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A b s t r a c t :  In this paper a new model predictive control (MPC) strategy, applicable to a set of nonlinear systems, is 

proposed and the use of it is demonstrated on a model of a waste treatment reactor. The MPC strategy is an extension of 

earlier work in optimization-based control [2]. The motivation for the study is to search for approaches to nonlinear MPC 

without having to solve the full nonlinear problem. We restrict our problem by defining a nonlinear model set. as a convex 

combination of a set of bounding linear models. The weighting factors between the models can be a function of the states 

and/or inputs. At a given time-instant we compute an optimal future control sequence for each of the bounding linear 

models. A novel feature is that all models must obey the constraints for each of the control sequences. The reason for 

these additional constraints is that they provide us with feasibility guarantees. It also is a means of robustifying the MPC. 

The final control sequence is found by interpolating the control sequences derived from the optimization problems. There 

are different possible approaches for choosing the interpolation variables. Provided the optimization criterion and the 

constraint sets for the control variables and states are convex, the proposed control algorithm involves only convex 

optimization problems. The interpolating MPC strategy is applied to a waste treatment reactor, where the process 

dynamics are nonlinear and time-varying depending on the disturbance. Linearization is carried out to obtain bounding 

models for the process. The interpolating MPC is designed based on the bounding models. Through the example we 

demonstrate significant improvements over a standard quadratic MPC strategy based on linear models. 

1 I n t r o d u c t i o n  A popular MPC strategy is based on linear dy- 
namic models and linear constraints on the control in- 

The combined use of dynamic models and opt imizat ion puts and system outputs.  Nonlinear optimizing con- 
for process control offers a concept in which process trol has been studied by Rawlings et al. [7] and Genceli 
knowledge can be linked to operational  goals formu- and Nikalaou [3]. Further, some approaches were de- 
lated by some opt imizat ion  criterion. This concept has scribed by Bequette [1] in a somewhat  earlier paper. 
seen widespread use, part icularly through the applica- These control strategies normally result in a non-convex 
tions of model  predictive control (MPC).  MPC refers opt imizat ion problem. 
to a class of algori thms where an opt imizat ion prob- In this paper we explore an MPC strategy based on 
lem is solved repetitively, at every new time-instant,  nonlinear models. In particular,  the goal is to derive 
Only the first part  of the computed control sequence an approach which can offer a smooth  transi t ion from 
is applied to the system since a new opt imal  control linear MPC to nonlinear MPC. By smooth  transit ion 
sequence is computed  and applied at the next t ime- we mean an approach which can deal with nonlinear 
step. Several reviews of MPC technology exist, see for processes but does not  invoke non-convex optimiza- 
example Lee [4], Rawlings et al. [7] and Qin and Badg- tion, which may be difficult to implement.  This is 
well [6], the lat ter  emphasizing industrial use of the particularly impor tant  from an industrial viewpoint 
technology. The interaction between control and opti- as it simplifies the transit ion from the application of 
mizat ion is discussed in an i l luminating way in Mayne linear to nonlinear MPC. The smooth  transit ion is ac- 
[5]. complished by constraining the nonlinear opt imizat ion 

*Author to whom all c o r r e s p o n d e n c e  should be addressed, problem along three axes. First, the set of nonlinear 
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models is limited to a convex, nonlinear interpolation where 
of linear models. Second, constraints are added to 
the optimization problem to enhance feasibility of an rr = {u(0) . . . .  , u (N - 1)} C H = U × . . .  x U 
optimal solution for a set of bounding linear models. X = {x(1) , . . . ,x (N)}  C_ X = X × . . .  x X 
Third, the control sequence is computed as a convex l : ~mu×m~ _+ ~+ is a convex function 
combination of control sequences based on the bound- i E IN = { O , . . . , N - - 1 }  
ing linear models. 

The remainder of this paper is structured as fol- The optimality criterion is defined on a time horizon 
lows: In the next section we formulate the problem, from 0 to N. The control input u(i) is constant during 
The theoretical foundation, model development, and the time span [i, i +  1). Since U and X are convex sets, 
control design for the proposed control algorithm are H and X are convex sets. Further, ¢ is convex since 
then developed. In section 4 a waste treatment ex- l is convex. The criterion function (5) does not cover 
ample is used to test the effectiveness of the proposed all possible criteria; penalizing changes in the control 
method. Finally, conclusions are given at the end of input is for example not included. This type of change 
the paper, does not influence the results in this paper as long as 

the criterion function remains convex. 
Assume that the current state variables are avail- 

2 P r o b l e m  F o r m u l a t i o n  able, i.e., 

In this section we formulate the problem of MPC with x(0) - given (6) 
multiple linear models. We define a set of linear state- The problem we want to address is to minimize (5) 
space models: with respect to zr based on the different constraints 

discussed above, hence we want to solve 
E j :  h j ( x ( i +  1),x(i) ,u(i)) = 

~(i + 1) - Aj~(i)  - Bjfi(i) = 0 (i) ~r° = art  min~en ¢(Tr, x) (7) 

j E 1j = {1, 2 , . . . ,  J} subject to the constraints X E 2" and (6) using one of 

where ~(i) = x ( i ) - ~  and a(i) = u(i) - f i j  are devia- the models ( Z / , j  E I j  or Ew). The control sequence 
tion variables. Since the ultimate goal is to deal with is typically parameterized as follows, 

nonlinear processes, the actual variables {x(i),u(i)} ~r = {u (0 ) , . . . , u (M)  . . . .  ,u(M)},  M < N - 1 (8) 
are used rather than the deviation variables. The 
linear models in ~j  necessarily have different steady This means that the control input is constant during 
states {~j,ftj} to calculate the deviation. The model the last part of the control sequence. The minimiza- 
inputs and state variables are constrained as follows, tion problem (7) is solved repetitively, at each time- 

step, with new initial conditions. Only the first control 
u(i) E U C ~"~ (2) value of the 7r sequence is actually applied to the pro- 
x(i) e X C ~rn~ (3) cess. 

where U and X are convex sets. We assume the set A nonlinear MPC formulation would minimize the 
of nonlinear processes are interpolation of the J linear criterion (5) subject to Eq. (4). Since Eq. (4) is 
models, nonlinear, the resulting optimization is in general non- 

convex and a globally optimal solution is difficult to 
~w = {hw : h~o(x(i + 1), x(i) ,u(i))  = find in real-time control. A typical linear MPC formu- 

~]=lWj(x(i), u(i))hj(x( i  + 1), x(i), u(i)) = lation is to minimize the criterion (5) subject to one 
0 Vj E I j ,  wj E W}  (4) of the linear models in ~j,  j E I j .  The linear MPC so- 

lution, while easily solvable, is valid only in the small 
W = {wj E C : wj(x( i ) ,u( i ) )  E [0, 1],~jwj = 1 vicinity of the steady state around which the linear 

Vx(i) E X Vu(i) E U} model is derived. 

where hw is a nonlinear function constructed as convex 

combina t ionsofh j , j  E I j .  It should be noted that the 3 Interpolating M o d e l  P r e d i c t i v e  
continuous function wj in general will depend on the 
states and the control inputs. Control 

The model predictive control objective function is 
defined as follows, 3 .1  F e a s i b i l i t y  o f  t h e  I n t e r p o l a t i o n  

¢(7r, X) = ~ l(x(i + 1), u(i)) (5) We propose an interpolating model predictive control 
iEIN (IMPC) which solves for J linear MPC problems and 
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the final control sequence is calculated via interpola- The theorem is due to the formulation of the mini- 
tion. First of all, we solve for J control sequences mization problem (9) where the constraints for all lin- 

o ear bounding models are considered. The significance 
7rj = arg min~en  ¢(rr, Xj) (9) of the theorem is that the interpolated solution rr~ is 

subject to feasible no matter how { a j , j  E I j}  is chosen. This 
is important in searching for optimal {cU} where the 

1. X E 2' for all linear models in (1); and problem becomes unconstrained. In the subsequent 
2. using the particular model (Ej) as the internal sections we will discuss how to obtain the bounding 

model to calculate Xj. linear models, {wj (x ( i ) ,  u(i))} and {aj} to implement 
the IMPC algorithm. 

The above item 1 is necessary to guarantee the actual 
nonlinear process is within the constraints. This is 
shown in Theorem 1. 3 .2  T h e  B o u n d i n g  L i n e a r  M o d e l s  a n d  

The interpolating MPC control sequence is defined { w j ,  j • I j }  

as follows, There are in general two approaches to finding the 
J o 1} bounding linear models (i) through first principles of l~c~ : {7~c~ : 7~c~ = ~ j = l O t j T r j  VOtj • [0, 1], ~j=lOtjJ ---- 

(10) the process and linearization, and (ii) through system 
The control sequence 7r~ forms the basis for the con- identification. Both approaches derive the models that 
troller. It should be noted that 7r~ is feasible in input are valid in a small vicinity of the steady states, which 
since it is based on interpolation within a convex set, can be described by the state variables or throughput 
i.e., II~ C_ H. {cU, j • I j  } may in general vary from variables of the process. Assuming the first principles 
one time instant to another, model is available in the following form, 

An important issue is whether the interpolated con- dx(t) 
trol sequence 7r~ will make the state variable sequence dt - f(x(t) ,u(t))  (12) 

X• ---- {X~ :Xw a ={xw~(1) . . . ,x~(N)} ,  (11) 0 = g ( y ( t ) , x ( t ) , u ( t ) )  (13) 

V hw • E~o, rr~ • II} linearization can be carried out around the steady states 
feasible, i.e., Xw a • X. Xw a denotes the set of the state by specifying lower and upper bounds for each state 
variable sequence by applying 7ra to the process Ew. variable -L -H. { z k , X k , k  = 1, . . . , rex}.  Discretization is 
Here we provide the following theorem to guarantee straightforward for linear models. Since the state vari- 
feasibility for J models, but the proof is omitted for ables uniquely determine the system, the parameteri- 
brevity. The special case of J = 2 is shown in Foss zation for {wk} can be given as follows: 
and Qin (1996). 

wk = wk(xk ,  ~L, ~Hk ) k = 1 . . . . .  m~ (14) 
T h e o r e m  1 Assuming J control sequences rr~ which 
are solved f rom Eq. (9), then A'w ~ • X /f {Ej, j • / .1  } For example, a linear weighting function is: 
are finite impulse response (FIR)  models with {Aj, B j, Cj } 

~ - ~ • [0,1] (1~) given as follows, Wk - -  Xk-g --  ~L  

( i 0 )  The interpolation is: 
atkJ ~- Hjl  . .. HjL 0 

y[  = (1 - wk)y L + wky  H (16) (o o 
I 0'" iii 0 If the process state Xk --+ ~L, wk --+ 0 and the in- 

= terpolation y[  --+ yL; if the process state Xk ~ ~H, 
: 0 ".. 

W~ --~ 1 and the interpolation y~ --+ yH. Note that the 
0 . . .  I 0 interpolation has to be done based on FIR models to 

/ I / sat isfyTheoreml.  TheFIRmode l s canbeconve r t ed  
0 from the state space models. With this interpolation 

Bj = " strategy, the maximum number of models are m~ × m~ 
0 and the maximum number of weighting factors wk is 

Hi0 rex. In practice, not all states are actively varying in a 
-L -H sig- wide region, which can be considered as x k = x k , 

and Cj  = (0 , . . . ,  0, I) T. {Hi0, Hj~, . . . ,  H j L }  are the nificantly reducing the number of models and weight- 
FIR coefficient matrices, ing factors. This point will be demonstrated with the 



$884 PSE '97-ESCAPE-7 Joint Conference 

waste treatment reactor later in this paper. If a state 4 Application t o  a W a s t e  T r e a t -  
variable is not directly measurable, an observer can be meri t  R e a c t o r  
designed or treat -L ~.H for that state variable. X k --~ 

If system identification is used to build the bound- 
4 .1  M o d e l i n g  

ing linear models, one may identify bound models for 
each throughput variable. Experiments are designed In this section we use a waste treatment reactor to 
around, for example, a lower throughput and a higher demonstrate the interpolating MPC approach. The 
throughput with small perturbations applied to the reactor has waste water (alkali), acid, catalyst and ox- 
process. For each region of the throughput variables, idizer inflows. The objective is to control the pH at 
a linear model is identified. The models weights are a given value so that the oxidation reaction can take 
similar to those given in Eqs. (14), (15), and (16). One place. The nonlinear model for the reactor is given by 
of such approaches is reported in Johansen and Foss 
(1993). The approach based on throughput variables d~ 1 
normally requires a smaller number of models and the d-7 = ~ (VlCl - vi~) (19) 
modeling effort only involves linear system identifica- d~" _ 1 
tion. dt V (v2c~ - vi~) (20) 

3 . 3  F i n d i n g  t h e  o p t i m a l  { a j , j  E I j }  [H+] 4 + (¢ + K1)[H+]3+ 

Although ~r,~ is feasible for all lr~ E II~, {aj} can be ( K I ( ( -  0.5~ + K2) -K~ , ) ) [H+]2+  
chosen to optimize the control performance at each ( K t [ K 2 ( ( - ~ ) -  K~])[H +] -K1K2K~,  = 0 (21) 
time step. One approach is to solve the following min- 
imization problem: and 

pH = - log l0[H +] (22) 
o a rg  " ¢(zr,, X~) (17) 

7ra = m~n{a j , Je l J }  where each variable is described in Table 1. 

subject to 
g 

Variable Description e [o, 1]; = 1 
j = l  vl acid stream flow rate 

ct acid concentration in the acid stream 
Although this optimization problem is not necessarily ~ concentration of the acid in the reactor 
convex, the dimension of the search is typically low. v~ alkali flow rate 
For the case of two bounding models, which is expected c2 alkali concentration in the base stream 
to be typical in practice, the search is one-dimensional. ( concentration of the base in the reactor 
Therefore, a global optimization over {a j )  can be im- t time 
plemented with little computational effort. V reactor volume 

In the case that the above optimization is not tractable, v3 oxidizer flow rate 
a schedule between otj and w j  may be provided. One v4 catalyst flow rate 
approach is to choose different values for wj and a j  vi Vl Ar ?)2 "]- v3 ~- v4 

and create an empirical relation between them, which [H +] concentration of hydrogen ion 
would yield a minimum ¢. Another approach is to set Kw water equilibrium constant 
up an analytical relation between oej and wj, i.e., K1 sulfuric acid first dissociation constant 

Ks sulfuric acid second dissociation constant 
a j  = a j ( w ~ )  (18) 

Table 1: Model variables description for the waste 
In general, if the process state x --~ ~ ,  wj --~ 1. In treatment model 
this case, we want 7ra --4 ~r L, which requires a j  --~ 1. 
Similarly, if wj --4 0, a j  --4 0. Therefore, a monotonic 
relation is expected. As a particular case, we may Linearization of the above non-linear model yields 
specify a j  = w j .  The case of a prescribed schedule be- the following state space model: 
tween wj and a j  may be referred to as gain-schedul ing  
M P C .  x = A x  + Bu  (23) 

y = Cx  (24) 
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where which is consistent with Table 2. The above equation 
is the interpolated nonlinear representation of the pro- 

~7i cess, which is bounded by [xoo, xlo] x [Xol, xu] .  Once 
[ i ]  ~2 the bounds on the state variables are determined, the 

x = , y = pH, u = 51 corresponding input variables can be calculated as fol- 
52 lows: 

c2~ 

A = --y 0 - ~ i  ' c1~ 
1[  (~1 - ~) -~ ~l 0 ] ?~2 = ClC2 - c2~- c1~(Y3 dr-/)4) (29) 

B = ~ _~ (~2-~)  0 ~2 ' For this particular process, we choose the bounds 
1 [ ~ 1  o_/_o~0 ~ 1  o_/_o~0 ] as given in Table 3. Since the range for [~z ~n] = C 

ln(10) ~ - ~ o  [0.1340, 0.1345] is small, we neglect the variation in ( 
and consider the two models for w2 = 0 in Table 3 

and only. 

of : 4[H+] 3 + 3(¢ + K1)[/:/+] 2 + 
0[ H+]0 ~\~ w l = 0  w 1 = 1  

2(K~(~ - 0.5~+ K~) - K~))[H+] + 
K~(K~(~- ~ ) -  K~) w ~ = 0  [~L,~L] = [ ~ . , ~ ]  = 

[0.1373, 0.1340] [0.1673, 0.1340] 
) o f  = _0 .SKdH+]_K~I , .  ~ [ ~ , ~ ] =  [ ~ , ~ ] : _  

[H +] 0~ 0 [0.9599, 81.15] [1.337, 92.78] 

1 0 /  = [/}+]2 + K~[/}+] + I;~K2 
[H+] 0-70 ~ = 1 [~ ,  ~ ' ]  = [~*', ~ ' ]  = 

[0.1373, 0.1345] [0.1673, 0.1345] 
where variables with ..... represent deviation variables [~,  ~2] = [~, ~2] = 
and those with ..... represent steady states. Since there [1.192,101.18] [[1.720,119.8] 
are two state variables, at most four bounding models 
are needed. Those are given in Table 2. 

Table 3: Steady state values for the four bounding 
models 

~\~ wl = 0 wl = 1 

~0 2 : 0 {~L,~L}  {~H,~L)  

{Aoo,Boo, C00,x00} {A~0,Bx0,C~0,x~0} 4 .2  C o n t r o l  D e s i g n  a n d  R e s u l t s  

w~ = 1 {~L, ~H} {~H, ~H} To design the IMPC controller for the reactor, we use 
{Aol, no1, Col, xol} {An ,  B n ,  C u ,  xu}  va as the manipulated variable, v~ the measured dis- 

turbance, v3 and v4 unmeasured disturbances. For 
each of the two models in the first row of Table3, the 

Table 2: Model Bounds following constraints are specified: 

~ e [0 2] 

The weighting factors are specified as follows: v2 G [80 95] 

_~L ~ ~ [0.13 0.17] 

w~ - ~H _ ~L' w~ ~ [0, 1] (25) The control sequence based on the two bounding mod- 
--~L els, ~r~0 and rr[0 , are solved via quadratic program- 

w2 = ~ ;  w~ ~ [0, 1] (26) ming. The control horizon for the manipulated vari- 
able is 10 and the sample rate is 8 minutes. The ob- 

and the interpolation is given by: jective function is: 
N 

xw = (1-w2)[(1-w~)x0o+wlx~0]+w2[(1-w~)x0~+w~xu] ¢ = E y2 (i) + v~ (i - 1) (30) 
(27) i=~ 



$886 PSE '97-ESCAPE-7 Joint Conference 

where N is chosen as 45. The interpolation of the general nonlinear MPC. The on-line computation time 
control sequence is given by the following schedule: is in the same order of magnitude as a linear MPC. 

The waste treatment example demonstrates that 
_ ~L (31) the interpolating MPC is effective in handling rather 

a l  = wl = ~ nonlinear processes. Although the nonlinear process is 
and not exactly a convex combination of bounding linear 

7r ° = (1 - al)Tr~o + c~17r~0 (32) models, the interpolated MPC strategy demonstrates 
robust performance in the presence ofsetpoint and dis- 

We simulate the control responses for setpoint and dis- turbance changes. Stability of the interpolating MPC 
turbance changes. The pH setpoint is changed from is under study. Further work will extend the results to 
3.66 to 3.0 and the alkali flow changes from 81.151/min more general state space model representation. 
to 89.27 l /min as measured disturbance. The control 
responses for the pH and acid flow are shown in Fig- 
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5 Conclus ions  

A new interpolating MPC strategy is proposed for a 
set of nonlinear processes. The control move is based 
on a convex combination of control profiles generated 
from a set of linear bounding models. 

Feasibility of the interpol!~ted control is guaranteed 
in the strategy for FIR bounding models. The for- 
mulation of the problem avoids the non-convexity of a 


