+1

(p+ 2)22c
u2p+2(1, t) (5.120)

Finally, adding the above terms and multiplying by 2 gives

2
p∑
k=1

ak+1

k + 2
uk+2(1, t) ≤ cpu2(1, t) +

p∑
k=1

a2
k+1

(k + 2)2c
u2k+2(1, t) (5.121)

Hence, (5.113) becomes

d
dt
‖u(t)‖2H1 ≤ −

d
dt

 cεpu2(1, t) +
p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t)


−cpu2(1, t)−

p∑
k=1

(2k + 1)
(k + 2)2c

a2
k+1u

2k+2(1, t)

−a1u
2(1, t)− 2ε

∫ 1

0
u2
x dx (5.122)
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Using Wirtinger’s inequality, (5.122) yields

d
dt

‖u(t)‖2H1 +
c
ε
pu2(1, t) +

p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t)


≤ −ε

‖u(t)‖2H1 +
c
ε
pu2(1, t) +

p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t)

 (5.123)

Integrating the above inequality with respect to time, yields

‖u(t)‖2H1 ≤

‖u0‖2H1 +
c
ε
pu2(1,0) +

p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1,0)

e−εt (5.124)

Using (5.105), this yields

‖u(t)‖2H1 ≤

(1 +
c
ε
p
)
‖u0‖2H1 +

p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1‖u0‖2k+2

H1

e−εt
= D(‖u0‖H1)e−εt (5.125)

whereD is a non-decreasing function of ‖u0‖H1 . For brevity, letD =D(‖u0‖H1). Integrating
(5.122) on τ ∈ [0, t], yields∫ 1

0
u2 dx+

∫ 1

0
u2
x dx+

c
ε
pu2(1, t)

+
p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t) + 2ε
∫ t

0

∫ 1

0
u2
x (x,τ)dxdτ

+
∫ t

0

cpu2(1, τ) +
p∑
k=1

(2k + 1)
(k + 2)2c

a2
k+1u

2k+2(1, τ)

 dτ

≤
∫ 1

0
u2

0 dx+
∫ 1

0
u2

0xdx+
c
ε
pu2(1,0) +

p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1,0)

≤ D (5.126)

Inequality (5.126) produces the following estimates

‖u(·, t)‖2L2 ≤ D (5.127)

‖ux(·, t)‖2L2 ≤ D (5.128)

2ε
∫ t

0

∫ 1

0
u2
x (x,τ)dxdτ ≤ D (5.129)∫ t

0

cpu2(1, τ) +
p∑
k=1

(2k + 1)
(k + 2)2c

a2
k+1u

2k+2(1, τ)

 dτ ≤ D (5.130)
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∀t ∈R > 0. Applying Agmon’s inequality (5.164), (5.127) and (5.128) yields

‖u(·, t)‖2L∞ ≤ 2‖u(·, t)‖L2‖ux(·, t)‖L2 ≤ 2D (5.131)

Remark that using the first lemma in appendix (5.160)

p+1∑
k=1

u2k(1, t) ≤
p∑
k=1

(
1
k
u2(1, t) +

k − 1
k
u2k+2(1, t)

)
+u2p+2(1, t)

≤ pu2(1, t) +u2p+2(1, t) +
p∑
k=1

u2k+2(1, t) (5.132)

Since p ≥ 1, c > 0, ak ≥ 0,∀k ∈ {1,2, · · · ,p}, and ap+1 > 0 are finite numbers, there exists a
sufficiently large positive constant µ(p,c,a1, · · · , ap+1) such that

p+1∑
k=1

u2k(1, t) ≤ µ

cpu2(1, t) +
p∑
k=1

(2k + 1)
(k + 2)2c

a2
k+1u

2k+2(1, t)

 (5.133)

Therefore, integrating the above inequality with respect to t and using (5.130), yields∫ t

0


p+1∑
k=1

u2k(1, τ)

 dτ ≤ µD (5.134)

Next, taking the L2 inner product of (5.107) with −2uxx and using boundary control laws
(5.109) and (5.110), the various terms are

− 2
∫ 1

0
uxxut dx =

d
dt

(∫ 1

0
u2
x dx+

c
ε
pu2(1, t)

+
p∑
k=1

a2
k+1

(k + 2)2cε
u2k+2(1, t)

 (5.135)

−2a1

∫ 1

0
uxxuxdx = −a1

 cεpu(1, t)

+
p∑
k=1

(k + 1)
(k + 2)2cε

a2
k+1u

2k+1(1, t)

2

+ a1u
2
x (0, t) (5.136)

2ε
∫ 1

0
uxxuxxdx = 2ε

∫ 1

0
u2
xxdx (5.137)

2
∫ 1

0
uxxuxxt dx =

d
dt

∫ 1

0
u2
xxdx (5.138)
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Using (5.131), the last term may be estimated as follows

−2
∫ 1

0

 p∑
k=1

ak+1u
kuxxux

 dx

≥ −2

 p∑
k=1

ak+1 sup
0≤s≤t

‖u(·, s)‖kL∞

∫ 1

0
|uxxux|dx

≥ −
p∑
k=1

ak+12
k
2 +1D

k
2

∫ 1

0
|uxxux|dx (5.139)

With the help of Cauchy-Schwarz’s inequality

−
p∑
k=1

ak+12
k
2 +1D

k
2

∫ 1

0
|uxxux|dx

≥ −
p∑
k=1

ak+12
k
2 +1D

k
2

(∫ 1

0
u2
x dx

) 1
2
(∫ 1

0
u2
xxdx

) 1
2

(5.140)

Young’s inequality gives

(∫ 1

0
u2
x dx

) 1
2
(∫ 1

0
u2
xxdx

) 1
2

(5.141)

≤ 1
2

 p∑
k=1

ak+1

ε
2
k
2−1D

k
2

∫ 1

0
u2
x dx+

1
2

 1∑p
k=1

ak+1
ε 2

k
2−1D k

2

∫ 1

0
u2
xxdx

Hence, the last term may be estimated as follows

−2
p∑
k=1

ak+1

∫ 1

0
ukuxuxxdx

≥ − 1
2ε

 p∑
k=1

ak+12
k
2D

k
2


2∫ 1

0
u2
x dx − 2ε

∫ 1

0
u2
xxdx (5.142)

Using (5.125), the above inequality yields

2
p∑
k=1

ak+1

∫ 1

0
ukuxuxxdx ≤ 1

2ε

 p∑
k=1

ak+12
k
2D

k+1
2


2

e−εt + 2ε
∫ 1

0
u2
xxdx (5.143)
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Assembling (5.135)-(5.138) and (5.143) gives

d
dt

∫ 1

0
u2
x dx+

∫ 1

0
u2
xxdx+

c
ε
pu2(1, t) +

p∑
k=1

a2
k+1

(k + 2)2cε
u2k+2(1, t)


≤ 1

2ε

 p∑
k=1

ak+12
k
2D

k+1
2


2

e−εt + a1
c2

ε2p
2u2(1, t)

+2a1
c
ε
p

p∑
k=1

(k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t) + a1

p∑
k=1

(k + 1)2

(k + 2)4c2ε2a
4
k+1u

4k+2(1, t)

+2a1

p−1∑
k=1

p∑
l=k+1

(k + 1)
(k + 2)2cε

(l + 1)
(l + 2)2cε

a2
k+1a

2
l+1u

2(k+l)+2(1, t) (5.144)

To simplify the notation, define

X (t) =
∫ 1

0
u2
x dx+

∫ 1

0
u2
xxdx+

c
ε
pu2(1, t) +

p∑
k=1

a2
k+1

(k + 2)2cε
u2k+2(1, t) (5.145)

E =
1

2ε

 p∑
k=1

ak+12
k
2D

k+1
2


2

(5.146)

f (t) =
p+1∑
k=1

u2k(1, t) (5.147)

so that (5.144) can be written as

d
dt
X (t) ≤ Ee−εt +λ


2p+1∑
k=1

u2k(1, t)


≤ Ee−εt +λf (t) +λf (t)u2p(1, t) (5.148)

where λ is a large number. By (5.160) in appendix, and the definition of X (t), there exists a
sufficiently large number ω > λ > 0 such that (5.148) yields

d
dt
X (t) ≤ Ee−εt +ωf (t) +ωf (t)X (t) (5.149)

Integrating the above equation on τ ∈ [0, t] and using (5.134) give

X (t) ≤ X (0) +
1
ε
E +ωµD +

∫ t

0
ωf (τ)X (τ)dτ (5.150)
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The Gronwall-Bellman inequality (5.167) gives

X (t) ≤
(
X (0) +

1
ε
E +ωµD

)
eωµD (5.151)

Since

X (0) ≤
(
1 +

c
ε
p
)
‖u0‖2H2 +

p∑
k=1

1
(k + 2)2cε

a2
k+1‖u0‖

2p+2
H2 (5.152)

and D and E are non-decreasing functions of ‖u0‖H1 , and since ‖u0‖H1 ≤ ‖u0‖H2 , it follows
that

1
2
‖u(t)‖2H2 ≤ X (t) ≤ 1

2
G(‖u0‖H2) (5.153)

where G is a positive constant that depends on the initial condition as defined by (5.151),
which completes the proof.

Since the control law z(·) inferred by (5.110) is invertible, there exists a function z−1(·)
such that

u(1, t) = z−1(ux(1, t)) (5.154)

From (5.123), we have

d
dt

‖u(t)‖2H1 +
c
ε
pu2(1, t) +

p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t)

 ≤ 0 (5.155)

while from (5.126), we have∫ ∞
0

‖u(t)‖2H1 +
c
ε
pu2(1, t) +

p∑
k=1

(2k + 1)
(k + 2)2cε

a2
k+1u

2k+2(1, t)

 dt ≤ D
ε

(5.156)

Hence, using 5.169

lim
t→∞

u2(1, t) = 0 (5.157)

5.4.3 Numerical Example
As an example, consider the nonlinear pseudo-parabolic equation (5.107). Let p = 5, a2 =
· · · = a5 = 0, and a1 = a6 = 1. Suppose the dissipation coefficient is known to be ε = 10−6,
then the equation becomes the 5th-order BBM-Burgers equation

ut +ux − 10−6uxx −uxxt +u5ux = 0 (5.158)
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The initial condition

u0(x) = 7.67(1− x3)sech(2πx)sin2 (2πx) (5.159)

is chosen to be consistent with the boundary conditions (5.109)-(5.110) (Fig. 5.1).
The simulation is carried out by discretizing the equation using the finite difference

method. The time step used in this simulation is ∆t = 0.001 while the spatial grid size
∆x = 0.01. In the controlled case, the control laws are computed by the proposed bound-
ary control laws (5.109) and (5.110) while in the uncontrolled case, homogeneous Dirichlet
boundary conditions are imposed at both ends. The results are presented below. Fig. 5.2
shows that using the proposed control laws, the H1 energy decays to zero, while in the un-
controlled case the energy increases without bound. In the uncontrolled case, Fig. 5.3, the
solution shows an erratic behavior and eventually blows up after 258× 10−3 s. This unsatis-
factory behavior is remedied by applying boundary control, as shown in Fig. 5.4 where the
solution converges to the zero solution u ≡ 0.

5.5 Conclusions
Boundary control laws for the generalized KdV-Burgers equation have been presented in this
chapter. The invertible control laws for different cases of generalized KdV-Burgers guarantee
global (exponential and asymptotic) stability in the sense of the L2 norm. Further, most of the
control laws only require measurement at the boundary of the systems which is an advantage
from a practical point of view. The only control law which uses measurement inside the
domain is the Burgers equation with Dirichlet boundary conditions. In this case, an observer
has been designed to estimate the in-domain state and again exponential stability is proved.
An adaptive control laws has been constructed for the case when the dissipation parameter is
unknown. The control laws are decentralized, which means the controller calculation at each
end of the domain would use measurements only from that end. The controllers guarantee
global L2 stability.

The boundary stabilization problem for a class of pseudo-parabolic differential equations
is solved in this chapter. Using the proposed control laws, the nonlinear closed-loop system
is semi-globally exponentially stable in theH1-norm. However, the problem of existence and
uniqueness of a classical solution under the proposed control law remains open. A numerical
example shows that the proposed control laws are able to prevent blow up in finite time.
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Appendix
Lemma 1. For any n ≥ 1

u2n(1, t) ≤
(n− 1
n

)
u2n+2(1, t) +

(1
n

)
u2(1, t) (5.160)

Proof. The result is trivial for n = 1. For n > 1, Young’s inequality can be applied, which
states that if a and b are non-negative real-valued functions and p and q are positive real
numbers such that 1

p + 1
q = 1, then

ab ≤ a
p

p
+
bq

q
(5.161)

Choosing a =
(
u
n−1
n (n+1)(1, t)

)2
,b =

(
u

1
n (1, t)

)2
,p = n

n−1 ,q = n, gives (5.160).

Lemma 2. (Wirtinger’s inequality) For any u ∈ C1(0,1), then∫ 1

0
u2(x, t)dx ≤ u2(0, t) +

4
π2

∫ 1

0
u2
x (x, t)dx (5.162)∫ 1

0
u2(x, t)dx ≤ u2(1, t) +

4
π2

∫ 1

0
u2
x (x, t)dx (5.163)

Lemma 3. (Agmon’s inequality) For any u ∈ C1(0,1), then

max
x∈[0,1]

u2(x, t) ≤ u2(0, t) + 2

√∫ 1

0
u2 dx

√∫ 1

0
u2
x dx (5.164)

max
x∈[0,1]

u2(x, t) ≤ u2(1, t) + 2

√∫ 1

0
u2 dx

√∫ 1

0
u2
x dx (5.165)

Lemma 4. (Gronwall-Bellman’s inequality) Let ν : [a,b]→ R be continuous and nonnega-
tive. If a continuous function y : [a,b]→R satisfies

y(t) ≤ κ+
∫ t

a
ν(s)y(s)ds (5.166)

∀κ ∈R, then

y(t) ≤ κe
∫ t
a
ν(s)ds (5.167)

Lemma 5. Suppose that the function f (t) defined on [0,∞) satisfies the following conditions

1. f (t) ≥ 0,∀t ∈ [0,∞),
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2. f (t) is differentiable on [0,∞) and there exist a constant M such that

d
dt
f (t) ≤M, ∀t ≥ 0 (5.168)

3.
∫∞

0
f (t)dt <∞

Then

lim
t→∞

f (t) = 0 (5.169)

Proofs of lemma 2 and lemma 3 can be found in Krstic (1999), lemma 4 is given in Khalil
(2001), while lemma 5 is found in Krstic et al. (1995).

112



Figure 5.1: Initial condition u0(x).

Figure 5.2: Plots of the H1 norm. The dash line is from control laws (5.109)-(5.110) while the thick
line is from the homogeneous Dirichlet boundary conditions in both ends.
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Figure 5.3: Uncontrolled case using homogeneous Dirichlet boundary conditions at both ends.

Figure 5.4: Controlled case using homogeneous Dirichlet boundary condition at x = 0 and the control
law (5.110) at x = 1.
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Chapter 6
Discussions and Recommendations

In this thesis, we present some control and optimization problems related to the sub-surface
petroleum production systems and proposed some methods to solve them. To this end, we
consider gas coning control and water-flooding control problems in a closed-loop reservoir
management framework. We also discuss the effect of long-term and short-term optimization
to the production strategies.

As an addition, we develop boundary control laws for wave equations. This additional
research was conducted to provide an overview of control design using the Lyapunov method
that we have used while working with the gas coning control problems.

6.1 Discussions
Gas coning control

Once the gas enter the production wells, it will dominate the flow inside the well; thus, re-
ducing oil recovery significantly. Therefore, there is an incentive to produce the oil from the
production wells in their subcritical phase (before gas breakthrough) for an extended period
of time. In gas coning control, we formulate the problem as a boundary control problem of the
porous media equation with two boundary conditions; a homogeneous Neumann boundary
condition describing no-flow at the outer boundary of the reservoir, and a nonlinear boundary
condition describing the well production rate. It should be noted that the model was devel-
oped using some simplified assumptions; thus, it needs to be tuned in any application. The
model has been tested for several wells in the North Sea and the reliability has been good.

The boundary control problem was solved using the Lyapunov and the backstepping
methods for both linear and nonlinear cases. The idea is to design a well rate controllers
such that the systems can be exponentially stable in subcritical phase. Stability means that
the system states, i.e., the height of oil column, approaches their equilibrium point bounded
by exponentially decreasing functions. One may rightly argue that a reservoir will always
exhibit stable behavior. The guarantee of exponential stability in this context implies that the
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drainage of oil from the reservoir is exponential, thus possibly advantageous from a business
point of view.

In a simple definition, the Lyapunov method is a tool to study the stability of a dynamical
system without requiring knowledge of its closed form solution or the true physical energy,
provided a Lyapunov function can be found to satisfy the above constraints. It is true that
some PDEs can be solved in closed form; thus, the stability properties can be analyzed di-
rectly from the explicit form. However, for more complex systems, the explicit solution
usually can not be found. Further, the method could be used for both linear and nonlinear
systems; hence, it is suitable to use in our boundary control designs for different cases of gas
coning models.

An alternative to the Lyapunov method is the backstepping method. Originally used for
designing boundary control laws of ordinary differential equations, the method has been de-
veloped further to solve the PDEs problem. The advantage of using the backstepping method
is that we can construct an observer, in case measurements inside the domain are needed, in a
similar way to the backstepping control design itself. This particular case happens when we
consider outer boundary influx to the reservoir.

To test the control laws, we present an example with a complex reservoir model and
show that the proposed method can be used to increase oil recovery significantly during the
subcritical phase compared to a conventional method which uses constant production rates.

Water-flooding control

In the water-flooding case, we formulate the problem as an optimal control problem and solve
it using the switching time method under bang-bang control. Bang-bang control has a major
practical advantage because it can be implemented with simple on-off valves.

In this method, the control inputs, e.g., the flow rates or BHPs, are written as piecewise
constant functions. The value of the control settings are limited to zero and one to repre-
sent the bang-bang control; hence, the switching time is defined as the time to switch from
zero to one and vice versa. The problem is to find the optimal switching times such that the
oil revenue (NPV) can be maximized. To this end, the reservoir model is written in a state
space representation and was assumed to be free from uncertainty. Since the reservoir states
dimension can be hundreds of thousands or even more, an effective gradient-based optimiza-
tion method is employed. The gradient is obtained using the adjoint method by evaluating the
Hamiltonian equation which is basically a linear combination of the objective function and
the dynamical system. In order to obtain the Hamiltonian equation, first the dynamical sys-
tem is simulated forward to get the reservoir states (pressure and saturation). Afterward, the
adjoint equation is simulated backward to obtain the Lagrange multipliers. Once the gradient
is obtained, the optimal control settings can be found using the halving interval method.

An example of a realistic reservoir model shows that the proposed method can be used
to increase oil revenue significantly compared to the reactive control method. A limitation
occurs when computing the left and right limit of the Hamiltonian equation since sufficiently
small time steps are required. On the other hand, one step of the reservoir simulation will
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require a significant amount of computational time; hence, in practice, larger time steps are
usually used. To overcome this issue, in each simulation, the quality of the gradient should
be checked by the finite difference method. Another limitation is that the proposed method
requires a good knowledge of the reservoir model which is often a constraint.

Long-term and short-term optimization

Due to large uncertainties, optimization in an oil production system is usually done in daily
basis. The goal is to produce the oil as much as possible under production constraints such
as maximum gas and liquid handling capacity. In the other hand, an effort to find a robust
long-term optimal strategy to drain the reservoir has been done in recent years. The method
is known as closed-loop reservoir management which combines optimal control method to
compute the optimal strategy and data assimilation to handle uncertainty.

Optimal production strategies for short-term and long-term objectives may differ quite
substantially. In particular, an aggressive short-term strategy may harm long-term effects like
recovery. For this reason, in this chapter, we introduce a systematics approach to combine
the short-term and long-term optimization. The approach is adopted from a multi-objective
optimization method where we define two functions that represent short-term and long-term
objectives. Further, we define a new objective function which is a convex combination of
the two functions. This method is known as the weighted-sum method. For every convex
combination, a new strategy will be obtained; thus, we have a collection of optimal solutions.
The solutions are projected onto the actual objective function with different time spans; a
short time span represents an evaluation of the short-term strategy, and a long time span
represents an evaluation of the long-term strategy. The results are a Pareto-like curve which
can be used as a tool to analyze long-term and short-term production optimization.

A limitation of the approach is that since the two functions used in the weighted-sum
are not the actual objectives, we can not claim that the solutions are Pareto frontiers. Never-
theless, the curve is still useful since it shows a trade-off between short-term and long-term
optimization.

Boundary stabilization of the wave equations

In this chapter, we developed some boundary control laws for wave equations. Two well-
known equations are considered; the classical Korteweg-de Vries-Burgers (KdV-Burgers)
equation and the more recent Benjamin-Bona-Mahony-Burgers (BBM-Burgers) equations.
Those equation have many application, e.g., thermodynamic process, flow in porous media,
shear in second order fluids, and option pricing. We were interested in a theoretical side of
the solution, in particular, it has been known that for some initial conditions the solution is
unbounded.

To this end, we develop stabilizing control laws for both equations. Most of the control
laws are written explicitly and only requires measurements at the boundary of the systems.
We provide a numerical example to shows the performance of the control laws.
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6.2 Recommendations
Some recommendations for future research are as follows:

• Throughout this thesis, we assumed the dynamical systems are free from uncertainties.
This is, of course, not true as a result of our limited knowledge of the reservoir. Hence,
accounting for uncertainty is crucial. Some stochastic approaches have been developed
in recent years and seem promising to handle this problem.

• In chapter 2, the proxy model introduces many assumptions, for instance, the model
is simplified into a one-dimensional problem since gas coning was assumed to occur
first at the well heel. However, in practice the coning depends also on the reservoir
permeability above each well segment. Therefore, a more complex model with less
assumptions could be used. Further, since the presented method was developed only
for the subcritical phase, a more general method which covers a longer production time
might be developed.

• In chapter 3, the gradient computation of the switching times requires sufficiently small
time steps. Therefore, a reduced order technique to speed-up the computational time
needs to be developed. Further, event though the convergence of the heuristic halving
interval method is guaranteed, it is not the best choice for a search method. A better
method in term of computation time could be a steepest decent approach.

• In chapter 4, production constraints, e.g., gas and liquid handling capacity, need to be
included in the short-term optimization. Further, short-term and long-term objectives
should be defined differently in order to generate the correct Pareto frontiers.

• In chapter 5, we have shown that the solution of the generalized KdV-Burgers equa-
tion is globally exponentially stable in the L2-norm. However, the L2 stability is not
sufficient because it does not guarantee boundedness of solutions. Therefore, H1 sta-
bility needs also to be pursued. Further, when deriving the boundary feedback for the
BBM-Burgers equation, we assume perfect knowledge of the dissipation coefficient ε.
Since, in reality, this parameter may be unknown and takes an arbitrary positive value,
the objective cannot be achieved by the static feedback; hence, we need to design an
adaptive controller which incorporates a parameter estimator as a dynamic component
of the control law.
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