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Abstract. The problem of controlling processes that operate within a wide range of operating
conditions is addressed. The operation of the process is decomposed into a set of operating regimes,

and simple local state-space model structures are developed for each regime. These are combined
into a global model structure using an interpolation method. Unknown local model parameters are
identi�ed using empirical data. The control problem is solved using a model predictive controller
based on this model representation. As an example, a simulated batch fermentation reactor is
studied. The model-based controller's performance is compared to the performance with an exact
process model, and a linear model. It is experienced that a non-linear model with good prediction

capabilities can be constructed using elementary and qualitative process knowledge combined with
a su�ciently large amount of process data.
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1. INTRODUCTION

Dynamic optimization has for decades been a ba-

sis for control. During the 60's and 70's, closed-

form solutions to the optimization problem was

the driving force for much research activity. The

linear-quadratic controller seemed to provide a so-

lution to many multi-variable control problems.

Experience has shown that this approach has se-

rious shortcomings: First, the solution assumes no

constraints on the states and control inputs. Sec-

ond, the linear-quadratic controller need not be

robust when estimator dynamics are included for

state estimation, as shown by Doyle (1978).

Within the domain of optimization-based process

control research, the interest and successful indus-

trial applications have the last decade focused on

model-based predictive control (MPC); see (Gar-

cia et al., 1989) and (Rawlings et al., 1994) for

comprehensive surveys of this �eld. The idea

is to solve the optimization problem at a given

time instant by utilizing the most recent process

measurements. The optimization problem is de-

�ned on some horizon, and a control trajectory

is computed on this horizon. Only the �rst part

of the control trajectory is applied to the pro-

cess, and the entire optimization is repeated at

the next sampling instant, again utilizing pro-

cess measurements up until this new time in-

stant. This methodology was �rst presented by

Cutler and Ramaker (1979), and they minimize

a quadratic criterion weighting the control errors

and changes in the control inputs. They use a

linear moving-average model for prediction. More

important, this optimization-based controller can

handle constraints in both the control inputs and

the controlled variables.

The large majority of MPC is based on linear

models. An important reason for this is that lin-

ear MPC, like other linear controllers, can han-

dle processes with weak non-linearities. Although

the use of MPC within the process industries has

been extensive, it has been mainly limited to con-

tinuous processes. Such processes are often char-

acterized by small variations in operating condi-

tions. This is not the case for batch and fed-batch

processes which are also widely used in industry.

The di�erence between batch and fed-batch pro-

cesses is that no feed is added and no product

is removed in a batch process, while this is done

in a fed-batch process. Batch processes will typi-

cally exhibit large variations in the operating con-

ditions during a batch. Moreover, the product

speci�cations may di�er among batches, thereby

changing the operating conditions signi�cantly be-

tween batches. Johnson (1987) compares control

of continuous processes and batch-type processes

by stating that the optimization problem of batch

processes is a dynamic problem involving highly



nonlinear process models. As a contrast, contin-

uous processes can often be optimized by a static

formulation. Control of a batch reactor is usually

carried out by a two step procedure. Time-varying

trajectories for the important variables are �rst

derived. This is either done in a heuristic man-

ner based on process insight and experience from

earlier operation, or by open-loop optimization

based on a model of the batch reactor. Second,

the tracking of the variables is accomplished by

set-point controllers. Reviewing the batch reac-

tor control literature, emphasizing fermentation

reactors, shows that four questions are focused;

the generation of optimal trajectories, controller

design for setpoint control, computing on-line es-

timates of reactor states, and the issue of reac-

tor modeling, (Rippin, 1989), (Johnson, 1987) and

(J�orgensen and Jensen, 1989).

The work on optimal trajectories is usually based

on some non-linear mechanistic model of the pro-

cess in question. The cost criterion typically in-

clude productivity and input costs, and the opti-

mization problem is solved o�-line. Examples of

this can be found in (Impe et al., 1994) and (Sar-

gantanis et al., 1993). There are, however, also

examples on the use of on-line optimization, i.e.

use of MPC, (Lim and Lee, 1991).

There is a quite extensive literature on setpoint

control of batch-type reactors, in particular the

use of adaptive control and feedback linearization.

Bastin and Dochain (1988) and Pomerleau et al.

(1989) base their controller design on mechanis-

tic models, while recent work by Proll and Karim

(1994) and Keulers (1993) use empirical models

for nonlinear control.

A major problem when implementing advanced

control in biotechnical processes is the lack of good

measurements. Hence, research has also focused

on-line estimation of reactor states, particularly

substrate and product concentrations. Examples

of this is found in (Hengjie et al., 1989; Hilaly et

al., 1994; Keulers, 1993).

Reactor modeling for the purpose of control, span

from linear and nonlinear mechanistic models to

linear and nonlinear empirical models. Of partic-

ular interest to our work is (Zhang et al., 1994).

They utilize the fact that di�erent phenomena

dominate during di�erent parts of a batch cycle,

and construct a set of local models that that are

valid during di�erent parts of a batch cycle. In

addition, they specify a method to select the ap-

propriate model at a given time. The advantage

of this concept is that the individual local models

are simpler than a global model that can repre-

sent the whole batch cycle. A similar approach is

proposed by Konstantinov and Yoshida (1989).

This work investigates the use of MPC on batch

processes using a non-linear model in the con-

troller. There are some reports on this in the

literature. Lim and Lee (1991) describe the use

of MPC using on-line parameter estimation. The

control trajectory is computed by simultaneous

parameter estimation and re-optimization. Garcia

(1984) extends the method introduced by Cutler

and Ramaker (1979) by using a nonlinear model

for output prediction. This controller is tested

on a polymerization reactor model. A similar ap-

proach is presented by Peterson et al. (1989).

The present work rests on two assumptions. The

�rst assumption is that the performance of MPC

depends critically on the predictive capabilities of

the underlying process model. The wide operating

range of a batch makes the use of a non-linear pre-

diction model particularly interesting. The sec-

ond assumption is that nonlinear model building

is a cumbersome task. Hence, empirical model-

ing techniques are interesting. This is also moti-

vated by the observation that practically all pre-

dictive control loops implemented in industry are

based on empirical models. A modeling frame-

work denoted operating regime based modeling is

applied. This framework allows a decomposition

of the modeling work, and has interesting capabil-

ities for blending di�erent types of process knowl-

edge and empirical data during modeling.

The continuation of this paper is structured as fol-

lows: First, the operating regime based modeling

framework is briey presented. This includes a

discussion on the use of di�erent types of knowl-

edge. Second, the predictive control problem is

de�ned. This is, essentially, nonlinear MPC uti-

lizing the operating regime based modeling frame-

work. The claims are supported by application

of the method on a simulated batch fermentation

process. Model development is emphasized. MPC

based on local modeling is compared to the use of

a conventional nonlinear state-space model and a

linear model. Some conclusions �nalize the paper.

2. OPERATING REGIME BASED

MODELING

This section reviews a technique for develop-

ing non-linear models based on operating regime

based modeling. Further details can be found in

(Takagi and Sugeno, 1985; Johansen and Foss,

1993a; Johansen, 1994; Zhang et al., 1994). Con-

sider the problem of developing a state-space

model of the form

_x = f(x; u; v)

y = g(x;w)



where x 2 R
n is state vector, u 2 R

r is control in-

put vector, v 2 R
n is disturbance vector, y 2 R

m

is measurement vector, and w 2 R
m is measure-

ment noise. When the system operates within a

small operating regime, a simple (possibly linear)

local model structure

_x = fi(x; u; v; �i) (1)

y = gi(x;w; �i) (2)

parameterized with the vector �i 2 R
pi will always

describe the the system su�ciently well, provided

the system is smooth. The local model struc-

ture will be valid within this particular operat-

ing regime, and more or less invalid outside this

regime. The operating point is denoted �, and

the full range of operation is the set of operat-

ing points �. An operating regime is de�ned as

a subset �i � � where the local model structure

(1)-(2) is an adequate description of the system.

The choice of which variables, �, to use to charac-

terize the operating regimes will be highly prob-

lem dependent. Typically, � will contain a subset

of the states, inputs, and disturbances, i.e. given

by a function � = H(x; u; v), but can also con-

tain other model variables. Next, assume that

for the local model structure (1)-(2) there exists a

smoothmodel validity function �i : �! [0; 1] that

is designed such that its value is close to one for

operating points where the local model structure

(1)-(2) is a good description of the system, and

close to zero otherwise. If the system's operating

range � is decomposed into N operating regimes,

�1, ..., �N � �, and local model structures and

local model validity functions for each operating

regime are developed, then the following interpo-

lation gives a global model structure:

_x =

NX
i=1

fi(x; u; v; �i)wi(�) (3)

y =

NX
i=1

gi(x;w; �i)wi(�) (4)

wi(�) =
�i(�)P
N

j=1 �j(�)
(5)

The interpolation function wi : � ! [0; 1] is a

normalization of the model validity function �i,

and has the property
P

N

i=1 wi(�) = 1 for all � 2

�. To guarantee a complete global model, it must

be assumed that at any operating point � 2 �,

not all local model validity functions vanish. With

this framework, the modeling problem consists of

the following major subtasks:

First, decompose the system's operating range

into a number of operating regimes that com-

pletely cover the interesting range of operation.

Such a decomposition can often be found by using

an elementary understanding of the mechanisms

in the system, as will be seen in the example. Al-

ternatively, there exist computer algorithms that

can make such a decomposition on the basis of

an informative data sequence, e.g. (Sugeno and

Kang, 1988; Johansen and Foss, 1994; Jordan and

Jacobs, 1993; Murray-Smith and Gollee, 1994).

Second, for each operating regime, a local model

structure must be developed. One may choose be-

tween mechanistic or empirical local model struc-

tures. In addition, local model validity functions

must be designed. However, this is usually a quite

straightforward task when the decomposition into

regimes has been accomplished.

Third, the unknown parameters �1; :::; �N must be

identi�ed. If the local model structures are lin-

early parameterized, the global model structure

will also be linearly parameterized, since the local

model validity functions do not contain unknown

parameters. Standard system identi�cation tools

can be applied. Since the model is non-linear it is

particularly important with informative data that

covers all operating regimes with local models that

contain unknown parameters.

Much of the power of this modeling framework

comes from the exibility to incorporate di�er-

ent kinds and amounts of process knowledge, and

the transparency of the procedure and result-

ing model. In particular, the decomposition into

regimes can be based on either mechanistic pro-

cess knowledge or empirical data. Also, some of

the local model structures can be empirical, while

others may be mechanistic. Another important

property of the framework is that it is quite close

to engineering thinking. It has been justi�ed by

various examples (Johansen, 1994) that quite ele-

mentary and qualitative process knowledge com-

bined with process data is often su�cient to de-

velop an accurate and transparent model. Hence,

the framework may be well suited for industrial

applications.

3. MODEL PREDICTIVE CONTROL

In the previous section, we focused on operat-

ing regime based state-space modeling. This

leads to a nonlinear state-space MPC problem,

cf. (Balchen et al., 1992). For batch and semi-

batch processes, this nonlinear state-space MPC

problem can be formulated as

max
u2U

 
m(x(Ts)) +

Z
Ts

t

l(x(�); y(�); u(�))d�

!

subject to

_x = f(x; u; v); x(t) given



y = g(x;w)

h(x; y; u) � 0

where typically Ts = min(t + T; Tf ). The opti-

mization is de�ned on some horizon T , starting at

the present time t. Time t = 0 de�nes the start of

a batch and t = Tf de�nes the end of a batch. The

end time Tf need not be �xed, and this variable

is often optimized, too.

Both equality and inequality constraints can be

de�ned. Soft constraints may be de�ned as an in-

tegrated part of the optimization criterion. Mea-

surements are explicitly mentioned in the formula-

tion to emphasize the fact that it is sometimes nat-

ural to optimize with respect to these variables.

To reduce the complexity of the optimization

problem, the set of possible control input trajec-

tories U is restricted to a �nite-dimensional space.

The control input is here parameterized as a piece-

wise constant function:

u(�) =

8><
>:

�1; � 2 [t; t+�T )

�2; � 2 [t+�T; t+ 2�T )
...

where �T is the sampling interval. The opti-

mization problem is solved by the use of a non-

linear programming algorithm at time instants

t 2 f0;�T; 2�T; :::; Tf ��Tg using the most re-

cent process measurements. Only, the �rst part of

the optimal trajectory, �1, is applied as the con-

trol input.

A major problem with the above formulation is

its dependence on the initial states x(t). In prac-

tice, these are not readily available. Hence, some

estimate of the states must be computed. This

may be accomplished by state estimation or an

observer.

Since most batch-type processes are highly non-

linear, there are two potential advantages in ap-

plying nonlinear MPC for batch processes, com-

pared to linear MPC. First, the predictive capa-

bility on the optimization horizon may improve by

utilizing a nonlinear as opposed to a linear model.

Second, the states x(t) may be estimated with im-

proved accuracy by the use of a nonlinear model.

4. SIMULATION EXAMPLE

A semi-realistic simulation study of a batch fer-

mentation process illustrates the ideas presented

in this paper. In this study, �ve controllers are

formulated, based on the above formulation. All

controllers utilize the same performance criterion

and constraints, equal control input parameteriza-

tion, and identical optimization algorithms. The

controllers di�er in the following way:

1. The 1st MPC uses an ideal process model, i.e.

the model and the \true system" are identi-

cal. Provided the initial values x(0) are cor-

rect, this controller gives an upper limit to

the performance of MPC.

2. The 2nd MPC uses a nonlinear operating

regime based state-space model for both pre-

diction and state estimation.

3. The 3rd MPC uses a global linear state-space

model for both prediction and state estima-

tion.

4. The 4th controller is an open-loop optimal

controller (OLOC)using the same non-linear

model as the 2nd MPC.

5. The 5th controller is also an open-loop opti-

mal controller (OLOC), using the global lin-

ear model for prediction.

4.1. System Description

The simulated \true system" model is adapted

from (Ghose and Ghosh, 1976) and (Rai and Con-

stantindes, 1973), and describes the fermentation

of glucose to gluconic acid by the micro-organism

Pseudomonas ovalis in a well-stirred batch reac-

tor. The main overall reaction mechanism can be

described by

Cells + Glucose +O2 ! More Cells

Glucose +O2
Cells
! Gluconolactone

Gluconolactone +H2O ! Gluconic Acid

The �rst reaction is the reproduction of cells, us-

ing the substrate glucose and oxygen. The sec-

ond reaction is the production of gluconolactone,

again using glucose and oxygen. This reaction

is enzyme-catalyzed by the cells, while the �nal

product, gluconic acid, is formed by the last reac-

tion. The following state-space model is used to

simulate the \true system":

_x1 = �m
x1x4x5

Ksx5 +K0x4 + x4x5

_x2 = vL
x1x4

KL + x4
� 0:9082Kpx2

_x3 = Kpx2

_x4 = �
1

Ys
�m

x1x4x5

Ksx5 +K0x4 + x4x5

�1:011vL
x1x4

KL + x4

_x5 = kla(x
�

5 � x5)� 0:09vL
x1x4

KL + x4

�
1

Y0
�m

x1x4x5

Ksx5 +K0x4 + x4x5

where x1 is the cell concentration, x2 is glucono-

lactone concentration, x3 is gluconic acid con-

centration, x4 is glucose concentration and x5 is

dissolved oxygen concentration. The parameters



�m, KL, vL, and Kp depend on temperature and

pH. This dependency is given by an interpolated

lookup table based on the experimental data in

(Rai and Constantindes, 1973). The remaining

parameters can be found in (Rai and Constantin-

des, 1973) and (Ghose and Ghosh, 1976). Ini-

tial values for the batch are x1(0) = x10; x2(0) =

0; x3(0) = 0; x4(0) = x40, and x5(0) = x
?

5.

The setpoints to the temperature and pH basis-

control loops are used as control inputs by the

predictive controller. The basis-control loops are

assumed to be perfect, which is realistic, since the

system dynamics are slow compared to the typical

bandwidth of these loops.

Three perfect on-line measurements are available

at 0:5 h intervals during the batch: Dissolved oxy-

gen concentration, biomass concentration and glu-

conic acid concentration. There are no noise or

disturbances in the simulations.

4.2. Modeling and Identi�cation

All the local models are chosen to have the same

linear structure

x(t+ 1) = ai +Aix(t) +Biu(t) + v(t) (6)

where x = (x1; :::; x5), u = (pH; temp), ai is a

vector of unknown parameters, Bi is a 5�2-matrix

of unknown parameters, and Ai has the structure

Ai =

0
BBBB@

A
i

11 0 0 A
i

14 A
i

15

A
i

21 A
i

22 0 A
i

24 0

0 A
i

32 1 0 0

A
i

41 0 0 A
i

44 A
i

45

A
i

51 0 0 A
i

54 A
i

55

1
CCCCA

The structural zeros follow from a simple mass-

balance based on the reaction mechanism and the

assumption that the reaction rates only depends

on x4 and x5, in addition to u, which is a quite

natural assumption to make, since these are the

rate-limiting components.

By examining the main reaction mechanisms, four

operating regimes can be identi�ed, see also (Jo-

hansen and Foss, 1993b). At the beginning of the

batch, the production of gluconolactone is small

due to the small concentration of cells. Hence,

the production of gluconic acid is small due to the

low concentration of gluconolactone. This regime

is characterized by a relatively high concentration

of both dissolved oxygen and glucose. In the inter-

mediate stages of the batch, the production of cells

and gluconolactone proceeds at a high rate, and

some gluconic acid is produced. There is a rela-

tively low concentration of dissolved oxygen, and

the concentration of glucose is decreasing. De-

pending on whether the dissolved oxygen concen-

tration is so low that the transfer of oxygen to

the cells is rate-limiting or not, the dynamic be-

havior of the process is di�erent. This gives two

regimes that are characterized by a medium con-

centration of glucose, and either low or medium

concentration of oxygen. During the �nal stages

of the batch, the production of cells and glucono-

lactone is reduced due to shortage of glucose. The

only signi�cant reaction is the production of glu-

conic acid from gluconolactone. This regime is

characterized by low substrate concentration, and

high dissolved oxygen concentration.

These four regimes can all be characterized by

the concentration of dissolved oxygen and glucose,

and these two variables are chosen to be the vari-

ables that de�nes the operating point �. The four

regimes were chosen on the basis of the discus-

sion above, and their interpolation functions are

shown in Fig. 1. Since the dependencies on pH

and temperature are highly nonlinear, the local

model within each of these four regimes should

therefore depend non-linearly on temperature and

pH. The chosen local model structure (6) does not,

so each of these four regimes is therefore further

decomposed into four new regimes along the tem-

perature and pH axes, as shown in Fig. 2. Hence,

the model is based on a total of 16 local models.

The model validity functions �i were chosen to be

Gaussian functions, with some suitable overlap.
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Fig. 1. Interpolation functions for the four regimes

in the plane spanned by oxygen concentration

and glucose concentration. Notice that the

axes are scaled.
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Fig. 2. Interpolation functions for the four regimes in

the plane spanned by temperature and pH.



The 448 unknown model parameters are estimated

using the least-squares method, and simulated

data from 600 batches, each run for 10 h, and all

states \measured" every 0:5 h. For every batch,

the initial states x10 and x40 were randomly cho-

sen from the intervals [0:4; 0:5] and [40; 50], re-

spectively. The control input trajectories were

designed by randomly selecting between 0 and 2

step changes, within the allowable ranges of both

temperature and pH, during the batch. A global

linear model was also found using the same esti-

mation method and identi�cation data.

Both models were visually "validated" on a num-

ber of independent batches not used for identi�-

cation. In these batches, the pH and tempera-

ture were randomly changed every 0:5 h. A typ-

ical ballistic prediction is shown in Fig. 3, and

indicates that the prediction accuracy of the non-

linear model is satisfactory, while the linear model

has poorer prediction capabilities on the full batch

length.
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Fig. 3. Simulation (ballistic prediction) from correct

initial values for a typical batch, marked with

circles (�), and \true system" trajectories. The

upper part is with the non-linear model based

on 16 local models, while the lower part is with

the linear model. Notice that the variables are

scaled.

Due to the inaccuracy in the models used for

MPC, and because not all states are measured,

state estimators are implemented, using a time-

varying extended Kalman �lter for the non-linear

model, and a time-varying Kalman �lter for the

linear model. The initial state-estimates of the �l-

ters equals the initial states of the \true system".

The covariance matrices were tuned to make the

estimator loop fast compared to the system dy-

namics.

4.3. Model Predictive Control

The objective of the MPC is to maximize the av-

erage production rate of gluconic acid, neglecting

the costs of substrate, cells, and separation. The

time Tc from �nishing one batch to starting the

next, due to emptying, cleaning and initializing

the reactor, is Tc = 1 h.

This optimization problem is formulated as

max
(u;Tf )2(U;T )

x3(Tf )

Tf + Tc
(7)

subject to the model equations, and the restric-

tions 5:4 � u1 � 7:0 , 25:0 � u2 � 35:4,

and x1; :::; x5 � 0 at all time. The trajecto-

ries are optimized from time t to the batch end

time Tf . The batch end time is restricted to

T = ft; t+�T; t+2�T; :::g, and the sampling in-

terval is �T = 0:5 h. In the optimization, the cur-

rent state is estimated using the extended Kalman

�lter, and the model is used to compute ballistic

predictions from this initial value. The criterion

(7) is maximized using a sequential quadratic pro-

gramming algorithm with line search (MATLAB

function constr, (Grace, 1990)). The initial val-

ues to the search algorithm are constant input tra-

jectories corresponding to pH = 5.6 and temp =

28.3.

4.4. Results

The results of simulations using the �ve con-

trollers described at the beginning of this section

are summarized in Table 1. The results are av-

erages computed over seven representative initial

states. The temperature and pH trajectories for

one typical initial state for these �ve cases are

shown in Fig. 4. The corresponding state trajec-

tories for the three MPC simulations are shown in

Fig. 5.

Table 1 Summary of results.

Average Average

Prod. Rate End time

_p [g=lh] Tf [h]

MPC, Ideal model 6.03 5.5

MPC, Local modeling 5.90 5.5

MPC, Linear model 5.47 6.9

OLOC, Local modeling 5.88 5.1

OLOC, Linear model 5.51 6.4
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Fig. 4. Optimal temperature (upper part) and pH tra-

jectories (lower part) computed by the �ve con-

trollers, for a typical initial state. MPC, ideal

model - dashed-dotted line, MPC, local mod-

eling - solid line, MPC, linear model - dotted

line, OLOC, local modeling - dashed line, and

OLOC, linear model - solid line with circles.

Notice that the di�erent trajectories have dif-

ferent end times, see Table 1.

4.5. Discussion

The results show, as might be expected, signi�-

cantly improved performance by moving from a

linear to a non-linear model as the basis for MPC

for this type of process. The improvement is some-

what limited by the fact that the control inputs for

all �ve controllers are limited by hard upper con-

straints during signi�cant parts of the batch. Fur-

thermore, the results show that re-optimization

during a batch by MPC may be advantageous

compared to open-loop optimization. However,

this is not true for the linear model, since the poor

prediction capabilities make the optimization un-

reliable.

The experience from the modeling and identi-

�cation suggests that with the local modeling

method, it is both su�cient and necessary to have

some rather elementary process knowledge to de-

velop the model structure, and a set of informative

empirical data for parameter estimation. In par-

ticular the decomposition into operating regimes

is a critical part of the modeling, where it im-

portant to use process knowledge to get a sound

model structure. However, the applied process

knowledge is signi�cantly less than what would be

needed for developing a mechanistic model based

on mass balances. On the other hand, the amount

of data is signi�cantly larger than what would
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Fig. 5. System trajectories for the three MPC simula-

tions and a typical initial state. Notice that the

variables are scaled. Lines marked + are with

the ideal model, lines marked � are with oper-

ating regime based modeling, and lines marked

� are with the linear model.

be needed for the identi�cation of a mechanistic

model. It should be mentioned that less empiri-

cal data may be su�cient to identify an accurate

model. While this aspect is obviously important

from a practical point of view, we have not inves-

tigated it here.

5. CONCLUSIONS

This investigation has shown that the operating

regime based modeling framework can be used as

a means for modeling processes that operate over

a wide range of operating conditions. The method

is exible with respect to the available process

knowledge. A potential application of the mod-

eling method by using the derived model in MPC

on a batch fermentation reactor has been demon-

strated, with encouraging results.
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