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Summary. We will in this paper highlight our experience with NMPC. In our context
NMPC shall mean the use of a nonlinear mechanistic model, state estimation, and the
solution of an online constrained nonlinear optimisation problem. Our reference base
is a number of applications of NMPC in a variety of processes.

We discuss the use of mechanistic models in NMPC applications and in particular
the merits and drawbacks of applying such models in online applications. Further, we
focus on state estimation, and the use of Kalman filters and moving horizon estimation.
Finally, we consider the design of the optimization problem itself and implementation
issues.

1 Introduction

Nonlinear model predictive control (NMPC) opens for the use of MPC in more
demanding applications than has normally been the case for linear MPC. In par-
ticular NMPC lends itself to nonlinear systems which exhibit large variations in
operating conditions and which are critically dependent on the use of a dynamic
nonlinear model to gain sufficient performance. A nice overview of NMPC can
be found in [9].

NMPC is not a well defined term in the sense that NMPC may be used for
controllers ranging from a slight variation of linear MPC to the online solution
of a constrained nonlinear optimisation problem. One example of a slight modi-
fication to account for nonlinearities is the use of multiple linear models in such
a way that the current working point defines which model should be active at
a given time instant. Hence, the QP-problem frequently encountered in linear
MPC will change as the active model changes. In our context NMPC shall mean
the use of a nonlinear mechanistic model, state estimation, and the solution of
an online constrained nonlinear optimisation problem.

The scope of this paper is to pinpoint critical issues when applying NMPC by
drawing on our experience within the process industries since 2000. To ensure a
sound level of credibility we first present our most important application areas
and accompanying control challenges in some detail. Thereafter we address four
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critical areas: modelling, state estimation, formulation of the control problem
itself and implementation issues. The paper ends with some conclusions.

2 Reference Base

The reference base contains a number of industrial applications of NMPC in a
variety of processes. Some examples are:

• A system for optimization of suspension PVC polymerization processes has
been implemented on two large (140 m3) autoclaves located at Hydro Poly-
mers’ plant in Porsgrunn, Norway. The system is characterized as follows: It
contains a rather detailed nonlinear model of the polymerization reactor. The
reactor model includes reaction kinetics, thermodynamic calculations for the
four-phase suspension process, quality parameters and energy balances for
the suspension and cooling systems. The application optimizes the tempera-
ture reference trajectory and the amount of initiators charged to the reactor
in order to initiate the polymerization process. The optimization is based on
an economic criterion which includes the batch time as well as cost of initia-
tors. The process is highly exothermic, and the purpose of the optimization
is to minimize the batch time without exceeding available cooling capacity
and without using an inhibitor to slow down the polymerization process.
The optimization is performed once for each batch cycle, and the tempera-
ture profile, which consists of approximately 80 ”straight line segments”, is
optimised for the entire batch under a number of constraints imposed by the
quality specifications of the various PVC products. Based on logged data a
few model parameters are estimated as functions of conversion. The system
is implemented using Cybernetica’s NMPC and batch optimisation platform.

• Three NMPC applications for stabilization and quality control of the Borealis
polypropolyne plant in Schwechat, Austria have been developed and imple-
mented in cooperation with Borealis’ personnel. The implementations are
based on nonlinear first-principles models of the polyolefine plant (including
three different polymerization reactors), and on Borealis in-house system for
model predictive control (BorAPC). The system is characterized as follows:
The three MPC applications comprise a multivariable control system with all
together 11 control inputs and 19 controlled outputs. The nonlinear model
consists of 77 states which are estimated on-line together with a few model
parameters.

• NMPC of a base-catalyzed phenol-formaldehyde batch polymerization pro-
cess has been implemented. The system is based on a rigorous model of
the polymerization reactor. The system is implemented at Dynea’s plant in
Springfield, Oregon, USA. The model for this condensation polymerization
process includes reaction kinetics, thermodynamics, population balances for
functional groups and energy balance for the reactor and cooling system.
Safety is an important issue and one driving force for implementing NMPC.
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Fig. 1. A sketch of the metal refining process

Another important consideration is reduced batch time. A second application
on a twin reactor is presently being developed. The system is implemented
using Cybernetica’s NMPC platform.

Two additional applications will be presented in some more detail.

2.1 Manganese Metal Refining

This case is a metal refining process for removing carbon from manganese metal.
The process is sketched in Figure 1. It consists of a ladle which is filled with
liquid-phase high-carbon manganese metal. This implies that about 7% of the
metal bath consists of carbon. In addition there is some iron and MnO in the
metal bath. Carbon is removed by blowing O2 into the ladle. The main overall
reaction is

C + O2 → CO2

The refining process produces different products with a carbon content in the
range 0.5%−1.5%. Downstream the refining process the metal is casted, crushed
and screened before it is packed and shipped to customers.

In addition to the main reaction there are intermediate reactions as well as
side reactions. One important side reaction is evaporation of manganese metal.

Mn(l) → Mn(g)

Fumes generated during the batch are collectected in an off-gas system and
routed to a filter-system for removing dust.
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Fig. 2. Sketch of an aluminum electrolysis cell

The metal refining process is operated as a fed-batch process. The length
of a batch sequence is in the order of 1 − 2 hours. The same ladle is used
from one batch to the next. It is replaced when the inner lining becomes too
thin. The economic insentive for improved control is minimizing metal loss due
to evaporation, while satisfying an upper limit on the concentration of carbon
at the end of the batch. The control problem is challenging since this batch
process is highly nonlinear and operational constraints are critical. An NMPC
application was implemented in 2003 using Cybernetica’s NMPC platform. More
information on Mn decarburation can be found in [3].

2.2 Aluminum Electrolysis Cell

The Hall-Heroult process - a continuous process - is dominating worldwide in
the production of aluminum [5]. The fundamentals of the process are to dissolve
Al2O3 in molten cryolite, and electrically reduce complex aluminum containing
ions to pure aluminum. The overall electro-chemical reaction in the electrolyte is

]2Al2O3 + 3C −→ 4Al + 3CO2

where carbon is fed to the reaction as consumable anodes. By the use of various
additives, in particular AlF3, the operating temperature of the electrolyte can
be lowered from 1010C to approximately 960C. Both decreased temperature and
increased excess AlF3 is believed to be beneficial for the current efficiency and
the energy consumption. As molten cryolite is very corrosive, the only component
of an acceptable cost presently capable of coexisting with it over time is frozen
cryolite. It is therefore necessary to maintain a layer of frozen cryolite (side ledge)
to prevent the carbon walls from eroding. In order to maintain the side ledge
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there has to be a substantial heat loss through the side ledge and the carbon
walls of the cell.

The cell voltage applied is typically 4.5V , and the electric current through
the cell is typically 150 − 200kA. A sketch of a cell is shown in Figure 2. In real
life 100-200 cells are placed and connected in series.

There are three control inputs to the process, anode beam adjustments (con-
trolling energy input), addition of AlF3 and addition of Al2O3, and three con-
trolled variables, bath temperature, concentration of AlF3 and concentration of
Al2O3. A cell is regularly perturbed since liquid aluminium is tapped and one of
the anode blocks is changed on a daily basis. This induces severe disturbances
in the energy balance, and it implies that the operating conditions will vary
significantly and hence provoke nonlinear cell effects. The process has strong
internal couplings, for instance between the mass and energy balance through
the side ledge. Control of an aluminum electrolysis cell is a challenging problem
[2], particularly as cell capacity increases beyond 200kA. An NMPC application
is presently under development.

3 Modeling

A common denominator for the applications referenced above is the use of a non-
linear first principles model. Empirical models have traditionally dominated the
arena of MPC applications. A meaningful question would therefore be: “Why
use mechanistic models?” The answer can be divided into two parts, and the
first part can be found outside the model itself. In some of the applications a
mechanistic model existed prior to the NMPC project initiation, and substan-
tial resources had been used to develop and validate such a model. The fact
that a model existed and considerable resources had been spent on development
and validation are important reasons for extending the use of a model. Further,
added use increases the odds for long-term survival of a model within a com-
pany. In the aluminum electrolysis case a model which had been developed over
several years existed. This model had to be adjusted, only slightly however, to fit
the NMPC application. No dynamic model existed prior to the NMPC project
for the Mn metal refining reactor. The company, however, viewed the develop-
ment of a mechanistic model in itself as important since such a model acts as a
knowledge repository. One consequence of this was that the model development
and validation phase was run as a joint activity between Cybernetica and the
customer.

Second, in our experience a major advantage of first principles models is the
reduced need for plant experimentation. As a matter of fact in the bulk of the
above cases models have been developed purely on the basis of data from reg-
ular operation, ie. no dedicated measurement campaigns have been necessary.
This implies that model structures have been selected, parameters have been
estimated and models have been validated without resorting to often costly
plant experiments. To further substantiate this, personnel from Borealis state
“The model can be identified without doing plant experiments at all” [1] when
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discussing their proprietary NMPC technology and its application to polyole-
fine reactors. The need for reduced plant experimentation becomes particularly
apparent when applying NMPC to several similar reactors as was the case for
the suspension PVC polymerization reactors and the phenol-formaldehyde batch
polymerization reactors referenced earlier.

Despite the above, the modeling process is a complex task and may be a bot-
tleneck in the development of advanced computer-based applications, see eg. [4].
Without delving into this issue it should be noted that the process data used for
offline tuning of parameters must, in some cases, include supplementary informa-
tion to apply them in an appropriate manner. The reason for this is the fact that
the process data does not necessarily contain sufficient information to uniquely
define the process conditions applicable to the model. Examples of this may
be changes in low level instrumentation and control loops due to maintenance,
or merely the fact that different shifts use different operational strategies. One
shift may for instance prefer to run a low level feeder control loop in manual as
opposed the others running the same loop in automatic mode. The implication
of the need for added information is that close ties between developers and key
process personnel is important for efficient model development, in particular to
swiftly provide the additional information if and when necessary.

In addition to prediction accuracy a model used for optimization-based con-
trol should be smooth to facilitate the search algorithm for solving the online
constrained nonlinear optimization problem. Hence, it is not adequate to develop
a model with good prediction accuracy. The model should also be smooth with
respect to the control inputs eligible for optimization. Our experience is that this
has been a key issue to obtain robust and computationally efficient performance
of the optimization algorithm both in the reference cases on metal refining and
in the suspension PVC-application.

To elaborate on the metal refining case the basic kinetics models and thermo-
dynamics are non-smooth. The non-smooth function were changed by applying
sigmoid-functions. To illustrate assume the following kinetic model for the reac-
tion rate r for the reaction B → A.

r =

{
a(pB − pequil) if pB > pequil

0 if pB ≤ pequil

a > 0 is some constant, pB is the partial pressure of (gas) component B, and
pequil is the equilibrium partial pressure. A smooth approximate model for the
reaction rate, which, however, does allow negative reaction rates, is

r = h(pB, pequil) · [a(pB − pequil)]

where h(pB, pequil) =
1

1 + e−α(pB−pequil)
, α > 0



Putting Nonlinear Model Predictive Control into Use 413

4 State Estimation

The aim of the state estimator is to provide a robust and reliable estimate of
the current states at all times. This is a challenging problem since the process
data vector in our experience often is dynamic in the sense that data points
routinely are biased, delayed or even missing. Examples of this are delayed or
missing measurements at the startup of the metal refining batch, and delayed
temparature and composition measurements in the aluminum electrolysis cell.
The former typically happens on a sporadic basis while as the latter occurs
regularly. The time delays in the process data from the aluminum electrolysis
cell, however, may vary significantly from one sample to another.

The dynamic process data vector constitutes a challenge since an application
requires a robust and reliable estimate of the current states at all times. We have
applied two methods for state estimation, an extended and augmented Kalman
filter (EAKF) with some modifications and recently a moving horizon estimator
(MHE), see eg. [10]. The estimation software includes handling of asynchronous
measurements with arbitrary sampling intervals and varying measurement delays.

It is our experience the Kalman filter has proved to work very well in sev-
eral demanding applications, even if this simple estimation algorithm provides
a crude approximative solution to the underlying nonlinear stochastic estima-
tion problem. The performance of the EAKF for a specific application depends,
however, crucially on the modelling of the stochastic process disturbances and
on the choice of which model parameters to estimate recursively in addition to
the model states. In Kalman filtering the process disturbances are modelled as
filtered white noise, and this disturbance model should reflect how the true pro-
cess disturbances and uncertainties are anticipated to influence the real process.
Special attention should be directed towards fulfilling basic mass and energy
balance requirements. It is, however, a shortcoming of the Kalman filter that
these balances will generally not be exactly fulfilled even if the process distur-
bances are properly modelled. This is due to the linearization approximations
involved in the calculation of model state updates from measurement prediction
deviations.

The choice of which parameters to estimate in the EAKF should be guided
by an identifiability analysis. Usually we cannot assume that the process exci-
tations fulfil certain persistency requirements in order to ensure convergence of
parameter estimates. Hence, we normally choose a set of parameters which is
identifiable from stationary data, and which do not require any particular exci-
tations in order to obtain convergence. By carefully selecting the set of model
parameters to estimate, we can usually obtain zero steady-state deviations in
measurement predictions.

The MHE has several advantages compared to the Kalman filter. Evident
advantages are the ability to handle varying measurement delays as well as con-
straints in a consistent manner. As mentioned above varying delays occur in some
of our applications. The ability to include constraints is also important since a
nonlinear mechanistic model by definition includes physically related states and
parameters, variables which often can be limited by a lower and upper bound.
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Other advantages of the MHE are related to the increased accuracy in solving the
underlying stochastic estimation problem. The stochastic estimation problem is
solved exactly over the length of the horizon. Hence, as the estimation horizon
increases towards infinity, the MHE estimate approaches the true solution of the
underlying nonlinear estimation problem.

The main disadvantage with the MHE as compared to the Kalman filter is the
increased computational requirements for the MHE. The estimation of stochas-
tic process disturbances over a long estimation horizon, when compared to the
length of the sampling interval, may lead to a nonlinear programming problem
of untractable size. Hence, in practical applications it might be necessary to re-
strict the length of the horizon or to parameterize the process disturbances with
a limited number of parameters over the estimation horizon. These modifications
will generally reduce the accuracy of the MHE.

The bulk of our experimence is based on the use of the EAKF. Because of the
advantages of the MHE scheme, despite its drawback from a computational point
of view, we foresee a shift towards this estimation scheme in future applications.

The state estimator in itself often provides interesting information about the
process conditions. Hence, commissioning the state estimator, assuming that it
provides reliable estimates, before the actual NMPC application is in our ex-
perience a favourable option. This provides at least three positive effects. First,
the state estimator, a critical component of the NMPC application, is tested in
its real environment. Such an environment will always provide some challenges
not present in a testing environment. Second, the state estimates may provide
important information to plant personnel. This is for instance the case for the
aluminum electrolysis cell where estimates of internal cell states are highly in-
teresting. Finally, the estimator builds trust and interest in the future NMPC
application.

5 Control Formulation and Online Optimization

Formulating the control problem, ie. the online optimization problem, tends to
be simpler than the modeling and estimation tasks described above. The online
problem for an NMPC application does not in principle differ from the linear
MPC case. The objective function will in some sense be related to economic
conditions. For a batch reactor, in which batch capacity limits production, min-
imizing the batch time is in most cases equivalent to optimizing an economic
criterion. This was the case both for the metal refining case, the PVC poly-
merization reactors and the phenol-formaldehyde batch polymerization process.
The constraints will limit variables linked to safety and quality. A typical safety
constraint is the net cooling capacity in the (exothermic) PVC polymerization
reactors while the end point carbon content is an important quality constraint
in the metal refining reactor. The choice of control inputs and controlled outputs
is again a problem where the issues in linear MPC and NMPC are similar and
will hence not be discussed further herein.
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Online optimization in NMPC applications is a very different issue than the
convex QP-problem normally encountered in linear MPC. A robust and reliable
algorithm is critical. In our experience such an algorithm can only be developed
by merging insight into nonlinear programming techniques with extensive tri-
als. The NMPC algorithm is based on the Newton-type algorithm developed by
Biegler and co-workers [8]. Their approach is to linearize a nonlinear state space
model around a nominal trajectory determined by the input sequence computed
at the previous sampling time. A new input sequence is computed by solving a
quadratic program, once over the time horizon, followed by a line search where
the quadratic optimization criterion is computed based on the nonlinear model.
Through the action of the line search, global convergence of the method is en-
forced as long as the objective function exhibits descent directions. Sufficient
conditions for global convergence and stability are developed by Li and Biegler
[6]. Their development assumes that the states are available, hence state estima-
tion is not considered in the referenced paper. The algorithm we use extends and
modifies the Newton-type algorithm proposed by Biegler in several ways. The al-
gorithm is based on a linearization of the nonlinear model around nominal input
and output trajectories, which are computed at each time step. The lineariza-
tion is usually performed once at each time step. The optimization criterion is
quadratic and the constraints are linear in the process outputs and inputs. The
outputs are, however, arbitrary nonlinear functions of the states and the inputs.
Another extension of Biegler’s algorithm includes more flexible parameteriza-
tions of inputs and outputs; each input and output variable is parameterized
independently.

Input constraints are hard constraints in the optimization. Output constraints
are handled as soft exact penalty type constraints as outlined by Oliveira and
Biegler [7].

6 Implementation

Putting NMPC into industrial use requires competence and systems beyond
NMPC theory and the algorithms themselves. This includes a project develop-
ment plan which does not differ from a typical project plan for implementing
other advanced controllers. A project will include a functional design specifica-
tion task which describes the functionality and details the specifications for the
delivery. Thereafter the application is developed, integrated into the existing
control system, and finally formally accepted by the customer through a Site
Acceptance Test.

A difference in the development of applications based on first principles models
compared to data driven models is that the time spent at the plant, doing process
experiments and application commissioning and testing, is shortened by the use
of mechanistic models. The reason is that less experiments are required for the
model and state estimation development and tuning. Usually, we have on-line
secure internet connection to the application computer. Then the estimator can
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be tested on-line and also the NMPC application can be tested in open loop
before closed loop testing.

In the Cybernetica system an NMPC application will consist of one compo-
nent, a model component, which is developed specifically for the type of process
unit or process section to be controlled. The other parts of the system, such
as the EAKF, MHE and NMPC algorithms as well as configuration interface
and communication interface to the basic control system, consist of generic com-
ponents. Usually, the operator interface is integrated into the same operator
interface system as used by the basic control system. Hence, from the operators
point of view, the introduction of an NMPC application is seen as an extension
of the existing control system.

A close dialogue with key personnel at the plant has been critical in many
of our reference projects. There are several reasons for this. First, as remarked
earlier, personnel have access to information and they possess knowledge which
is vital in specifying an application and in the model development stage. Second,
the operating personnel may have the privilege to choose between an existing
operating strategy as an alternative to a (new) NMPC application. In such a
situation it is important that the operators understand the application so as to
gain confidence in the new application. Further, insight and motivation definitely
helps in a situation where an application needs to be modified due to some
unforeseen problems.

In most of the reference cases the NMPC application replaces an existing
application. Usually it is necessary to upgrade other parts of the system in con-
junction with an NMPC project simply because the NMPC application normally
requires more accurate information than what was the case prior to its instal-
lation. Improvements typically include upgrading of instrumentation and data
collection routines, and retuning of low-level control loops.

7 Conclusions

This paper discusses issues that arise when implementing NMPC in the sense
of a nonlinear mechanistic model, state estimation, and the solution of an on-
line constrained nonlinear optimisation problem. Even though this technology
presently is in the development stage several demanding applications have been
developed with good industrial acceptance.
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