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Abstract. An o�-line algorithm for semi-empirical modeling of non-

linear dynamic systems is presented. The model representation is based

on the interpolation of a number of simple local models, where the va-
lidity of each local model is restricted to an operating regime, but where

the local models yield a complete global model when interpolated. The

input to the algorithm is a sequence of empirical data and a set of can-

didate local model structures. The algorithm searches for an optimal

decomposition into operating regimes, and local model structures. The

method is illustrated using simulated and real data. The transparency
of the resulting model and the exibility with respect to incorporation

of prior knowledge is discussed.

1 Introduction

The problem of identifying a mathematical model of an unknown system from a

sequence of empirical data is a fundamental one which arises in many branches

of science and engineering. The complexity of solving such a problem depends

on many factors, such as a priori knowledge, quality and completeness of the

data sequence, and required model form and accuracy.

A rich non-linear model representation based on patching together a number

of simple local models into a complex global model is suggested in [30, 27, 13, 8,

9]. With this representation, the modeling problem is basically to decompose the

operating range of the system into a set of operating regimes, the identi�cation of

simple local models within each regime, and the interpolation of the local models

to get a global model. This is an example of the classical divide-and-conquer

strategy, where a complex problem is decomposed into simple subproblems that

can be solved independently, and whose solutions add up to solve the complex

problem. In [9, 10] we have focused on the use of system knowledge for regime

decomposition. The aim of the present paper is to report on a algorithm that

automatically �nds a decomposition and local models based on empirical data.

The paper is organized as follows: The problem is formulated in section 2,

before an empirical modeling algorithm is developed in section 3. The algorithm

is applied to simulated and real data in section 4, and in section 5 the role of

prior knowledge and the transparency of the model are discussed. A comparison

to related work follows, along with some concluding remarks.



2 Problem Formulation

We address the problem of identifying a model of an unknown non-linear system

on the basis of a sequence of l input/output-pairs

Dl = ((u(1); y(1)); (u(2); y(2)); :::; (u(l); y(l)))

where u(t) 2 Rr and y(t) 2 Rm are the input and output vectors of the system,

respectively. We denote by Dt the subsequence of Dl containing data up to and

including time t � l. First, consider static models

y(t) = f(u(t)) + e(t) (1)

where e(t) 2 Rm is zero-mean noise, and f is an unknown function to be es-

timated. An approximation f̂ to f suggests the predictor ŷ(tju(t)) = f̂ (u(t))

which gives the prediction error

"(t) = y(t) � ŷ(tju(t)) =
�
f(u(t)) � f̂ (u(t))

�
+ e(t)

Next, consider a stable dynamic system represented by the NARMAX (non-

linear ARMAX) model

y(t) = f(y(t � 1); :::; y(t� ny); u(t� 1); :::; u(t� nu);

e(t � 1); :::; e(t� ne)) + e(t) (2)

where e(t) 2 Rm is zero-mean noise, and ny; nu, and ne are non-negative inte-

gers. Given an approximation f̂ to the function f , a one-step-ahead predictor

ŷ(tjDt�1) can be formulated. The predictor and prediction error are de�ned by

ŷ(tjDt�1) = f̂(y(t � 1); :::; y(t� ny); u(t� 1); :::; u(t� nu); "(t� 1); :::; "(t� ne))

"(t) = y(t) � ŷ(tjDt�1)

The motivation behind this predictor is that while the noise sequence e is un-

known, "(t) ! e(t) as t!1, if f̂ = f and the model is invertible.

Finally, we consider state-space models

x(t+ 1) = g(x(t); u(t)) + v(t) (3)

y(t) = h(x(t)) + w(t) (4)

where x(t) is a state-vector, and v(t) and w(t) are zero-mean disturbance and

noise vectors of appropriate dimensions. In this case, the model is de�ned by

the functions g and h. Again, using approximations ĝ and ĥ, it is possible to

construct a one-step-ahead predictor ŷ(tjDt�1) using the extended Kalman-�lter

approach, e.g. [19]

x̂(tjDt�1) = ĝ(x̂(t� 1jDt�2); u(t� 1)) +K(t � 1)"(t � 1)

ŷ(tjDt�1) = ĥ(x̂(tjDt�1))

"(t) = y(t) � ŷ(tjDt�1)

where K(t) is the Kalman-�lter gain matrix. This matrix will depend explicitly

on the time, the functions ĝ and ĥ, and the covariance matrices of the disturbance

and noise sequences.



2.1 A Generalized Framework

In all these cases, we can write the model on the form

�(t) = f(�(t)) + e(t) (5)

where �(t) 2 Rm is a generalized output-vector, �(t) 2 Rr is a generalized

input-vector, and e(t) 2 Rm is zero-mean noise. We denote the space Rr the

input space. In the static model case (1), the input and output vectors equal the

generalized input and output vectors. In the NARMAX case (2), the generalized

input vector contains delayed input and output vectors in addition to delayed

noise vectors, while the generalized output equals the system output. If noise

terms e(t � 1); :::; e(t� ne) are present, the generalized input vector is partially

unknown and cannot be found exactly from the data Dt. For state-space models

(3)-(4), neither the generalized input nor the generalized output vectors can be

found exactly, because they contain the unknown state vector. The purpose of

the formulation (5) with the generalized input and output vectors is to write the

model in a generic form with one unknown function f . The problem we address

is to estimate this function, and since the function immediately gives the model

equations, this also solves the system identi�cation problem. Notice that the

fact that the generalized inputs and outputs may not be exactly known does

not complicate this problem too much, since the model parameters can still be

estimated from the input/output data using a prediction error approach with

the predictors described above [19].

2.2 Model Representation

In [30, 27, 13, 8, 9, 10] a non-linear model representation with good interpolation

and extrapolation properties is described. It is based on the decomposition of the

system's operating range into a number of smaller operating regimes, and the

use of simple local models to describe the system within each regime. A global

model is formed by interpolating the local models using smooth interpolation

functions, that depend on the operating point.

We de�ne the system's operating point at time t as z(t) = (z1(t); :::; zd(t))
T 2

Z = Rd, where typically d � r and the operating space Z is a subspace or sub-

manifold of the input space. It is assumed that � and z are related by a known

bounded mapping H so that z = H(�). Typically, Z and H are designed such

that the operating point z(t) characterizes di�erent modes of behavior of the

system under di�erent operating conditions. The design of Z and H is discussed

in more detail in section 4, and in [11]. Suppose Z is decomposed into N disjoint

sets fZigi2IN (regimes) so that

Z =
[
i2IN

Zi

for some index set IN = fi1; :::; iNg with N elements. Assume that for each

regime Zi we have a local model structure de�ned by the function f̂i(�; �i) (pa-

rameterized by the vector �i) and a local model validity function �i(z) � 0 which



indicates the relative validity of the local model as a function of z. In addition

to being smooth, �i is designed to have the property that �i(z) is close to zero

if z 2= Zi. Furthermore, it is assumed that for all z 2 Z there exists an i 2 IN
so that �i(z) > 0, to ensure completeness of the model. A global model can be

formed as

f̂ (�) =
X
i2IN

f̂i(�; �i)wi(z) (6)

wi(z) = �i(z)

,X
j2IN

�j(z) (7)

where the functions fwigi2IN are called interpolation functions. This represen-

tation is discussed in detail in [9], and it is shown that if the local model validity

functions and operating space are adequately chosen, then any continuous func-

tion f can be uniformly approximated to an arbitrary accuracy on any compact

subset of the input space using this representation. A model structure based on

a decomposition into N regimes is written

MN =
n�

Zi; �i; f̂i

�o
i2IN

(8)

This is somewhat redundant, since there is a close (but not necessarily one-

to-one) relationship between Zi and �i. With this representation, the modeling

problem consists of the following subproblems:

1. Choose the variables with which to characterize the operating regimes, i.e.

the operating space Z and mapping H.

2. Decompose Z into regimes, and choose local model structures.

3. Identify the local model parameters for all regimes.

In [9, 10, 11] it is demonstrated that in some cases, some coarse qualitative

system understanding is su�cient to carry out this procedure. In the following

sections we propose an algorithm that requires signi�cantly less prior knowledge

in order for us to decompose Z, choose local model structures, and construct

interpolation functions.

2.3 Model Structure Identi�cation Criteria

Let a model structure M of the form (8) be given. Notice that in a model

structure, the model parameters �T = (�Ti1 ; :::; �
T
iN
) are considered unknown. The

model structure M together with the admissible parameter set �M generate

a model set fM(�); � 2 �Mg. In this section, we will discuss how di�erent

model structures can be compared using a sequence of empirical data to estimate

their expected prediction performance. Let an unknown future data sequence be
denoted D?

t , and assume D?
t and Dl are uncorrelated. We introduce the notation

y(t) = y?(D?
t�1) + e(t)

"(tjM; �) = y(t) � ŷ(t
��D?

t�1;M; � )



where y?(D?
t�1) is the deterministic (predictable) component of the system out-

put, e(t) is the stochastic (unpredictable) component, and "(tjS; �) is the resid-

ual. Let �̂M be the parameter estimate that minimizes the prediction error cri-

terion

JM(�) =
1

l

lX
t=1

trace
�
"(t jM; � )"T (t jM; � )

�
(9)

and let ED and ED? denote expectations with respect to Dl and D
?
t , respectively.

The future prediction error is given by

"?(tjM; �̂M(Dl)) = y?(D?
t�1) � ŷ(tjD?

t�1;M; �̂M(Dl)) + e(t)

where the dependence of Dl on �̂M has been written explicitly. The expected

squared prediction error is de�ned by

�(M) = ED?ED

�
"?(tjM; �̂M(Dl))

��
"?(tjM; �̂M(Dl))

�T
Assuming e?(t) is white noise that is uncorrelated with D?

t�1 and Dl, we get the

following bias/variance decomposition of this expected squared prediction error

�(M) = ED?
�
y?(D?

t�1) �EDŷ(tjD
?
t�1;M; �̂M(Dl))

�
�
�
y?(D?

t�1)� EDŷ(tjD
?
t�1;M; �̂M(Dl))

�T
+ED?ED

�
ŷ(tjD?

t�1;M; �̂M(Dl) )� EDŷ(t
���D?

t�1;M; �̂M(Dl))
�

�
�
ŷ(tjD?

t�1;M; �̂M(Dl))� EDŷ(tjD
?
t�1;M; �̂M(Dl))

�T
+ED?

�
e(t)eT (t)

�
(10)

The �rst term is the squared systematic error (squared bias) caused by a too

simple model structure. The second term is the squared random error (variance)

that is present because the best model in the model set fM(�); � 2 �Mg cannot

in general be identi�ed on the basis of the �nite data sequence Dl. Finally, the

third term is the unpredictable component of the system output. Notice that

the �rst term does not depend on the data Dl, while the third term depends

neither on the data Dl, nor on the model structure M. It is evident that a

small bias requires a complex model structure, in general. On the other hand,

a small variance requires a model structure that is simple, with few parameters

compared to the number of observations l. The perfect model is characterized

both by small bias and variance, and this appears to be impossible to achieve

for a small l. This is known as the bias/variance dilemma, cf. Fig 1.

The model set will be based on a set of functions that can approximate

any smooth function uniformly on a compact subset of the input space. This

is obviously a desirable property of the model set, but also a cause for some

problems. The richness implies that there will exist models in the model set that
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Fig. 1. Typical relationship between bias, variance and model structure complexity,
when it is assumed that model structure complexity can be measured by a real number.

may make the bias arbitrarily small. However, the �nite amount of data will give

large variance for such models, and such a model will be �tted to represent not

only the system, but also the particular realization of the noise. In other words,

the model may give very good prediction of Dl, but poor prediction capability

when applied to D?
t . This is known as over-�tting, and is caused by too many

degrees of freedom in the model structure. It is therefore important that a model

structure with an appropriate number of degrees of freedom is found, in the sense

that it balances bias and variance. We will base the model structure identi�cation

algorithm on statistical criteria that have this property.

The mean square error (MSE) criterion is de�ned by

JMSE(M) = trace(�(M))

Minimizing JMSE will lead to a parsimonious model structure, but with a �nite

sequence of data Dl, the problem is ill-posed. The reason is simply that JMSE

cannot be computed since the probability distribution for the prediction error

is unknown. An alternative would be to minimize the average squared residuals

(ASR) criterion with respect to the model structure

JASR(M) = trace

 
1

l

lX
t=1

"(tjM; �̂M)"(tjM; �̂M)T

!

For �nite l, JASR may be a strongly biased estimate of JMSE, since the prediction

performance is measured using the same data as those to which the parameters



are �tted, and the law of large numbers is not valid because this introduces a

strong dependence. Hence, the use of JASR for structure identi�cation will not,

in general, lead to a parsimonious model. We will in the following present several

criteria that are far better estimates of JMSE than JASR.

If a separate data sequence D?
l (independent of Dl) is known, an unbiased

estimate of JMSE can be found by computing the empirical average squared

prediction error that results when the model �tted to the data Dl is used to

predict the data D?
l . This is the simplest and perhaps most reliable procedure,

but su�ers from the drawback that a signi�cantly larger amount of data is re-

quired. Experiments and collection of data are major costs for many modeling

problems. We therefore proceed with some alternatives that allow the data Dl

to be reused in order to �nd good estimates of JMSE . First we consider the �nal

prediction error criterion (FPE) [1], given by

JFPE (M) =
1 + p(M)=l

1� p(M)=l
JASR(M)

where p(M) is the e�ective number of parameters (degrees of freedom) in the

model structure. JFPE is an estimate of JMSE , and penalizes model complexity

relative to the length of the available data sequence through the term p(M)=l. A

major restriction is that the predictor is assumed to be linearly parameterized. A

non-linear generalization is given in [17]. An alternative criterion can be formu-

lated using cross-validation [28, 26]. The idea is to �t the parameters to di�erent

subsets of the data set, and test the prediction performance of the model struc-

ture on the remaining (presumed independent) data. Cross-validation may give a

reasonable approximation to the use of independent data for selecting the model

structure, at the cost of extra computations. The computational complexity can

be considerably reduced if the predictor is a linear function of its parameters,

or in general by using one of the approximate cross-validation criteria in [26] It

is shown that the approximate criteria are asymptotically equivalent to FPE,

as l ! 1. Another approximation to cross-validation is the Generalized Cross

Validation (GCV) criterion [4]

JGCV (M) =
1

(1 � p(M)=l)2
JASR(M)

which is easily seen to be asymptotically equivalent to FPE, and also assumes

linear parameterization of the predictor. Any one of these criteria can be applied

with the structure identi�cation algorithm we will present in the next section.

3 System Identi�cation

Let a set of candidate local model structures L = fL1; L2; :::; LNLg be given. Li
is a parameterized function that de�nes a local model structure, cf. (8).



3.1 The Set of Model Structures Candidates

Assume the input- and output-samples in Dl are bounded. Then the system's

operating range Z can be approximated by the d-dimensional box

Z1 =
h
zmin
1;1 ; zmax

1;1

i
� � � � �

h
zmin
1;d ; zmax

1;d

i
where z(t) 2 Z1 for all t 2 f1; :::; lg, since H is a bounded mapping. Notice that

the resulting model will extrapolate and can be applied for operating points

outside Z1. Next, we consider the problem of decomposing Z1 into regimes.

Consider the possible decompositions of the set Z1 into two disjoint subsets

Z11 and Z12 with the property Z1 = Z11 [ Z12. We restrict the possibilities by

the constraint that the splitting boundary is a hyper-plane orthogonal to one of

the natural basis-vectors of Rd, i.e.

Z11 = fz 2 Z1 j zd1 < �1g

Z12 = fz 2 Z1 j zd1 � �1g

for some dimension index d1 2 f1; :::; dg and splitting point �1 2
h
zmin
1;d1

; zmax
1;d1

i
.

Local model validity functions for the two regimes are de�ned by the recursion

�11(z) = �1(z)b(zd1 � z11;d1;�11)

�12(z) = �1(z)b(zd1 � z12;d1;�12)

where zi;d1 = 0:5
�
zmin
i;d1

+ zmax
i;d1

�
for i 2 f11; 12g is the center point of Zi in

the d1-direction. The function b(r;�) is a scalar basis-function with scaling pa-

rameter �, and the local model validity function associated with the regime

Z1 is �1(z) = 1. The scaling parameters are chosen by considering the over-

lap between the local model validity functions. For i 2 f11; 12g, we choose

�i = 0:5
�
zmax
i;d1

� zmin
i;d1

�
where  is a design parameter that typically takes

on a value between 0.25 and 2.0. There will be almost no overlap when  = 0:25,

and large overlap when  = 2:0. For each dimension index d1 2 f1; :::; dg we

represent the interval
h
zmin
1;d1

; zmax
1;d1

i
by a �nite number of N1 points uniformly

covering the interval. Now d1; �1; L1;v, and L2;w de�ne a new model structure,

where the regime Z1 is decomposed according to the dimension index d1 at the

point �1, and the two local model structures are L1;v and L2;w. Formally, the set

of candidate model structures Sn with n regimes is given by

S1 = ff(Z1; �1; Lj)g; j 2 f1; 2; :::; NLgg

S2 =
���

Zi
11; �

i
11; Lj

�
;
�
Zi
12; �

i
12; Lk

�	
; i 2 f1; 2; :::; dN1g; j; k 2 f1; 2; :::;NLg

	
S3 =

���
Zi
11; �

i
11; Lj

�
; (Zm

121; �
m
121; Lk) ; (Z

m
122; �

m
122; Ln)

	
;

i;m 2 f1; 2; :::; dN1g; j; k; n 2 f1; 2; :::; NLgg

[
��

(Zm
111; �

m
111; Lk) ; (Z

m
112; �

m
112; Ln) ;

�
Zi
12; �

i
12; Lj

�	
;

i;m 2 f1; 2; :::; dN1g; j; k; n 2 f1; 2; :::; NLgg

S4 = � � �



The model structure set is now S = S1 [S2 [S3 [ � � � . The model structure set

is illustrated as a search tree in Fig. 2. Strictly speaking, the model structure

set is not a tree, since di�erent sequences of decompositions sometimes lead to

the same model structure. However, we choose to represent it as a tree, for the

sake of simplicity. Now the structure identi�cation problem can be looked upon

as a multi-step decomposition process, where at each step one regime from the

previous step is decomposed into two sub-regimes. Such an approach will lead

to a sequence of model structures M1;M2; :::;Mn where the model structure

Mi+1 has more degrees of freedom than Mi. Due to the normalization of the

local model validity functions, the model set is usually not strictly hierarchical,

in the sense that Mi cannot be exactly represented using Mi+1. However, the

increasing degrees of freedom de�ne a hierarchical structure.

3.2 Basic Search Algorithm

The problem is now to search through the set S for the best possible model

structure. The estimate of the parameters in the model structure M is de�ned

by a prediction error criterion

�̂ = argmin
�

JM(�) (11)

where it has been assumed that the minimum exists. This can be ensured by

restricting the parameters to a compact set. Now, the chosen structure identi�-

cation criterion is written J 0(M). We de�ne for a given n � 1

Mn = arg min
M2Sn

J 0(M) (12)

Consider the following extended horizon search algorithm, where the integer

n? � 1 is called the search horizon.

Search Algorithm.

1. Start with the regime Z1. Let n = 1.

2. At each step n � 1, �nd a sequence of decompositionsMn;Mn+1; :::;Mn+n?

that solves the optimization problem

min
M2Sn+n?

J 0(M)

3. Restrict the search tree by keeping the decomposition that leads to Mn+1

�xed for the future.

4. If

J 0(Mn) > min
k2f1;2;:::;n?g

J 0(Mn+k)

then increment n and go to 2. Otherwise, the model structure Mn is chosen.

Referring to Fig. 2, this algorithm will search the tree starting at the top (corre-

sponding to one local model covering the whole operating space), and selecting a

decomposition at each level through a sequence of \locally exhaustive" searches

of depth n?. If n? = 1, this is a local search algorithm.
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Fig. 2. Model structure search tree illustrating possible decompositions into regimes

and choice of local model structures. Each level in the tree corresponds to the possible

decompositions into one more regime than at the previous level, i.e. the model structure

sub-sets S1;S2;S3; ::: The sub-set of model structures at each \super-node" in the tree

corresponds to a �xed decomposition into regimes, but to di�erent combinations of
local model structures. The suggested algorithm will search this tree starting at the top

(corresponding to one local model covering the whole operating space), and selecting

a decomposition at each level through a sequence of \locally exhaustive" searches of
depth n

?.

3.3 Heuristic Search Algorithm

Clearly, the performance of the algorithm is expected to improve as n? increases,

but the computational complexity makes n? > 3 not feasible for any practical

problem with 1994 desktop computer technology, even if the local model struc-

ture set L contains as few as one or two possibilities.

Example. Consider the problem of identifying a state-space model of the

form x(t + 1) = f(x(t)), where dim(x) = 5, and we apply local models of the



form 0
BBB@
x1(t+ 1)

x2(t+ 1)
...

x5(t+ 1)

1
CCCA =

0
BBB@
a1
a2
...

a5

1
CCCA +

0
BBB@
a11 a12 � � � a15
a21 a22 a25
...

. . .
...

a51 a52 � � � a55

1
CCCA
0
BBB@
x1(t)

x2(t)
...

x5(t)

1
CCCA

Each of the 30 parameters can be replaced by a structural zero, which gives a

set of local linear model structure with 230 � 109 elements. On the other hand,

even if there is only one possible local model structure that one can choose, the

number of possible decompositions into no more than �ve regimes is

#S1 + :::+#S5 = 1 + dN1 + 2(dN1)
2 + 3!(dN1)

3 + 4!(dN1)
4

For d = 2 and N1 = 10, this is approximately 4 � 106 candidate decompositions.

With n? < 4, the model structure set is considerably reduced. In particular,

n? = 3 gives about 105 decompositions among which to search, n? = 2 gives

about 2500, while n? = 1 gives 80 candidate decompositions.

2

Because of the combinatorial nature of the model structure set, it is clearly

of interest to implement some heuristics that cut down on the computational

complexity without sacrifying too much of the optimality of the algorithm. As

we have seen, the number of candidate decompositions at each step in the search

may be large. To reduce the number of candidates, we suggest applying the

following heuristics in the \locally exhaustive" search at the second step in the

search algorithm:

Heuristic 1. At each level in the search tree, proceed with only the most
promising candidates.

The best candidates are of course not known a priori, so there is always a

possibility that this may lead to a sub-optimal model. We suggest proceeding

with the best decomposition for each of the possible splitting dimensions. Instead

of trying to �nd the best candidates, one can often more easily single out the

\least promising candidate decompositions":

Heuristic 2. Discard the candidate decompositions that give an increase in
the criterion from one level in the search tree to the next.

The number of remaining candidates will typically be larger than when us-

ing Heuristic 1, but the chance of discarding the optimal decomposition may

be smaller. Some candidate decompositions may give rise to regimes where no

substantial amount of data is available, and may therefore be classi�ed a priori

as not feasible:

Heuristic 3. Discard candidate decompositions that lead to regimes with few

data points relevant to this regime compared to the number of degrees of freedom
in the corresponding local model structure and local model validity function.

Counting the number of relevant data-points associated with each regime

is controversial, since the interpolation functions overlap. We use the heuristic

count li =
Pl

t=1wi(z(t)), which has the attractive property
P

i2IN
li = l.



Heuristic 4. Use a (backward or forward) stepwise regression procedure to
handle local model structure sets L of combinatorial nature [29].

Related to the example above, one should start with no structural zeroes,

and then add one structural zero at a time, choosing the one that gives the

largest improvement in the prediction performance. This should give less than

30 + 29+ 28+ :::+ 1 < 302 candidate model structures, which is quite di�erent

from 230.

3.4 User Choices

The basis-function b(r;�) with scaling parameter � has the purpose of providing

a smooth interpolation between the local models. The basis-function is assumed

to have the property b(r;�) � 0 for all r 2 R and b(r; �)! 0 as jrj ! 1. Typical

choices are kernel-functions, like the unnormalized Gaussian exp(�r2=2�2). It

may appear that the choice of this function has signi�cant impact on the model.

However, it is our experience that the algorithm and model's prediction per-

formance are quite insensitive with respect to this choice, and the speci�cation

of this function does not require any prior knowledge about the system. What

is more important is the choice of �, which is controlled by the user-speci�ed

parameter .

In order to compute the criterion JGCV or JFPE , the e�ective number of

parameters p in the model structure must be known. If the choice of model

structure is not based on the data, then the e�ective number of parameters is

p =
X
i2IN

dim(�i) (13)

in the case of linear regression. However, the proposed algorithm for model struc-

ture identi�cation makes use of the data Dl during the search. Hence, the p-value

given by (13) will be too small. Counting the e�ective number of parameters in

this case is controversial. We apply the heuristic

p = �(N � 1) +
X
i2IN

dim(�i)

where � � 0 is a heuristic constant, which can be interpreted as a smoothing

parameter, since a large � will put a large penalty on model complexity, and will

therefore give a smooth model. A typical choice of � is between 0 and 4, cf. [6].

3.5 Statistical Properties

Consider the bias/variance decomposition (10). It has been shown in [12] that

both the bias and variance will asymptotically (as l ! 1) tend towards their

smallest possible values, with probability one, provided

1. The parameter estimator is consistent, see [18] for conditions under which

this holds.



2. The estimate J 0 of the expected squared prediction error used for model

structure identi�cation is consistent.

3. Global minima of the parameter and structure optimization problems are

found with probability one.

4. The model set fM(�);M2 S; � 2 �Mg can be covered by a �nite �-net.

It is known that the use of a separate validation data sequence for model struc-

ture identi�cation gives a J 0 that satis�es the second requirement [12]. It is also

known that FPE and AIC may be slightly biased [23].

Neither the parameter optimization nor the structure optimization algo-

rithms need result in global minima.An attractive feature of the model structure

set is that it appears to have not only multiple global minima, but also many

close-to-optimal local minima. It is easy to see that the restriction of the search

to any sub-tree of the model structure tree does not exclude any possible de-

compositions into regimes. The worst thing that can happen is that the number

of decompositions may be somewhat larger than necessary, or alternatively that

the partition may not be as �ne as desired. Obviously, this leads to suboptimality

for �nite amount of data, but not necessarily so asymptotically.

The fourth condition is somewhat technical, but it does in general impose a

restriction on the complexity of the model set. In practise, this is not a serious

restriction, as discussed in [12].

4 Examples

4.1 A Simulated Fermentation Reactor

Consider the fermentation of glucose to gluconic acid by the micro-organism

Pseudomonas ovalis in a well stirred batch reactor. The main overall reaction

mechanism is described by

Cells + Glucose + O2 ! More Cells

Glucose + O2

Cells
! Gluconolactone

Gluconolactone +H2O ! Gluconic Acid

The production of gluconolactone is enzyme-catalysed by the cells. We use the

following state-space model to simulate the \true system" [7]:

_� = �m
sc

ksc+ kos+ sc
�

_p = kpl

_l = vl
s

kl + s
� � 0:91kpl

_s = �
1

Ys
�m

sc

ksc+ kos+ sc
� � 1:011vl

s

kl + s
�

_c = kla(c
? � c) �

1

Yo
�m

sc

ksc + kos + sc
�� 0:09vl

s

kl + s
�



Table 1. Symbols and constants in the state-space simulation model for the fermenter.

Symbol Description

� Cell concentration [UOD=ml]

p Gluconic acid concentration [g=l]

l Gluconolactone concentration [g=l]
s Glucose concentration [g=l]

c Dissolved oxygen concentration [g=l]

�m 0:39 h
�1

ks 2:50 g=l

ko 0:55 � 10�3 g=l

kp 0:645 h
�1

vl 8:30mg UOD
�1

h
�1

kl 12:80 g=l

kla 150:0� 200:0 h
�1

Ys 0:375 UOD=mg

Yo 0:890 UOD=mg

c
? 6:85 � 10�3 g=l

with initial conditions �(0) = �0, p(0) = 0, l(0) = 0, s(0) = s0 and c(0) = c?.

The symbols and constants are de�ned in Table 1.

We simulated 10 hour batches using these equations, \measuring" all states

with 0.5 hour intervals, and adding sequentially uncorrelated random noise

with a signal-to-noise ratio of approximately 30 dB to the states. We collected

two sets of data, by randomly varying the initial conditions �0; s0 and the

agitation speed (a�ecting kla). The �rst set contains data from 100 batches,

and is used for system identi�cation, while the second independent set is used

for model testing. We de�ne the following dimension-less normalized variables:

�n = �=(3 UOD=ml); pn = p=(50 g=l); ln = l=(15 g=l); sn = s=(50 g=l); cn =

c=(0:01 g=l), and the normalized state-vector x = (�n; pn; ln; sn; cn)
T
. We have

speci�ed only one possible local linear discrete-time state-space model structure

x(t + 1) = ai + Aix(t) with 12 structural zeros in the Ai matrices. These zeros

follow directly from the reaction mechanism, see also [10]. We observe that glu-

cose and oxygen are rate-limiting and, consequently, expected to be the main

contributors to the system's non-linearities. It follows that the operating point

z = (sn; cn)
T captures these non-linearities and characterizes the operating

conditions of the process with respect to local linear models, see also [10].

Running the identi�cation algorithm with n? = 1, using the FPE criterion

with � = 1, and Gaussian basis-function with  = 1, results in a model with

�ve local models, and root average squared one-step-ahead prediction error (PE)

on the test data PE=0.0139, cf. Table 2. Restricting the number of local mod-

els to three, gives PE=0.0147, while one global linear model gives PE=0.0303.

This clearly indicates that there exist signi�cant non-linearities which have been

captured by the two more complex models, and not by the linear model. The

�ve regimes are illustrated in Fig. 3. Perhaps the most interesting and attractive



Table 2. Root average squared prediction performance for the model based on �ve

operating regimes.

State One-step-ahead prediction Ballistic prediction

� 0.0134 0.0341

p 0.0123 0.0211
l 0.0157 0.0357

s 0.0140 0.0204

c 0.0137 0.0315

Total 0.0139 0.0293

feature of the method is that the identi�ed model can be interpreted in a natural

way. The �ve regimes correspond to the following phases in the batch

1. Initial phase.

2. Growth phase, where only the amount of micro-organisms is limiting the

rate of the reactions.

3. Oxygen supply is rate-limiting.

4. Glucose is rate-limiting.

5. No glucose left, termination.

This gives a high-level qualitative description of the system. More low-level quan-

titative details on e.g. reaction kinetics can be added by examining the param-

eters of the local models corresponding to each regime. A simulation (ballistic

prediction) of a typical batch from the test set is shown in Fig. 4, using the model

with �ve local models, and the identi�ed global linear model for comparison.
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Fig. 3. The decomposition into �ve regimes using the simulated fermenter data, with
a typical simulated system trajectory projected onto the (cn; sn)-plane.
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Clearly, the results favor the non-linear model. Comparison with similar models

with three or four regimes, designed by hand on the basis of system knowledge

[10] indicates that their performance are comparable. Although semi-empirical,

the high transparency suggests that the identi�ed model should not be viewed

as a black-box.

The applied a priori knowledge is essentially the overall reaction mechanism,

used for structuring the Ai matrices and for selection of the two variables used for

characterizing the operating space. It must be noted that the algorithm has also

been applied without this knowledge, i.e. with full Ai matrices and operating

point z = x, resulting in only a slight decrease in the prediction accuracy of

the identi�ed model. In this case, it is interesting to observe that among the

�ve components of the operating point, the algorithm chooses only � and c for

decomposition into regimes. As noted in [10], due to the batch nature of the

process operation, the information in the state � is highly redundant, given

the information in s. This is also evident from Fig. 4, which clearly shows the

collinearity between these variables. Hence, the algorithm is forced to make a

somewhat arbitrary choice about which variable to use for decomposition, a fact

that makes the interpretation of the model more di�cult. This problem is also

observed with the MARS algorithm [5]. This only emphasizes the important fact

that the success of empirical modeling is heavily dependent on the information

in the empirical data, and that data de�ciencies should to the highest possible

extent be compensated for using prior knowledge.

4.2 Modeling of a Hydraulic Manipulator

A data sequence D8000 logged from a hydraulic TR4000 robot [15] from ABB

Trallfa Robotics A/S was used to �nd a model describing the inverse dynamics

� (t) = f(q(t); _q(t); �q(t)) + e(t)

of a joint of this robot, where � (t) is the control signal to the servo valve, q(t)

is joint position, and e(t) is equation error. The joint position was logged at a

sampling rate of 100 Hz while the robot was moving along a randomly gener-

ated trajectory. The joint velocity and acceleration was estimated by low-pass

�ltering and numerical di�erentiations. The prediction of an estimated linear

model was subtracted from the data in order to emphasize the non-linearities.

According to [15], the non-linearities are mainly due to variations in the momen-

tum arm of the hydraulic cylinder, non-linear damping, and non-linear pressure

gain characteristics due to varying ow-rates in the servo valve. In addition,

1000 independent samples were used for testing the model. A number of models

were identi�ed, based on the structure identi�cation algorithm, a least squares

parameter estimation algorithm, local linear model structure, and a Gaussian

basis-function with  = 1. The results are summarized and compared to the

results in [16] (marked z), [3] (marked +), and the MARS algorithm [6] in Table

3. The table shows that the structure identi�cation algorithm is able to �nd an

adequate model with a small number of parameters while maintaining the high



Table 3. Results of applying various identi�cation algorithms on the hydraulic ma-

nipulator joint data. The NRMSE criterion is de�ned as the square root of the ratio
of the average squared one-step-ahead prediction error to the variance of the output,

using the independent test data.

Model Comments Num. Param. NRMSE

ASMODz Quadratic Spline Basis 561 15 %

MARS 155 16 %

Local linear  = 1, n? = 2, Heuristics 1, 2, and 3 80 17 %
Local linear  = 1, n? = 1, Heuristic 3 80 17 %

MARS 53 17 %

Local linear  = 1; n? = 2, Heuristics 1, 2 and 3 40 18 %
Local linear  = 1; n? = 1, Heuristic 3 40 19 %

RBF+ Gaussian radial basis-functions 112 19 %

MARS 16 20 %

ASMODz Quadratic Spline Basis 48 20 %
Local linear  = 1; n? = 2, Heuristics 1, 2 and 3 20 23 %

NN+ Sigmoidal Neural Network (3-20-1) 101 23 %

Local linear  = 1; n? = 1, Heuristic 3 20 26 %
NN+ Sigmoidal Neural Network (3-5-1) 26 26 %

accuracy of the models found by MARS and ASMOD. In all cases, only the pa-

rameters corresponding to local model parameters or basis-function coe�cients

are counted in the table. Notice that according to the FPE criterion with � = 1,

the data sequence allows more degrees of freedom to be added to the identi�ed

model structures. This was not pursued due to the computational complexity

involved. The operating point was chosen as z = (q; _q; �q) although complemen-

tary identi�cation experiments showed that z = ( _q; �q) was su�cient to capture

most of the non-linearities, in particular when using no more than 40 parame-

ters. Unfortunately, the large number of regimes makes the interpretation of the

empirical model more di�cult than in the previous example. The model should

be viewed as a black box. This example mainly serves as a benchmark that shows

that the accuracy achieved with the local modeling approach is comparable to

some of the most popular empirical modeling algorithms from the literature.

5 Discussion

The amount of prior knowledge required with the proposed approach is quite

reasonable. First of all, an operating point space Z is required. In many cases,

it is possible to choose Z equal to a subspace or sub-manifold of the input

space [9]. The design of Z need not be based solely on a priori knowledge,

but can in addition consider the distribution of the data Dl. Quite often, there

are collinearities or correlations in the data, so that Dl can be embedded in a

subspace or sub-manifold of considerably lower dimension than the input space.

In that case, z need not be of higher dimension than this embedding. Some prior



knowledge will often make it possible to reduce the dimension of z considerably.

This is important, since it may both reduce the complexity of the model and

improve its transparency, and also reduce the computational complexity for the

empirical modeling algorithm considerably.

A set of local model structure candidates must be speci�ed. If no a priori

knowledge exists to support one choice over the other, one will typically choose

local linear model structures of various orders and possibly with structural zeros

as default, since linear models are well understood and possible to interpret.

Moreover, a linear model will always be a su�ciently good approximation locally,

provided the system is smooth, and the regimes are small enough. On the other

hand, if there is substantial a priori knowledge available in terms of mechanistic

local model structures, these can be included as illustrated in [11]. Such local

model structures may for example be simpli�ed mass- and energy-balances.

The purposes of a model can be diverse, e.g. system analysis, design, opti-

mization, prediction, control, or diagnosis. In many applications, it is important

that the model can be easily interpreted and understood in terms of the system

mechanisms. With empirical models, which are often based on black-box model

representations, this is often a hard or impossible task. However, the approach

presented in this paper gives highly transparent empirical models because

{ local models are simple enough to be interpreted,

{ the operating regimes constitue a qualitative high-level description of the

system that is close to engineering thinking.

Notice that the interpretation of local linear models as linearizations of the

system at various operating points is valid only if the model validity functions

do not overlap too much. This point is stressed in [20], and the use of local

identi�cation algorithms for each local model is one possibility that will improve

the interpretability.

5.1 Related work

Local linear models are applied in [13] and [27] together with a clustering al-

gorithm to determine the location of the local models. A parameterized regime

description and a hierarchical estimator used to estimate the regime parameters

simultaneously with the local model parameters is described in [8] and [14]. An

algorithm based on local linear models and decomposition of regimes in which

the system appears to be more complex than the model, is suggested in [21].

A model representation based on local polynomial models and smooth inter-

polation is proposed in [22]. The structure identi�cation algorithm is based on

an orthogonal regression algorithm that sequentially discards local model terms

that are found to have small signi�cance.

When the interpolation functions are chosen as the characteristic functions

of the regime-sets Zi, a piecewise linear model results. The resulting model will

not be smooth, and may not even be continuous, which may be a requirement

in some applications. Also, we have experienced that smooth interpolation be-

tween local linear models usually gives better model �t compared to a piecewise



linear model with the same number of parameters. The local linear modeling

approach combined with a fuzzy set representation of the regimes also leads to a

model representation with interpolation between the local linear models [30]. In

that case, it is the fuzzy inference mechanism that implicitly gives an interpola-

tion. Structure identi�cation algorithms based on clustering [2, 32, 31] and local

search [29] have been proposed in this context. In this case, the �i-functions are

interpreted as membership functions for fuzzy sets.

The algorithm of Sugeno and Kang [29] is perhaps the closest relative to

the present algorithm. The main di�erence is the extra exibility, and e�ort is

begin applied to �nd a closer to optimal model with the present algorithm. A

statistical pattern recognition approach with multiple models leads to a similar

representation based on a piecewise linear model and discriminant functions to

represent the regime boundaries [24]. Finally, in [25] it is suggested a model

representation with neural nets as local models and a structure identi�cation

algorithm based on pattern recognition. The pattern recognition algorithm will

detect parts of the input space in which the model �t is inadequate, and re�ne

the model locally.

With this large body of literature in mind, one may ask: What are the con-

tributions and improvements represented by the present approach? We have at-

tempted to take the most attractive features from the algorithms in the literature

and combined these into one algorithm. We have emphasized interpretability of

the resulting model, exibility with respect to incorporation of prior knowledge,

and a transparent modeling and identi�cation process that is close to engineer-

ing thinking. The price we have to pay is a computer intensive algorithm. Some

may also argue that the algorithm is too exible and not completely automatic,

and as a result it may be di�cult to apply for inexperienced users. However, it is

our view that real world applications require perhaps even more exibility and

a less automated approach.

6 Concluding Remarks

The proposed empirical modeling and identi�cation algorithm is based on a rich

non-linear model representation which utilizes local models and interpolation to

represent a global model. With this representation, the semi-empirical modeling

problem is solved using a structure identi�cation algorithm based on a heuristic

search for decompositions of the system's operating range into operating regimes.

This algorithm is the main contribution of this work. We want to emphasize an

important property of the modelingmethod and identi�cation algorithm, namely

the transparency of the resulting model. The transparency is linked with the

possibility to interpret each of the simple local models independently, but more

importantly with the fact that the identi�ed regimes can often be interpreted in

terms of the system behavior or mechanisms.

In general, the fundamental assumptions behind empirical modeling are that

1) the empirical data is not too contaminated by noise and other unmodeled

phenomena, and 2) that the data set is complete in the sense that it contains



a su�cient amount of information from all interesting operating conditions and

system variables. Unfortunately, these assumptions are often not met in practical

applications. The proposed algorithm should therefore be applied with care, and

as a part of a computer aided modeling environment that allows exible incor-

poration of prior knowledge, not as an automatic modeling algorithm.Moreover,

one should undertake a study of the robustness of the algorithm with respect to

contaminated, sparse, and incomplete data, in particular for high dimensional

and otherwise complex modeling problems.
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