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Abstract

An approach for constrained predictive control of linear systems (or uncertain systems described by polytopic uncertainty models) is pre-
sented. The approach consists of (in general non-convex, but often convex) offline optimization, and very efficient online optimization. Two
examples, one being a laboratory experiment, compare the approach to existing approaches, revealing both advantages and disadvantages.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) has gained significant
popularity in industry as a tool to optimize system per-
formance while handling constraints explicitly. However,
limitations on computational efficiency have restricted the
application range. This has lead to a substantial effort to
obtain predictive constraint-handling control strategies that
have more attractive online computational properties than
quadratic programming typically used in traditional linear
MPC. In most cases, this is obtained by performing some
calculations offline.

Examples of such schemes are explicit MPC (Bemporad,
Morari, Dua, & Pistikopoulos, 2002), and efficient ro-
bust predictive control (ERPC) (Kouvaritakis, Rossiter, &
Schuurmans, 2000). Explicit MPC computes offline via
multi-parametric programming an explicit solution to the
finite horizon MPC problem. In ERPC, the offline part
uses the degrees of freedom on the control horizon to find
large invariant ellipsoids for an augmented system, while
the online part efficiently minimizes control deviation from
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unconstrained optimal LQ-control, subject to augmented
state membership of the precomputed ellipsoid. ERPC also
handles uncertainty; if the ellipsoids are robustly invari-
ant, then the online optimization does not have to consider
propagating uncertainty over the horizon, which dramat-
ically reduces computation effort compared to min–max
approaches.

Herein, we first present a generalization of the offline
problem of ERPC, thus we will denote the new approach
generalized ERPC, GERPC. Through this generalization, it
is possible to obtain significantly larger invariant ellipsoids.
Using the information obtained by solving the offline prob-
lem, we specify two online optimization problems, the first
being a direct counterpart of the one inKouvaritakis et al.
(2000). The second is a new online problem that reduces
sub-optimality at limited additional computational cost.
Furthermore, through two examples, one being a laboratory
experiment, we compare the merits of GERPC with ERPC
and explicit MPC.

2. Model class and control objective

Consider discrete-time linear state-space models subject
to input and state constraints

xk+1 = Axk + Buk (1a)

subject to − u<uk <u, xk ∈ X, (1b)
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where the inequalities should be interpreted component-
wise. The state and input dimensions arex ∈ Rnx andu ∈
Rnu , and the origin is an equilibrium, 0<u, andX � 0 rep-
resents state constraints. A strong point of the results herein
is that they also hold for polytopic uncertainty models (Boyd,
El Ghaoui, Feron, & Balakrishnan, 1994), in the same way as
in Kouvaritakis et al. (2000). However, for brevity and sim-
plicity of presentation this is not elaborated on. For the same
reason, most of the paper assumes only input constraints.

We will assume that the pair(A,B) is stabilizable. The
control objective will be to minimize (while satisfying con-
straints) the infinite horizon linear quadratic (LQ) cost func-
tion,

JLQ =
∞∑
i=0

xT
k+i+1Qxk+i+1 + uT

k+iRuk+i , (2)

where Q and R are positive semi-definite matrices and
xk+i+1 and uk+i denote predicted values of states and
control inputs (subscriptk denotes current time).

In ERPC/GERPC, the system is assumed to be prestabi-
lized by a feedback controllerK, optimal with respect to (2)
in the unconstrained case. The degrees of freedom are ex-
pressed as the perturbation,ck, away from this control. Thus
the future (predicted) control input is

ui =
{−Kxi + ci, i = k, . . . , k + nc − 1,

−Kxi, i�k + nc. (3)

As a consequence, the online optimization is carried out
in terms of the new free variablesci . Beyond the control
horizonnc, we can setci=0 assuming the optimal LQ control
is feasible onwards. The system equation for (1) with (3) is

xk+1 = �xk + Bck, (4)

where� = A− BK.

3. Offline: augmenting the state space for enlarging the
region of attraction

The unconstrained LQ controllerK will typically have a
rather small region where it does not hit the constraints (and
hence stability is guaranteed). The objective of this section
is to enlarge this region of attraction by augmenting the
state space, generalizing a similar approach inKouvaritakis
et al. (2000)(see below). Denoting this augmented variable
z=(x, f ), the augmenting variablef ∈ Rp is imposed with
the following dynamics:

fk+1 = Fxk +Gf k. (5)

Let ck be computed byck =Df k. The overall dynamics is
then described by

zk+1 = �zk, � =
(

� BD

F G

)
. (6)

Note that in the special case ofD= I , F = 0 andG= 0 we
recover the original LQ controller. ForF =0,G=M where
M has the “time recession” structure

M =




0 I 0 · · · 0
0 0 I · · · 0

. . .

0 · · · 0 0 I

0 · · · 0 0 0


 , (7)

and D = [I,0, . . . ,0] we recover the offline problem
of ERPC (Kouvaritakis et al., 2000). In this case, the
variable f is interpreted as the futureci ’s, i.e. f T

k =
(cT
k , c

T
k+1, . . . , c

T
k+nc−1) thus the dimension isp = nunc.

This predictive control interpretation is not so straightfor-
ward in the general case of (5), but a connection can still
be made. We obtain (in general) an infinite control horizon,
since for a givenxk andfk, the futureck+i ’s are given as
ck+i=Df k+i , i=0,1, . . . wherefk+i+1 =Fxk+i+Gf k+i .
This is as opposed to the finite horizon given by the time
recession matrix (7). However, the GERPC “control degrees
of freedom” (fk) are still finite.

We want to findD, F andG that gives the largest possible
region of attraction for the original system. We do this by
looking for positive-definite matricesQz defining invariant
ellipsoidsEz := {z | zTQ−1

z z�1}, where the projection of
the ellipsoidEz onto the state space (seeKouvaritakis et
al. (2000)), Exx := {x|xT(TQzT

T)−1x�1}, T defined by
x=T z, should be as large as possible. This is achieved with
the following optimization problem:

min
Qz,D,F,G

ln det(TQzT
T)−1 (8a)

subject to

(
Qz Qz�T

�Qz Qz

)
�0, (8b)

ū2
j − [−KT

j (Dej )
T]Qz[−KT

j (Dej )
T]T �0, (8c)

where (8b) is a Lyapunov inequality guaranteeing invari-
ance, and (8c) makes sure the input constraints are feasi-
ble inside the ellipsoid. With constantD, F and G (as in
ERPC), this is a convex problem, for which efficient algo-
rithms exist (Boyd et al., 1994). However, treatingD, F and
G as variables makes the problem non-convex (in general),
since they are multiplied withQz. This increase in complex-
ity can be rewarded by significantly larger ellipsoids. The
non-convex optimization problem is similar to “static output
feedback”-type problems, and BMI solvers for such prob-
lems can be used, as briefly outlined inDrageset, Imsland,
and Foss (2003).

Recently (after this work was submitted), it has been
shown (Cannon & Kouvaritakis, 2005) that in the case with
F = 0 andp�nx , the problem admits a convex LMI for-
mulation. This is a huge advantage compared to solving a
non-convex optimization problem.
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State constraints can be added to the offline problem as
long as they can be expressed as affine functions ofQz (and
possiblyPz, depending on the solver used). For brevity this
is not included here, but the first example includes a state
constraint.

4. Online problem: minimizing cost

Although the augmented part of the autonomous system
specifies a valid (dynamic) controller, it is not optimizing.
In this section, we look at how the online cost can be min-
imized (although sub-optimally) while retaining stability.
We first review the application of the method suggested in
Kouvaritakis et al. (2000), where the minimizingf is found
from the feasible ones (inside the ellipsoidEz). The second
is a new method and that searches forf ’s that ensure fea-
sibility at the next sample. In this section, we will assume
that the structural constraintF = 0 is imposed in (8). This
means thatfk+1 =Gf k, and thus not dependent on the evo-
lution of xk. This assumption is mainly done for simplicity
of presentation—similar (but slightly weaker) results hold
in the case with non-zeroF.

4.1. Feasibility now

As future control flexibility (thef) is part of the current
augmented state, the ellipsoidal stability constraint can be
applied at current time rather than at the end of the control
horizon, as is common in other (e.g. QP-based) MPC ap-
proaches. This reduces online optimization to minimizing a
performance index based on the future degrees of freedom
in the input,Jf , subject to membership of the precomputed
ellipsoid

min
f
Jf subject to zTQ−1

z z�1, (9)

with z= (xk, f ). Here,Jf penalizes the future control per-
turbations,

Jf =
∞∑
i=0

cT
k+iWck+i , (10)

whereW >0 is given byW=BTPB+R, P=Q+KTRK+
�TP�. It can be shown (Kouvaritakis, Cannon, & Rossiter,
2002) thatJf and the LQ cost (2) differ by a bias term, thus
minimizing the two indices is equivalent. The infinite sum
(10) has a limit that is readily computed,

∑∞
i=0 c

T
k+iWck+i=

f T�f where� is the positive-definite solution of the dis-
crete Lyapunov equationGT�G−�=−DTWD. This turns
the online problem into minimizing a quadratic function
subject to one ellipsoidal constraint, which can be solved
extremely efficiently using a Newton–Raphson method to
determine a single Lagrange multiplier (Kouvaritakis et al.,
2002).

4.2. Feasibility at next sample

The ellipsoidal constraint in (9) leads to sub-optimality.
According toKouvaritakis et al. (2002), this sub-optimality
can be reduced by allowing a line search outside the ellip-
soid subject to feasibility at the next time instant (i.e., by
“scaling” f). As this “scaling” can be performed explicitly, it
only adds marginally to computational complexity. In view
of the improved performance due to the “scaling” off, it is
tempting to look for other algorithms that search forf out-
sideEz in more general ways, subject to feasibility at the
next time instant. The straightforward convex optimization
problem that solves this, is

min
f
Jf subject to

{
zT�TQ−1

z �z �1,
Df � ū+Kxk,
−Df � ū−Kxk,

(11)

where two constraints are added to ensure that the computed
control satisfies input constraints. Denoting the optimal so-
lution of (9) by f !(9) and the optimal solution of (11) by

f !(11), it is clear thatJf (f !(11))�Jf (f
!
(9)). In practice, the

eigenvalues of� will be strictly <1, in which case the in-
equality is strict (when not zero). For the rest of this section,
this is assumed.

Apart from the two linear constraints, this optimization
problem has the same structure as (9). It can be solved by a
general code for nonlinear optimization, or a taylored QP-
algorithm allowing ellipsoidal constraints (Cannon, Kouvar-
itakis, & Rossiter, 2001). If the ellipsoidal constraint can be
replaced with a polytopic one, the optimization problem be-
comes a standard QP. Notably, this also allows for more than
one step outsideEz, generalizing to “Triple mode MPC”
(Rossiter, Kouvaritakis, & Cannon, 2001). However, using
a general optimization routine does not enjoy the same ef-
ficiency as using a Newton–Raphson method to solve (9).
We therefore propose a more efficient method of solving
(11), but where the solution might not always be the opti-
mal. However, when initialized properly, it is always better
than the solution of (9), and when possible suboptimality
(compared to the optimal solution of (11)) occurs, at least
one of the inputs is at its constraint.

Letffeasbe a feasible (not necessarily optimal) solution of
(11). This can be found by solving (9), or from the previous
timestep via (5). Such affeas exists at the first iteration, if
we start insideExx .

Algorithm 1.

(i) Solve the optimization problem obtained by remov-
ing the linear constraints from(11) using e.g. a
Newton–Raphson method. Call the solutionf !. Obtain
ffeas (e.g. by solving(9)).

(ii) Check iff ! satisfies the linear constraints of(11). If
they do, thenf ! is the optimal solution to(11),and we
are finished. If they do not, then go to(iii).
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f1

f2

ffeas

f *
f

�f

Jf = const

Df ≤ u+Kx-

Fig. 1. Sketch of situation in proof of Theorem 1, fornu = 1, p = 2,
D = [1,0].

(iii) Pick the f on the line betweenf ! andffeasthat is closest
to f ! and satisfies the constraints.

Theorem 1. The f produced by Algorithm1 guarantees fea-
sibility at next time step, satisfies the control constraints,
and when it is not equal tof !, at least one input is at a con-
straint. Furthermoref T�f <f T

feas�ffeas, thus f is always a
better solution thanffeas.

Proof. If f ! satisfies input constraints, then the first part
of the theorem is obvious. The last part,Jf (f !)< Jf (ffeas)

follows sinceffeas is strictly contained inEf (see below).
Thus we focus on thef chosen in part (iii). The quadratic
constraint in (11) defines an ellipsoidEf in f-space. IfEf
contains the origin, thenf ! = 0. If Ef does not contain the
origin, f ! is the point on the border ofEf that is closest
(in �-norm sense) to the origin. The pointffeas is strictly
insideEf , since�TQ−1

z �<Q−1
z . Furthermore, sinceEf

is convex, the line betweenf ! andffeas is insideEf , thus
also thef chosen in (iii) is insideEf and ensures feasibility
at the next time step.

Since the input constraints are linear, and the line between
f ! andffeas crosses (sincef ! is infeasible with respect to
input constraints) a constraint at least once, thef chosen in
(iii) will always be at a constraint.

We can expressf as the convex combinationf =
�ffeas+ (1 − �)f !, for some� ∈ [0,1). For � ∈ (0,1),
Jf (f )<max{Jf (ffeas), Jf (f

!)} = Jf (ffeas) since Jf is
strictly convex, which establishesJf (f )<Jf (ffeas) for
� ∈ [0,1). �

The situation in the proof is illustrated inFig. 1. The “line-
search” forf in Algorithm 1 can be implemented explicitly,
and hence very efficiently. Ifnu=1 andf ! exists but violates
the input constraints, then it merely amounts to choosing the
right input constraint, andffeas is not needed at all.

If the f ! is feasible, the solution of Algorithm 1 will al-
ways be better (less sub-optimal) than the one found from
“scaling”. If the solution is at a constraint (f ! is unfeasi-
ble), then, depending on the geometry of the problem, both
scaling and Algorithm 1 might be the best. Our conjecture
(supported by the example in the next section) is that most
often Algorithm 1 is best, since the linesearch is in a direc-
tion close to perpendicular1 to the level sets ofJf .

4.3. Algorithm and stability

The overall approach can be summarized as follows:

Algorithm 2. Offline: Solve the optimization problem(8) to
find nc, D, G andQz that give a suitable invariant set.

Online: Perform the minimization(9) or (11) to find f,
implementuk = −Kxk + ck, whereck =Df , and move on
to the next time step.

Theorem 2 (Closed-loop stability). If for system(1) there
exist K,Qz, p, D and G such thatxk ∈ Exx , the closed-loop
application of Algorithm2 is feasible and asymptotically
stabilizing.

The proof is similar to the proof of Theorem 4.1 in
Kouvaritakis et al. (2000), and omitted for brevity.

5. Examples

In this section we will present two examples, where the
performance of the suggested control algorithm will be com-
pared to two control schemes that also are tailored towards
efficient predictive control under constraints. We will first
briefly review these.

Efficient robust predictive control. As mentioned above,
the offline problem of ERPC as proposed inKouvaritakis et
al. (2000)is a special (convex) case of the GERPC offline
problem obtained by choosingF = 0,D=[I,0, . . . ,0] and
G=M whereM is defined in (7). The online problem has
the same structure as (9).

Explicit MPC. Explicit MPC refers to the explicit solu-
tion of the finite horizon constrained LQR problem as piece-
wise affine functions (controllers) defined on polytopic par-
titions of the state space (Bemporad et al., 2002). The offline
problem of finding these controllers and the corresponding
polytopes can be solved as a multi-parametric QP problem,
seeTZndel, Johansen, and Bemporad (2003a)for a recent
algorithm. The online problem consists of finding which
polytope the present state is within. If done with a “brute
force” approach, this might involve a significant number
of arithmetic operations when the number of polytopes is
large. However, by using smart data structures to store the

1A third option could be to perform the linesearch in the “steepest
descent”-direction, but this is not elaborated on here.
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Fig. 2. The shaded areas (the polytopes) are the region where the explicit
MPC controller with horizon 5 is defined. The dotted ellipsoids are the
region of attraction for ERPC with horizon 2 and 5 and the outer ellipsoids
the region of attraction for GERPC with horizon 2 and 5. The innermost
ellipsoid is the largest invariant ellipsoid where the LQ controller is
unconstrained.

problem data and exploiting the structure, it is possible to
significantly reduce the online computational effort (TZndel,
Johansen, & Bemporad, 2003b). Nevertheless, storing all
the polytopes and corresponding controllers might require a
significant amount of memory.

5.1. Double integrator example

Consider the discretized double integrator model

A=
(

1 Ts
0 1

)
, B =

(
T 2

s
Ts

)
,

whereTs=0.05 s is the sampling time. There are constraints
on input, |u|�1, and on velocity,|x2|�1. The weighting
matrices are chosen asQ=diag{1,0} andR=1. We will in
the following compare the region of attraction, online (and
offline) computational demand, online memory use and sub-
optimality of GERPC, ERPC and explicit MPC.

5.1.1. Offline
Region of attraction. The obtained “regions of attractions”

for the three approaches are shown inFig. 2. The region for
explicit MPC (stretching indefinitely in thex1-direction) is
significantly larger than for GERPC, which again is larger
than for ERPC. For ERPC, increasing the horizon only
marginally increased the region of attraction beyond the re-
gion of attraction for the LQ-controller. The fixed structure
of G in the case of ERPC seemingly makes enlargement
most pronounced in one particular direction, and in this case
this comes in conflict with the state constraint. This exam-
ple clearly shows the importance of flexibility inG since the

GERPC ellipsoids are both rotated and “fattened” as com-
pared to ERPC.

Offline computational complexity. The difference in of-
fline computing time between a convex solver for ERPC and
a non-convex solver for GERPC is as expected very large.
As mentioned above, the explicit MPC solution is found us-
ing multi-parametric quadratic programming (mpQP), for
which the computational complexity grows exponentially
with problem size. In conclusion, it is probably safe to say
that the ERPC offline problem has least complexity for a
given system and horizon, while mpQP and a BMI solver for
GERPC is harder to compare. In our experience the mpQP
problem is about an order of magnitude faster than our BMI
algorithm, for the same control horizon.2

5.1.2. Online
Memory usage. The demand on online memory is about

the same for ERPC and GERPC (there is a slight difference
due to the size of the� matrix). Therefore, we compare
GERPC with explicit MPC. The memory requirements for
horizonsnc = 5 can be summarized as follows:3

GERPC “crude” explicit MPC “smart” explicit
(reals) (reals, controllers plus MPC (reals plus

polytopes) integers)

56 182+ 756 240+ 255

As we can see, the difference is considerable in favor of
GERPC, and will be even larger for longer horizons, as the
size of the matrices grows quadratically while the number
of polytopes grows exponentially. In the right-most column,
we see that by using smart data structures and exploiting
problem structure (TZndel et al., 2003b), “smart” explicit
MPC considerably reduces memory demand as compared to
the straightforward implementation.

Online computational complexity. A count of “worst case”
floating point operations is shown below for the given ex-
ample (initial condition at(−4,0)):

GERPC “crude” explicit “smart” explicit
MPC MPC

12896 1008 44

For the Newton–Raphson method used by GERPC (for solv-
ing the optimization problem (9)), the worst case number
of iterations were 13 in our implementation, with 992 float-
ing point operations (counted with theflops -command of

2 However, using a convex formulationCannon and Kouvaritakis,
2005for GERPC makes offline computation similar to ERPC, with about
twice as many optimization variables.

3 For GERPC, storing the results of some matrix calculations done
offline will increase efficiency. This is not taken into account here.
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Fig. 3. The states: solid line is infinite horizon MPC and explicit MPC
(they are barely distinguishable), dotted line is GERPC (with scaling),
and dashed line is GERPC with Algorithm 1. Initial condition(−4,0).
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Fig. 4. Control inputu and perturbation for unconstrained optimal control
c: solid line is infinite horizon MPC and explicit MPC (they are barely
distinguishable,c not shown for explicit MPC), dotted line is GERPC (with
scaling), and dashed line is GERPC with Algorithm 1. Initial condition
(−4,0).

Matlab 5) per iteration. Enhancing performance using ei-
ther scaling (Kouvaritakis et al., 2002) or Algorithm 1, only
adds minimally to this number—“scaling” added 129 float-
ing point operations, and using Algorithm 1 adds even less.
The “smart” explicit MPC controller is extremely efficient
in this case. However, all these numbers are small, com-
pared to a QP MPC controller, which (implemented using
quadprog in Matlab) with horizon length 5 uses about
106 000 floating point operations.

Sub-optimality. Simulations of the system from initial
condition(−4,0) with infinite horizon MPC, explicit MPC,
GERPC and GERPC with scaling are shown inFigs. 3and4.

We would expect that both explicit MPC and GERPC for ini-
tial conditions far from the origin will show sub-optimality.
However, for this example it is hard to find initial condi-
tions where explicit MPC shows significant sub-optimality.
GERPC on the other hand, is not optimal, probably since it
stays away from the constraints. As we see from the table
below, the scaling technique ofKouvaritakis et al. (2002)
reduces sub-optimality slightly, while Algorithm 1 reduces
it significantly.

Initial Cost
condition

GERPC GERPC GERPC explicit infinite
(9) w/scaling Algorithm 1 MPC horizon

MPC

(−4,0) 832.72 831.72 677.89 609.44 609.39
(−2, .6) 378.24 374.57 234.63 204.46 204.46

5.2. Lab helicopter example

This example compares GERPC and ERPC applied to
control a laboratory helicopter (Quanser 3-DOF Helicopter).
This process has significant non-linearities, but we use a lin-
ear model for simplicity. Using two “local” PD controllers
to decouple pitch and elevation (reducing non-linearity), the
following six states (� is “travel”, p is pitch angle of heli-
copter ande is elevation angle), 2 input (setpoints to pitch
and elevation controllers) model is used:




�̇
�̈
ṗ

p̈

ė

ë




=




0 1 0 0 0 0
0 0 −.451 0 0 0
0 0 0 1 0 0
0 0 −19.8 −7.28 0 0
0 0 0 0 0 1
0 0 0 0 −3.09 −4.98







�
�̇
p

ṗ

e

ė




+




0 0
0 0
0 0
19.8 0
0 0
0 4.98




[
pc
ec

]
.

The weights are chosen asQ = diag{1,1,1,10,1,10} and
R = diag{95,95}.

A comparison of the volumes obtained by GERPC and
ERPC is shown in the table below. The volume factorVf =√

det(TQzT T)−1 is a measure of the size of the ellipsoids.
A three-dimensional projection of the ellipsoids is shown in
Fig. 5 (most of the other projections showed similar pro-
portions). We clearly see that even for an extremely short
control horizon, GERPC is able to obtain significantly larger
regions of attractions than ERPC.
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Fig. 5. Projections of six-dimensional ellipsoids. GERPC horizonnc = 2
(outer ellipsoid) and ERPC fornc = 13.

Fig. 6. A projection of two ellipsoids (the GERPC region of attraction
and the largest invariant ellipsoid for unconstrained LQ) and one state
trajectory, and (right) a (rotated) zoom. The point where the control
becomes unconstrained is marked with a dot.

Algorithm nc Offline dimQz Vf [×103]
calc. time

(s)

GERPC 2 600 10× 10 55.3
ERPC 2 0.9 10× 10 0.6
ERPC 8 48.7 22× 22 1.4
ERPC 13 560 32× 32 2.7

In order to get a reasonable region of attraction, we had
to increasenc for ERPC. For the given real-time system
environment, however, the online optimization problem of
ERPC withnc�10 was too computationally demanding, and
lead to computer exceptions and hence controller failure.

Fig. 6shows three of the states from a laboratory trial start-
ing outside the invariant ellipsoid given by the LQ-controller,
and entering it after about 0.4 s. This is confirmed by
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Time [s]

Fig. 7. At top, the first input (the pitch reference,u1) with the constraint
(−20◦), with the correspondingc1 (cf. (3)).

Fig. 7, where we see that the “perturbation” to the first
control also is zero after 0.45 s.

6. Discussion

Offline problem: The examples clearly indicates that the
generalized offline problem achieved considerably larger re-
gions of attractions than ERPC. The generalization of the
offline problem gives more freedom in “shaping” the el-
lipsoid, which can be especially helpful in the presence of
state constraints as in the first example. Furthermore, we
believe that the generalized offline problem in the multiple
input case (as in the second example) has more freedom for
exploiting possible couplings between the inputs than the
ERPC offline problem, sinceG is a general matrix as op-
posed to the “diagonal structure” of theM matrix of ERPC.
However, the regions of attraction obtained by GERPC and
ERPC will always be a subset of the set where the explicit
MPC controller is defined, but this set is not necessarily a
region of attraction, as discussed below.

In the results herein, we used BMI solvers for solving the
offline optimization problem. As mentioned earlier, in many
cases the offline problem admits a convex parametrization
(Cannon & Kouvaritakis, 2005). This is the case for the first
example, but not the second (with the chosen control hori-
zon). Using the convex LMI formulation for the first exam-
ple, the GERPC ellipsoids can approximate the explicit MPC
region arbitrarily close, at the expense of online cost. How-
ever, the LMI formulation (Cannon & Kouvaritakis, 2005)
also allows for a trade-off between size of ellipsoids and
online sub-optimality. This feature is exploited inImsland
and Rossiter (2005)to combine GERPC with “Triple-mode
MPC” (Rossiter et al., 2001).

Online problem. The first example reveals that while
GERPC/ERPC requires limited memory online, explicit
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MPC performs better as far as computational complexity
and sub-optimality is concerned. However, it is not hard
to imagine examples where the memory requirements of
explicit MPC is prohibitive.

In the first example, we were able to reduce sub-optimality
in GERPC considerably by the new online algorithm sug-
gested in Algorithm 1, at negligble additional computa-
tional cost. The fact that scaling is not as effective as in
Kouvaritakis et al. (2002)in this case, is probably due to a
combination of the following: The state constraint (state con-
straints were not considered in the examples inKouvaritakis
et al. (2002)), that due to the larger ellipsoidal regions of at-
traction we start further away from the origin, and that the
ellipsoid (Lyapunov matrix) calculated by the BMI solver
is badly conditioned (in(x, f )-space). Applying the LMI
formulation (Cannon & Kouvaritakis, 2005) to the offline
problem of the first example such that the ellipsoid is about
the same size, gives better online performance of GERPC,
and less difference between “scaling” and Algorithm 1. This
is probably related to the conditioning problem mentioned
above.

Stability and robustness. GERPC/ERPC gives (robust)
stability guarantees, while, on the other hand, it is well
known that finite horizon MPC (as implemented by explicit
MPC) might enter “blind alleys” if the horizon is not long
enough. Thus, the fact that the MPC controller is defined
for an initial condition does not imply that this initial con-
dition is within the region of attraction. However, the stabil-
ity of the piecewise affine controller can be checked (con-
servatively) using, e.g. piecewise quadratic Lyapunov func-
tions and LMIs, or one can enforce stability by design, by
either finding the horizon length that guarantees stability,
or adding stability constraints (at the cost of a more complex
controller).

While GERPC/ERPC straightforwardly can handle uncer-
tainty by the use of polytopic models, this is not so straight-
forward for explicit MPC. Some results in that direction have
appeared recently (Bemporad, Borrelli, & Morari, 2003),
however restricted to 1- and∞-norm type objective func-
tions.

7. Conclusion

By considering feasibility through a non-convex optimiza-
tion problem offline, we are able to pose efficient online
optimization algorithms for constrained optimization of lin-
ear systems and systems described by polytopic uncertainty
models. Compared to ERPC larger regions of attractions
were achieved. Furthermore, a less sub-optimal online prob-
lem was proposed. The new approach offers few advantages
to explicit MPC in terms of online computational efficiency
or sub-optimality, but it uses less online memory. In addi-
tion, the new approach gives (in the same way as ERPC)
stability guarantees, and model uncertainty can be handled.
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