
A new optimization algorithm with application to
nonlinear MPC

Frode Martinsen a Lorenz T. Biegler b Bjarne A. Foss a ∗

aDepartment of Engineering Cybernetics, NTNU, 7491 Trondheim, Norway.
bDepartment of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA

15213.

Abstract

This paper investigates application of SQP optimization algorithms to nonlinear model pre-
dictive control. It considers feasible vs. infeasible path methods, sequential vs. simultane-
ous methods and reduced vs. full space methods. A new optimization algorithm coined
rFOPT which remains feasibile with respect to inequality constraints is introduced. The
suitable choices between these various strategies are assessed informally through a small
CSTR case study. The case study also considers the effect various discretization methods
have on the optimization problem.

Key words: model predictive control, optimization, SQP, feasibility.

1 Introduction

Nonlinear model predictive control (NMPC) is a control strategy where application
of nonlinear optimization methods is essential. This paper is application oriented,
and contributes to the practical knowledge of implementation of NMPC. The paper
focuses on application of sequential quadratic programming (SQP) optimization
algorithms in NMPC, but also considers the interplay between choice of model dis-
cretization and optimization. The paper addresses the differences and similarities
between feasible and infeasible path methods, sequential and simultaneous meth-
ods, and reduced and full space methods for solving the nonlinear programming
(NLP) formulation for NMPC. Suitable choices between these various strategies are
informally assessed by applying them to a case study, a CSTR with multiple steady
states.

∗ Corresponding author. Tel +47-73594476 fax +47-73594399
E-mail: bjarne.a.foss@itk.ntnu.no

Preprint submitted to Elsevier Science 25 February 2004



The theory of optimization algorithms is not dependent on how the equality con-
straints are formed. For instance in optimal control, and in particular in the special
case of NMPC, much concern is put into discretization schemes for the nonlinear
equality constraints. These equality constraints result from a continuous-time non-
linear dynamical system repeated over a time horizon P . Three major variants are
usually considered: orthogonal collocation, multiple shooting and single shooting
(possibly with a variable grid). [1] discuss the general benefits of these approaches,
and [2] discusses this in conjunction with SQP algorithms. [3] presents a software
packag, SOCS, for solution of open-loop optimal control problems using direct
transcription. The SOCS package is available as a FORTRAN library or in Matlab
through TOMLAB [4]. [5] addresses the dynamic optimization of general DAE sys-
tems. These approaches seek to find formulations of the equality constraints that
are easier to satisfy, while simultaneously reducing the discretization error.

Nonlinear inequality constraints may be introduced for (nominal) stability purposes
in NMPC ([6], [7], [8]). These references can be seen as extensions of earlier work
([9], [10]) where nominal stability (assuming an infinite prediction horizon for a
stable system) was addressed as well as optimization algorithms for feasible path
methods. In [7], example E conforms with the approach found in [10]. In essence,
termination prior to convergence of the optimizer cannot guarantee nominal stabil-
ity unless the equality constraints are satisfied.

The immediate answer to the need for early termination is single shooting, i.e.,
solve the model at each iteration with an initial value solver. Single shooting al-
gorithms progress towards a solution by iterating between solving the model and
solving a reduced size optimization problem. Due to this, single shooting is said
to be a sequential method. Single shooting produces a reduced gradient problem
in the free variables to be solved at each NMPC iteration. Maintaining feasibility of
nonlinear inequalities involving dependent variables can then be obtained by use of
RFSQP [11]. Single shooting may be costly if evaluation of the problem functions
is costly, e.g. if an implicit discretization scheme must be applied. In addition sin-
gle shooting lacks robustness when applied to unstable systems [1], section 4.1 and
4.6.2.

Simultaneous methods must be applied to solve optimization problems with sta-
bilizing endpoint constraints. End-point constraints make the problem a two-point
boundary value problem (TPBVP) which in general cannot be resolved with single
shooting. Simultaneous methods do not solve the model at each iteration. Instead a
simultaneous search for a model solution and optimal point is carried out. Multiple-
shooting and orthogonal collocation, possibly on finite elements [12], are the most
widely used simultaneous methods. Since simultaneous methods do not solve the
model at each iteration, they cannot guarantee stability in the nominal stability
setting of dual-mode or quasi-infinite horizon NMPC if terminated prior to conver-
gence. A related multiple shooting, trust region strategy that maintains feasibility
in NMPC problems was recently proposed in [13]. On the other hand, it was demon-

2



strated by [14] that termination prior to convergence in multiple shooting may be
viable for some applications. Decomposition strategies for orthogonal collocation
on finite elements have been considered by [15] and [16].

We note that these algorithms can be applied to a number of NMPC problem formu-
lations. For instance, the approach of [17] is meant only for systems with a flatness
property. Here differential equations can be eliminated and the inputs and states of
the problem can be represented through flat outputs and their derivatives. As a re-
sult, the system can be written as algebraic relations. The flat outputs can be written
as polynomials on finite elements and all of the inputs and states can be recovered
by optimization of these polynomial coefficients. The claim is that this leads to
a much smaller optimization problem (but it is also completely dense). The algo-
rithms developed in this paper can be applied equally well to NMPC formulations
of problems that are represented by flat outputs.

The nonlinear MPC problem with ul ∈ R
nu and xl ∈ R

nx

minx,u;l
1
2

(

∑P−1
l=0

∥

∥

∥xl+1
∥

∥

∥

2

Q
+

∑M−1
l=0

∥

∥

∥ul
∥

∥

∥

2

R

)

s.t. cE(x, u) = 0

x ∈ X× · · · × X

u ∈ U× · · · × U

(1)

with M < P is considered in this paper. Provided that the system is given in con-
tinuous time, the variables (x, u) and the equality constraints in (1) are formed by
assuming an appropriate discretization scheme of the continuous time DAE model
F (ẋ(t), x(t), u(t)) = 0 repeated over the horizon P along with a suitable parame-
terization of the control profile. Endpoint constraints or augmentation of the objec-
tive may be included to guarantee nominal stability of the NMPC algorithm, see [8].
Nonlinear inequality constraints may be added for instance to provide stability or to
model quality constraints. Observe that reference tracking and non-zero set-points
can be handled in this framework with minor modifications. It is assumed that suffi-
ciently smooth first principles state-space models with measured states and analytic
first derivatives are used and that

(X ,U) = (X× · · · × X, U× · · · × U)

can be described by bounds.

The paper continues with a conceptual comparison between single shooting and
reduced Hessian methods in section 2. In section 2.2 a new algorithm maintaining
feasibility with respect to nonlinear inequalities is introduced. Simulation results
follow in section 3. Discussion and conclusions follow in section 4.

3



2 Optimization methods

We first consider general SQP methods. The NMPC problem (1) can be restated as
a general NLP problem [18]:

minz f(z)

s.t. cE(z) = 0

cI(z) ≤ 0

(2)

where zT = [xT uT ] ∈ R
n, f : R

n → R, cE : R
n → R

m and cI : R
n → R

p where
n = nxP + nuM , m = nxP and p = 2n (assuming upper and lower bounds on
(xl, ul) over the horizons P and M ). The transpose of the Jacobian matrix of the
equality constraints is denoted A = A(z) = [∇c1

E(z),∇c2
E(z), · · · ,∇cm

E (z)] where
ci
E
(z) is the i-th component of the vector cE(z). The matrix G(z) made up of A and

the gradients of the active inequality constraints is assumed to have full column
rank. The null-space of G(z)T defines the tangent space to the equality and active
inequality constraints at z. We denote HL the Hessian of the Lagrangian function
L(z, λE , λI) = f(z) + λT

E
cE(z) + λT

I
cI(z) where λE and λI are the multiplier

vectors.

Please note that nonlinear constraints, e.g. due to quality constraints, will add non-
linear inequalities to cI .

In SQP, a sequence of subproblems is solved, where for each subproblem the model
is linearized and a quadratic model of the Hessian of the Lagrangian is formed about
zk. This gives the following quadratic programming (qp) problem to be solved at
each iteration k of the SQP algorithm:

mindk
∇f(zk)

T dk + 1
2
dT

k Bkdk

s.t. ∇cE(zk)
T dk + cE(zk) = 0

∇cI(zk)
T dk + cI(zk) ≤ 0

(3)

where Bk � 0 is given by HLk, or its approximation. The solution dk to (3) is a
search direction and the SQP algorithm searches along dk for a new iterate zk+1

that gives a reduction in a merit function. The merit function φν is needed to give
convergence to a point satisfying the strong second order assumptions, from any
starting point under certain additional assumptions. Further details on SQP can be
found in e.g. [19]. The basic SQP-algorithm is summarized in Algorithm 1.

4



(1) Guess z0, set B0.
(2) At zk evaluate f(zk), cE(zk), cI(zk), ∇f(zk), ∇cE(zk) and ∇cI(zk).
(3) Update Bk, the Hessian of the Lagrange function HLk or its approximation.

(This approximation comes from a Gauss-Newton method or, if a certain cur-
vature condition is satisfied, by a BFGS formula.)

(4) Solve (3) for dk.
(5) Test for convergence.
(6) Find a step-size αk s.t. 0 < αk ≤ 1 and φν(zk + αkdk) < φν(zk).
(7) Set zk+1 = zk + αkdk, k = k + 1 and go to 2.

Algorithm 1. Basic SQP algorithm.

2.1 Reduced gradient methods

In section 2.1, it is assumed that there are no nonlinear inequalities in problem (2).
The qp (3) can be resolved in the full space of free and dependent variables, or
in the reduced space of free variables by a suitable elimination of variables. Elim-
ination of variables exploits that if nxP − nuM � nuM and that nuM is small,
the reduced subproblem for the null-space step will be small (but dense). In the
full space the sparsity of both the Hessian (which commonly requires analytic Hes-
sians) and the Jacobian can be exploited to yield fast solutions [20]. This section
shows that a reduced gradient approach can be derived by following two differ-
ent strategies. The first uses a sequential approach, see e.g. [10], while the second
follows the simultaneous null-space approach [21], [22].

2.1.1 Sequential approach (sOPT)

By iterating the model over the horizon P , the transformation x = Ψ(x0, u) allows
the equivalent form [23]

minu fu
k (u)

s.t. Ψ(x0, u) ∈ X
u ∈ U

(4)

The transformation Ψ(·) for linearized and discretized systems is essentially a pro-
jection onto the subspace U . The sequential approach solves the model at each iter-
ation, i.e. the qp-subproblem is solved following a feasible path strategy. Without
active bounds, the KKT conditions for problem (1) are given by:

∇xfk +∇xc
T
E ,kλE ,k = 0

∇ufk +∇uc
T
E ,kλE ,k = 0

cE ,k = 0

5



Details on the partial derivatives are given in [24]. We eliminate λE ,k =
− (∇xcE ,k)

−T ∇xfk, define ST
k = −∇uc

T
E ,k (∇xcE ,k)

−T and get the reformulated
KKT conditions

∇ufk + ST
k∇xfk = 0

cE ,k = 0

Note that the above result also can be derived by considering the total differential

of cE ,k = 0, which is dcE = ∇xc
T
E ,kdx +∇uc

T
E ,kdu = 0, and define ST

k =
(

dx
du

)T
=

−∇uc
T
E ,k (∇xcE ,k)

−T (hence the notion of sensitivity 1 ). In the view of problem (4),
consider the objective and model derivatives with respect to u:

dfk

du
= ∇ufk +

(

dx
du

)T ∇xfk

= ∇ufk + ST
k∇xfk (5)

dcE ,k

du
= ∇ucE ,k +∇xcE ,kSk

Note that the sensitivity matrix gives search directions dx
k = Skd

u
k , hence dcE,k

du
du

k =
(∇cE ,k)

T dk when cE(xk) = 0. Also note that by defining ZT
k = [ST

k I] we have
ZT

k ∇fT
k = 0 for the KKT conditions. Linearizing the reformulated KKT conditions

with respect to u gives (with some abuse of notation) the Newton system:

(ZT
k ∇2fkZk +∇ZT

k ∇fkZk)d
u
k = −(∇ufk + ST

k∇xfk)

Assuming Z(z∗)T∇f(z∗) = 0 allows us to write the related bound constrained qp
in du

k ∈ R
nuM :

min
du

k

(

∇uf
T
k + Sk∇xf

T
k

)

du
k

+1
2
(du

k)
T

(

ZT
k ∇2fkZk

)

du
k (6)

s.t.







Sk

−Sk





 du
k ≤







xU − xk

xk − xL







uk + du
k ∈ U

During the line search (as in step 7 of Algorithm 1), the algorithm evolves the
model to get xk+1 = Ψ(x0, uk + αdu

k). Then the algorithm solves the qp (6) for
du

k+1 which again is used to evolve the model giving xk+2 and so on.

1 This definition of S gives the same result as that of [23], but is faster to compute in
Matlab which benefits from vectorization. Note that the inversion is not necessary to
numerically solve for S from AS = B.

6



The reduced Hessian term ZT∇2fZ in (6) is positive definite. This term is due
to a simplification where the Hessian of the Lagrange function HL is replaced by
∇2f , which is known as the Gauss-Newton assumption. This simplification can
deteriorate to linear convergence if the second derivative contributions from the
model are significant [18].

2.1.2 Reduced Hessian approach (rOPT)

This is a null-space method where a decomposition is applied to the KKT conditions
to eliminate variables. Consider the SQP subproblem which at an iterate k generates
a search direction dk ∈ R

(nxP+nuM) by solving

mindk
gT

k dk + 1
2
dT

k W (xk,uk) dk

s.t. cE(x, u; k) + A(x, u; k)T dk = 0

xk + dx
k ∈ X

uk + du
k ∈ U

(7)

Here ∇fk = gk, Wk is given by HLk, the Hessian of the Lagrangian function, or
an approximation. A(x, u; k) denotes the constraint Jacobian. The next iterate is
computed as (xk+1, uk+1) = (xk, uk) + αk(d

x
k, d

u
k) where αk is a step length pa-

rameter chosen to reduce a suitable merit function. We now partition z = (x, u) ∈
R

(nxP+nuM) into state and control variables through the basis given by a matrix
[Yk Zk]. This allows the representation of the search vector as dk = YkpY,k+ZkpZ,k.
Assume that Zk is a basis for N (AT

k ), i.e. AT
k Zk = 0, and that Yk is chosen so that

the matrix [Yk Zk] is nonsingular. Hence, we decompose dk into two components.
The model constraint from problem (7) can now be rewritten as cE ,k + AT

k YkpY,k =
0. Since [Yk Zk] is nonsingular, assuming full column rank of Ak leads to pY,k =

−
(

AT
k Yk

)−1
cE ,k which gives us dk = −Yk

(

AT
k Yk

)−1
cE ,k + ZkpZ,k. We arrive at

the reduced size qp subproblem in pZ,k ∈ R
nuM (considering pY,k as a constant)

min
pZ,k

(ZT
k gk + wT

k )pZ,k+

1

2
pT

Z,kZ
T
k WkZkpZ,k (8)

s.t. zk + YkpY,k + ZkpZ,k ∈ X × U

where wk = ZT
k WkYkpY,k. The choice of Yk and Zk is motivated by the partitioning

into dependent and free variables. [25] argue that the partitioning AT
k = [Ck Nk]

with

Zk =







−C−1
k Nk

I






Yk =







I

0






(9)

7



should be utilized, assuming a non-singular Ck and AT
k Zk = 0. If we choose the

natural partitioning [Ck Nk] =
[

(

∂cE,k

∂x

)T (

∂cE,k

∂u

)T
]

arising from linearization

with respect to (x, u), this leads to the following relations

Zk =







−C−1
k Nk

I





 =







Sk

I







dx
k = pY,k + SkpZ,k

du
k = pZ,k

Summarizing, the search direction in rOPT has an added component pY,k which is
not present in the sOPT method. Inserting pY,k = 0 into (8) and comparing with
(6), we observe that the search directions for the sOPT approach coincide with the
rOPT approach with [Ck Nk] selected from the linearization. The step pZ,k is in the
null space of AT

k , i.e. it is tangential to the equality constraints, while pY,k is in the
range space of Ak. Then, pZ,k aims at reducing the objective while pY,k searches for
feasibility. Since the sOPT method is a feasible path method, pY,k = 0.

In comparing the two approaches we observe that the sequential approach main-
tains feasibility of all iterates, while rOPT searches for feasibility and optimality
simultaneously. In addition the sequential method solves the model at each itera-
tion, while rOPT only solves the model once, at the solution z∗. Recall that we
neglected the cross-term involving second order model derivatives in equation (6),
because pY = 0.

We also note that the sequential approach only handles initial value problems (IVP),
i.e. end-state constraints like xP ∈ Ωx cannot be guaranteed since it implements a
shooting strategy in evolving the model over the horizon. The endpoint constraint
changes the problem into a boundary value problem (BVP) which must be han-
dled by simultaneous strategies. Moreover the sequential approach can experience
convergence problems on unstable systems. (See [23] and [7] for details.)

Finally, we observe that the reduction of the size of the qp to be solved, intro-
duces an additional cost of calculating Sk (sOPT) and Zk (rOPT) respectively.
Here we implement decomposition strategies for sparse matrices from the Harwell
subroutine libraries MA28/48. Note that ∇xcE ,k and Ck are sparse block lower
triangular matrices of order nxP . Hence, solving for Sk (sOPT) and Zk (rOPT)
is cheap, of order O ((nxP )p), with p ∈ [1, 2] instead of p = 3 due to sparsity.
Recall that the efficiency of reduced gradient algorithms relies on the assumption
that nxP − nuM � nuM and that nuM is small. Alternatives to computing the
Jacobian by analytic partial derivatives are finite differences and automatic differ-
entiation [26]. This will have a significant impact on the computational demands,
as shown in section 3.2.

8



2.2 Nonlinear inequality constraints

We now assume the presence of nonlinear inequality constraints in the NLP (2).
In this section we propose an extension to the rOPT algorithm that maintains fea-
sibility with respect to nonlinear inequality constraints. This feature has a num-
ber of advantages. Ensuring a feasible inequality path can lead to more reliable
control performance with nonlinear constraints, especially if these are hard con-
straints. Also, maintaining this feasible path could ensure better conditioning of the
nonlinear process model, particularly if these constraints enforce stability or other
desirable behavior. Moreover, enforcing a feasible path for the inequality constraint
also prevents the algorithm from taking poor steps due to poor linearizations of the
model. This is the motivation for trust region methods as well (see [13]). Finally,
with this approach, the penalty merit function is simplified as no weight need be se-
lected for the inequality constraints. Otherwise, on ill-conditioned problems, these
weights can become quite large in rOPT.

The proposed algorithm, coined rFOPT, is expected to be efficient for a moder-
ate number of inequality constraints (e.g. that m � p > 0), due to the active set
approach. If there are many inequality constraints, interior point methods should
be considered. An alternative to the proposed algorithm is to introduce slack vari-
ables for the nonlinear inequalities, and to solve the resulting NLP (with nonlinear
equality constraints and bounds). We associate two sets with the NLP (2):

Z = {z ∈ R
n | cE(z) = 0, cI(z) ≤ 0}

ZI = {z ∈ R
n | cI(z) ≤ 0}

with Z ⊆ ZI . A point z ∈ ZI satisfies the inequality constraints but not neces-
sarily the equality constraints. Points in Z are feasible, while points in ZI are (at
least) feasible with respect to inequalities. We will generate iterates zk ∈ ZI and a
solution z∗ ∈ Z . Assume a known initial point z0 ∈ ZI . The qp (3) produces the
ordinary SQP direction d0

k. Superscript 0 refers to ordinary SQP directions through-
out this chapter.

A feasible direction for zk ∈ ZI is a direction dk ∈ R
n such that there exists a

scalar ᾱ > 0 satisfying

(zk + αdk) ∈ ZI ∀α ∈ [0, ᾱ] (10)

Since d0
k lies in the null space of G(zk)

T , it will not satisfy (10) in general. The
rFOPT algorithm tilts the ordinary SQP direction into the feasible region and pro-
duces a direction dk. The range-space step is given by

pY,k = −(AT
k Yk)

−1cE ,k = −C−1
k cE ,k (11)

In (11) the partitioning AT
k = [Ck Nk] from Section 2.1.2 is used together with

9



the definition of Yk. rFOPT implements feasibility by modifying the subproblem
(8) into:

min
pZ,k,γk

1
2
pT

Z,kBkpZ,k + γk

s.t.
(

ZT
k gk + ζkwk

)T
pZ,k ≤ γk

L− zk − YkpY,k ≤ ZkpZ,k

≤ U − zk − YkpY,k
(

ZT
k ∇cT

I,k

)T
pZ,k

≤ γkηk − ρ(pY,k)

(12)

where, using ĉI(zk) = cI(zk) +
(

Y T
k ∇cT

I,k

)T
pY,k,

ρi(pY,k) =











ĉi
I
(zk) if ĉi

I
(zk) > ftol

ftol otherwise
(13)

In (12), ζk is a scalar damping parameter and wk = TkYkpY,k, where Tk ≈ ZT
k Wk.

Tk may be computed by Broyden’s method. L and U are lower and upper bounds
on z, and ftol is the feasibility tolerance for the nonlinear inequalities. The update
rule for ζk is given by [22]. The reduced Hessian approximation Bk is updated by
a BFGS scheme. Establishing that the scalar γk ≤ 0, guarantees that

dk = YkpY,k + ZkpZ,k (14)

satisfies (10).

The vector parameter ηk controls the amount of tilting. There is one ηi
k for each non-

linear inequality. To prove superlinear convergence, it suffices to show that dk → d0
k

as k →∞. This is accomplished by letting ηk → 0 as the solution z∗ is approached.
Since z∗ is unknown, updating ηk is done by computing d0

k, and comparing this to
dk. The updating of ηk is revisited below.

The next iterate is computed as

zk+1 = zk + αkdk + α2
kd

C
k (15)

where αk is a step-length parameter chosen to reduce the value of the constrained
l1-merit function

φν(zk) = f(zk) + νk ‖cE(zk)‖1
s.t. cI(zk) ≤ 0

(16)

10



with penalty parameter νk updated by

νk =











νk−1 if νk−1 ≥ ‖λk‖∞ + 2ρ

‖λk‖∞ + 3ρ otherwise
(17)

The correction term dC
k in (15) is needed to guarantee that the discontinuity intro-

duced by the constraint in the line search, will not disrupt superlinear convergence
of the algorithm. dC

k is decomposed into

dC
k = Ykp

C
Y,k + Zkp

C
Z,k (18)

The range space correction step is given by

pC
Y,k = −C−1

k cE(zk + dk) (19)

Define

ĉC
I,k = cI(zk + dk) + ‖dk‖κ

+
(

Y T
k ∇cT

I,k

)T
(pY,k + pC

Y,k)

(κ ∈ (2, 3) is a user selected parameter) and

ρC,i(pC
Y,k) =











ĉC,i
I,k if ĉC,i

I,k > ftol

ftol otherwise

The null space correction step is solved from the subproblem

min
pC

Z,k

1
2
(pC

Z,k)
T Bkp

C
Z,k + (ZT

k gk

+ ζk(wk + wC
k ) + BkpZ,k)

T pC
Z,k

s.t. L− (zk + dk)− Yk(pY,k + pC
Y,k)

≤ Zk(pZ,k + pC
Z,k)

≤ U − (zk + dk)− Yk(pY,k + pC
Y,k)

(

ZT
k ∇cT

I,k

)T
(pZ,k + pC

Z,k)

≤ −ρC(pC
Y,k)

(20)

where wC
k = TkYkp

C
Y,k.

11



Finally, the tilting parameter η is updated by computing the ordinary SQP direction.
The range space tilting step is given by pE

Y,k = −C−1
k cE(zk) = pY,k. The null space

tilting step becomes

min
pE

Z,k

1
2
(pE

Z,k)
T Bkp

E
Z,k

+
(

ZT
k gk + ζkwk

)T
pE

Z,k

s.t. L− zk − YkpY,k ≤ Zkp
E
Z,k

≤ U − zk − YkpY,k
(

ZT
k ∇cT

I,k

)T
pE

Z,k

≤ −ρ(pY,k)

(21)

The update rule for ηk, based on

dE
k = YkpY,k + Zkp

E
Z,k (22)

is given in Section 2.2.1. The Lagrange multipliers for the equality constraints are
estimated from

λE ,k = −(Y T
k Ak)

−1Y T
k gk = −C−T

k Y T
k gk (23)

The multipliers for the inequalities are derived from the qp multipliers.

Hence, rFOPT solves the 3 subproblems (12), (20) and (21) at each iteration, one
for each of pZ,k, pE

Z,k, pC
Z,k. These subproblems consists of solving a small sized qp

(due to the assumption nxP − nuM � nuM ), and two solves for pY,k and pC
Y,k

(with differing right-hand sides, but the same LU factorization). The price to pay
for having zk ∈ ZI is an increased workload of the algorithm. This is shown in
Table 4 in Section 3.

2.2.1 The rFOPT algorithm

(1) Choose constants θ ∈ (0, 1
2
), κ ∈ (2, 3), εl > 0, 0 < Cη < C̄η, D̄ > 0,

0 < τ < τ ′ < 1, η0 > 0 for (12) and Cη
0 ∈

[

Cη, C̄η
]

. Set k = 0 and
select a starting point z0 ∈ ZI . Choose the initial penalty parameter νo, a
(n−m)×(n−m) symmetric and positive definite matrix B0 and a (n−m)×n
starting matrix T0 for the Broyden approximation.

(2) Evaluate f0, g0, c0 and A0. Compute Y0 and Z0 from (9).
(3) Solve for the range space step pY,0 from (11). Compute the approximation w0

by Broyden’s method.
(4) Compute the damping parameter ζ0 ∈ (0, 1] and compute the tilted null-space

step pZ,0 and γ0 from (12).

12



(5) MAIN LOOP: Define the tilted SQP direction by dk = YkpY,k +ZkpZ,k from
(14). If dk = 0 STOP.

(6) Compute the Maratos correction term dC
k from (19,20,18) if it exists and sat-

isfies
∥

∥

∥dC
k

∥

∥

∥ ≤ ‖dk‖. Otherwise set dC
k = 0. Set αk = 1.

(7) Arc search. Test the constrained Armijo condition

φνk
(zk + αkdk + α2

kd
C
k )

≤ φνk
(zk) + θαkDφνk

(zk, dk)

s.t. ci
I
(zk + αkdk + α2

kd
C
k ) ≤ 0

(24)

(8) If (24) is not satisfied, choose a new αk ∈ [ταk, τ
′αk] and go to step (7),

otherwise set zk+1 = zk + αkdk + α2
kd

C
k .

(9) Evaluate fk+1, gk+1, ck+1 and Ak+1. Compute Yk+1 and Zk+1 from (9).
(10) Compute the Lagrange multiplier estimates from (23). Update the weight νk+1

of the merit function from (17).
(11) Update Tk+1 and Bk+1.
(12) Compute pY,k+1 from (11). Compute the approximation wk+1 = Tk+1Yk+1pY,k+1,

and ζk+1 ∈ (0, 1]. Solve for pE
Z,k from (21).

(13) Select Cη
k+1 ∈

[

Cη, C̄η
]

.

If (‖dk‖ < εl) then, compute dE
k+1 from (22). Then

if
∥

∥

∥dE
k+1

∥

∥

∥ ≤ D̄ then set ηk+1 ← Cη
k+1

∥

∥

∥dE
k+1

∥

∥

∥

2

else set ηk+1 ← Cη
k+1 ‖dk‖2

else set ηk+1 ← Cη
k+1ε

2
l

(14) Solve for pZ,k+1 and γk+1 from (12) with wk+1 and ζk+1 computed in step
(12).

(15) Set k ← k + 1 and go to step (5)

A variant of the rFOPT algorithm has been shown to be 1-step superlinearly con-
vergent under specified assumptions [24].

More details on item (13) are given in [11]. The main difference between rFOPT
and the RFSQP algorithm [11] lies in the treatment of nonlinear equality con-
straints. RFSQP handles equality constraints by restating them as inequalities, which
are forced to be asymptotically satisfied as equalities during the course of the op-
timization algorithm. rFOPT treats equalities as in rOPT, which may be more
efficient for large-scale systems. rFOPT is implemented with sparse linear algebra
in Matlab.

13



3 Simulations

NMPCwas implemented on a simple case with four different optimization methods.
The first is a basic full space SQP method. The second is the E04UCF solver from
the NAG toolbox for Matlab (this a more robust version of basic SQP). The third is
the reduced Hessian method rOPT, and the fourth is the sequential method sOPT.
In the presence of nonlinear inequalities rOPT uses slack variables, while rFOPT
from section 2.2 always uses the feasibility mechanism. The case is a CSTR with
multiple steady states. The CSTR example was explored by application of various
discretization methods and approximations of the Jacobian. Both sOPT and rOPT
methods were implemented with Gauss-Newton options with analytic derivatives
from the model, as well as with BFGS updates.

3.1 Implementation issues

The basic SQP full-space method and rOPT were implemented with a l1-penalty
function. sOPT implemented an l1-penalty function without penalization of equal-
ity constraints, since sOPT always remain feasible with respect to equalities. The
line search for all methods is backtracking line search.

The relaxed convergence criteria from [25], section 8.2.3, were implemented with
tolerance 10−5 for the basic SQP method and sOPT. In rOPT the algorithm stops
whenever a certain KKT measure is decreased below the tolerance 10−5. The im-
plementation of rOPT is generally more carefully performed than the basic SQP
and sOPT methods. Hence, the relaxed termination criteria used in basic SQP and
sOPT partly compensates for a rudimentary implementation. However, as the dis-
cussion in section 2 indicates, the sOPT method may show linear convergence in
certain circumstances, and relaxed termination criteria can therefore be of crucial
importance in production codes as well.

For the CSTR case the model was discretized with explicit and implicit Euler, Lo-
batto IIIC and ordinary 4th order Runge-Kutta. The Jacobian matrices associated
with each discretization method has a specific structure (almost block-diagonal
(ABD)) giving specific sparsity patterns. The CSTR case was implemented with
both analytic Jacobian, automatic differentiation (AD) [26] and finite difference
approximations of the Jacobian. The CSTR case was investigated with different
sampling rates and prediction and move horizons.

The results are reported with the last trajectory as initial value for the optimization
algorithms. However, for sOPT, the initial value had to be set to the original steady
state value to avoid convergence problems. rOPT, rFOPT and E04UCF were in-
sensitive to the initial value.

14



It is assumed that a disturbance should not produce a system without feasible so-
lutions. A disturbance will affect the equality constraints (through the feedback),
but not the initial guess in the present implementation. Note that the algorithms
discussed in this paper can handle infeasible systems, if suitable precautions are
taken. For example the algorithms can detect an infeasible optimization problem,
and then it is up to the NMPC-implementor to take precautions (infeasibility re-
covery by constraint relaxation). Note that infeasibility may occur if the inequality
constraints or variable bounds are set too tight. Infeasibility recovery is not consid-
ered in this paper.

3.2 Case: CSTR

The case is the following isothermal CSTR with multiple steady states from [27]
also investigated by [23]

dx1

dt
= u1 + u2 − k1

√
x1

dx2

dt
= (CB1

− x2)
u1

x1

+ (CB2
− x2)

u2

x1

− k2x2

(1+x2)2

(25)

with parameter values k1 = 0.2, k2 = 1, CB1
= 24.9 and CB2

= 0.1. For (u1, u2) =
(1, 1) the CSTR has three equilibrium points at x1 = 100, x2 ∈ (0.633, 2.72, 7.07),
with the middle equilibrium point being unstable, and the others stable. The system
(25) was discretized with a time step h, prediction horizon P , move horizon M and
simulated for NMPC samples, i.e. the NMPC problem is repeatedly solved NMPC

times. At time step 10 the process experiences a +50% step in CB1
which is seen

by the NMPC algorithm through the feedback only. The weights in problem (1)
are Q = 10Inx

and R = Inu
and deviation from stationary values is penalized.

Here the control objective is to keep the states and controls at their initial values
xeq = (100, 2.72) and ueq = (1, 1), the unstable point.

The physical bounds (xl, ul) ≥ 0 are imposed over the horizons. Note that with the
given initial conditions and the given disturbance the active set is empty and unal-
tered throughout the prediction horizon P in this case. The SQP-algorithms were
initialized with the output from the previous call for each NMPC iteration. Note
that integral action is not implemented. This is justified because only a compari-
son of the optimization methods is investigated, and it is expected that introducing
integral action will not influence this comparison. The NMPC problem was solved
either with an end-point constraint xP = xeq, or with inequality constraints as in the
next subsection. However, the reported results for sOPT were not produced with
xP = xeq, since adding this constraint produced failure of the sOPT algorithm.
Both Gauss-Newton and BFGS approximations were considered for all algorithms.

15



3.2.1 Nonlinear inequality

To test the algorithms a nonlinear inequality constraint was added:

(k1

√
x1)x2 ≤ UI (26)

where UI = 5.65 is selected so that the inequality is inactive at the set-point, but
becomes active when the disturbance enters. This inequality can be considered as
an economic or environmental constraint, limiting the flow-rate of a component. A
representative simulation result with and without the inequality constraint is shown
in Figure 1. The process was simulated by Matlab’s ode45 in all cases. If the
control inputs are kept at the equilibrium input [1, 1], the system will settle at a new
equilibrium point at x = (100, 15.94). The ripple appearing with the inequality
constraint is due to the fact that the optimizer only sees the disturbance through the
feedback.

3.3 Results

The computations were implemented in Matlab with some routines available as
mex/dll-files on a Dell Latitude C800 / Pentium III / 1GHz / 512Mb RAM
running Windows 2000. Computational results are shown in Tables 2-4, where
h/P/M are the sampling time in seconds, prediction and input horizons. The #
vars. tot/dep/free are the total, dependent and free number of variables.

The ratios free/tot for the two Euler methods, Lobatto and Runge-Kutta methods
are 0.45, 0.29, 0.14 respectively. The inequality constraint (26) was applied at all
stages in the prediction horizon P . The number of inequality constraints is equal to
P for all discretization methods. That is, the sublevel variables in the Lobatto and
Runge-Kutta methods are not constrained in this case study. Note that there are no
active bound constraints in any of the cases studied.

Note that the controls are not identical for the case with and without inequality
constraints (this does not show in Figure 1). The numerical values are given in
Table 1. In Table 1, u(i) are the controls, x(i) are the predicted states and xp(i) are
the measured states. It is verified that the predicted state values for the case without
inequality constraints violate (26). Note that the measured states also violate (26)
for the case with inequalities.

The Jacobian is either analytic, found by automatic differentiation (AD 2 ) or ap-
proximated by finite differences. Finite differences were considered for both the full
Jacobian (a dense matrix), denoted fd2, and the elements along the block diagonal
(a sparse matrix), denoted fd1. In sOPT fd2 was implemented by finite difference

2 Using the Tapenade tool available at: http://tapenade.inria.fr:8080/

16



perturbations of the simulator. That is, the sensitivity matrix S was approximated
directly. CPU time is the time measured by Matlab’s cputime command from
start to end of the main NMPC loop. The results are listed in Tables 2 (basic SQP
and E04UCF from the NAG toolbox), 3 (sOPT) and 4 (rOPT and rFOPT). In Ta-
ble 4, rOPT and rFOPT are identical when there are no inequalities (column 5 and
6). Column 7 shows results using rOPT with slacks, while column 8 shows results
using rFOPT. Items marked with ’fail’ denote failures, and items marked ’-’ were
not attempted. The objective function has the shape of a narrow valley with a flat
bottom, and the solutions are essentially the same.

For basic SQP, E04UCF, rOPT and rFOPT, the inequality constrained problems
were solved with BFGS approximations. For sOPT, the inequality constrained prob-
lems were solved with the Gauss-Newton (listed as G-N in Tables 2-4) method.

Figure 2 highlights some of the tabulated results for the case without inequalities.
In this figure the log2 ratio, e.g., log2(

CPU1

CPU2

) of CPU times are sorted and compared.
Whenever log2 < 0, we have CPU2 > CPU1 and vice versa. The left half of figure
2 shows that there is a tradeoff between basic SQP and reduced Hessian SQP when
the number of variables is small (due to additional overhead in rOPT). The right
half of Figure 2 shows that if explicit discretization schemes are applied, evaluation
of the model constraint is cheap, and sOPT benefits from this.

The results in Tables 2-4 are summarized in the following conclusions:

• sOPT is sensitive to the choice between implicit and explicit integration meth-
ods, while basic SQP, E04UCF, rOPT and rFOPT are insensitive to this.

• Finite difference approximations of the full Jacobian in basic SQP , E04UCF,
rOPT and rFOPT should be avoided.

• Reduced gradient methods perform better for a large number of variables with
few degrees of freedom.

• All solvers benefit from analytic derivatives, and automatic differentiation [26]
is a cheap way of achieving this.

We observe that rOPT and rFOPT does not work well with the Gauss-Newton
method, and we attribute this to the projection ZT BZ, which can be inaccurate. Ta-
ble 4 shows that requiring feasibility of inequalities triples the computational load.
This is as expected, since rFOPT solves three subproblems at each iteration. Hence,
the tabulated results do not indicate any benefits from maintaining feasibility with
rFOPT on this case. The results for sOPT were obtained by termination prior to
convergence. In this case, this produced satisfactory results, with small violations
of the inequality constraints. The importance and magnitude of such deviations is
case dependent.

Note that a consequence of the first item in the list above is that simultaneous
SQP methods can have fewer variables when implemented with implicit discretiza-
tion methods. Here the step length h can be increased beyond the stability limit of

17



explicit methods (but not beyond reasonable accuracy). Since the basic SQP and
sOPT methods are similar in implementation complexity, sOPT should be chosen
when explicit discretization schemes suffice. Attempts to use E04UCF in sequential
mode (by simulating the model inside the call to the objective function) were not
successful, since E04UCF never converged even for very loose tolerance settings.

In the face of more challenging processes, we anticipate that reduced Hessian meth-
ods are better provided that the assumption of few degrees of freedom continues to
hold. This assumption commonly holds in NMPC. An example of rOPT applied to
a problem with an increase in the number of discretization parameters for the states
is given in [16], where hundreds of states were used.

4 Conclusions

In this paper different nonlinear MPC strategies were implemented on a CSTR case
study and the computational load and quality of the results were investigated. From
Tables 2-4 it is observed that among the different NMPCmethods, the rOPTmethod
is preferable in view of computational time if implicit discretization methods are
required. In NMPC computational time is limited, and generally, SQP involves an
adaptive subproblem, i.e. its computational time is not deterministic. Consequently,
in NMPC feasible path SQPmethods are preferred since they allow termination prior
to convergence [28]. Such methods must solve the model constraints at each SQP
iteration, which may be time consuming if the model is represented with an im-
plicit discretization scheme. Hence, sOPT becomes computationally demanding
if implicit discretization methods are applied, whereas simultaneous SQP meth-
ods perform equally well regardless of whether implicit or explicit discretization
scheme are applied. Both methods require that the selected discretization scheme
is appropriate, i.e. if the model cannot be simulated with a given method, it cannot
be expected that the optimization algorithms perform well either.

Hence, nominal stability for unstable nonlinear systems can pose a challenge, where
the need for implicit discretization schemes and feasibility of equality constraints
at intermediate iterations can be hard to combine.

Feasibility with respect to inequality constraints is easier to achieve. RFSQP [11]
and the present algorithm rFOPT maintain feasibility with respect to inequality
constraints, and asymptotic feasibility with respect to nonlinear equality constraints
by combining these with an exact penalty function and an arc search. The feasible
path sOPT method with an implicit discretization is expected not to perform as
well in the presence of strong nonlinearities [1]. This is contradictory to the needs
for NMPC; e.g. problems with strong nonlinearities and trajectory tracking [29].

Finally, the practical considerations discussed in this paper explore the choices an

18



engineer must take if (s)he wants to implement NMPC on a given process. The inter-
play between discretization methods and optimization algorithms has been investi-
gated through a case study. For explicit discretization methods, sequential methods
are easier to implement than simultaneous methods. This applies in particular to
reduced Hessian methods which may be quite sophisticated. On the other hand, if
implicit discretization methods must be applied, the performance of sOPT deterio-
rates while simultaneous SQP does not degrade.

Acknowledgment

This paper was financially supported by the Research Council of Norway (project
no. 128726/420 - MODTEQ).

References

[1] U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical solution of boundary
value problems for ordinary differential equations, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1995, classics in Applied Mathematics.

[2] A. Barclay, P. E. Gill, J. B. Rosen, SQP methods and their application to
numerical optimal control, in: Variational calculus, optimal control and applications
(Trassenheide, 1996), Birkhäuser, Basel, 1998, pp. 207–222.

[3] J. T. Betts, Practical methods for optimal control using nonlinear programming,
Advances in Design and Control, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2001.

[4] K. Holmström, A. Göran, M. M. Edvall, User’s guide for TOMLAB 4.2, Tech. rep.,
Tomlab Optimization, Sweden (2004).

[5] V. Vassiliadis, Computational solution of dynamic optimization problems with general
differential-algebraic constraints, Ph.D. thesis, University of London, U.K. (1993).

[6] H. Chen, F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability, Automatica J. IFAC 34 (10) (1998) 1205–1217.

[7] H. Chen, F. Allgöwer, A computationally attractive nonlinear model predictive control
scheme with guaranteed stability for stable systems, J. Proc. Cont. 8 (5-6) (1998) 475–
485.

[8] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. Scokaert, Constrained model predictive
control: Stability and optimality, Automatica J. IFAC 36 (6) (2000) 789–814.

[9] W. C. Li, L. T. Biegler, C. G. Economou, M. Morari, A constrained pseudo-Newton
control strategy for nonlinear systems, Computers Chem. Engng. 14 (4/5) (1990) 451–
468.

19



[10] N. M. C. de Oliveira, L. T. Biegler, An extension of Newton-type algorithms for
nonlinear process control, Automatica J. IFAC 31 (2) (1995) 281–286.

[11] C. T. Lawrence, A. L. Tits, A computationally efficient feasible sequential quadratic
programming algorithm, SIAM J. Optim. 11 (4) (2001) 1092–1118 (electronic).

[12] B. A. Finlayson, Nonlinear analysis in chemical engineering, Chemical engineering,
McGraw-Hill, New York, NY, 1980.

[13] M. J. Tenny, S. J. Wright, J. B. Rawlings, Nonlinear model predictive
control via feasibility-perturbed sequential quadratic programming, Comp. Optim.
Appl.Submitted.

[14] H. G. Bock, M. M. Diehl, J. P. Schlöder, F. Allgöwer, R. Findeisen, Z. Nagy,
Real-time optimization and nonlinear predictive control of processes governed by
differential-algebraic equations, in: L. T. Biegler, A. Brambilla, C. Scali (Eds.),
Prepints: International Symposium on Advanced Control of Chemical Processes
(ADCHEM 2000), Pisa, Italy, 2000, 2000, pp. 695–703.

[15] A. M. Cervantes, L. T. Biegler, A stable elemental decomposition for dynamic process
optimization, J. Comput. Appl. Math. 120 (1-2) (2000) 41–57, sQP-based direct
discretization methods for practical optimal control problems.

[16] L. T. Biegler, A. M. Cervantes, A. Wächter, Advances in simultaneous strategies for
dynamic process optimization, Chem. Eng. Sci. 57 (4) (2002) 575–593.

[17] R. Mahedevan, S. Agrawal, F. J. Doyle, Differential flatness based nonlinear predictive
control of fed-batch bioreactors, Control Engn. Practice 9 (8) (2001) 889–899.

[18] L. T. Biegler, Efficient solution of dynamic optimization and NMPC problems, in:
Nonlinear model predictive control (Ascona, 1998), Birkhäuser, Basel, 2000, pp. 219–
243.

[19] P. T. Boggs, J. W. Tolle, Sequential quadratic programming, in: Acta numerica,
Cambridge Univ. Press, Cambridge, 1995, pp. 1–51.

[20] C. V. Rao, S. J. Wright, J. B. Rawlings, Application of interior-point methods to model
predictive control, J. Optim. Theory Appl. 99 (3) (1998) 723–757.

[21] J. Nocedal, S. J. Wright, Numerical optimization, Springer-Verlag, New York, 1999.

[22] L. T. Biegler, J. Nocedal, C. Schmid, A reduced Hessian method for large-scale
constrained optimization, SIAM J. Optim. 5 (2) (1995) 314–347.

[23] N. M. C. de Oliveira, Newton-type algorithms for nonlinear constrained chemical
process control, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA. (1994).

[24] F. Martinsen, The optimization algorithm rFSQP with application to nonlinear model
predictive control of grate sintering, Ph.D. thesis, Norwegian University of Science
and Technology, Norway (2001).

[25] P. E. Gill, W. Murray, M. H. Wright, Practical optimization, Academic Press Inc.
[Harcourt Brace Jovanovich Publishers], London, 1981.

20



[26] A. Griewank, Evaluating derivatives, Vol. 19 of Frontiers in Applied Mathematics,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000,
principles and techniques of algorithmic differentiation.

[27] T. Matsuura, M. Kato, Concentration stability of the isothermal reactor, Chem. Eng.
Sci. 22 (1967) 171–184.

[28] D. Q. Mayne, Nonlinear model predictive control : An assessment, in: J. C. Kantor,
C. E. Garcia, B. Carnahan (Eds.), CPC-V : Proceedings of the Fifth International
Conference on Chemical Process Control, Tahoe City, CA., 1996, AIChE symposium
series ; no. 316, CACHE, 1997, pp. 217–231.

[29] S. J. Qin, T. A. Badgwell, An overview of nonlinear model predictive control
applications, in: F. Allgöwer, A. Zheng (Eds.), Nonlinear model predictive control
(Ascona, 1998), Birkhäuser, 2000, pp. 128–145.

21



List of Figures

1

Basic SQP algorithm.5

1 NMPC of CSTR 23

2 Logarithmic comparison of CPU times 24

22



0 10 20 30 40 50 60
99.97

99.98

99.99

100

NMPC (rFOPT/RK4): 50% step in C
B1

x 1 [m
]

0 10 20 30 40 50 60

2.8

2.85

2.9

2.95

3

x 2 [m
ol

/m
3 ]

0 10 20 30 40 50 60
0.6

0.8

1

1.2

1.4

timestep

u 1,u
2 [m

3 /s
]

Fig. 1. NMPC of CSTR. The figure shows typical results for NMPC of the CSTR case
with h = 1. The various discretization methods produced nearly identical results.
The figure shows results with (solid) and without (dashed) the inequality constraint
(26). In the lower subfigure the lower curves shows u1 and the upper curves shows
u2. The step in CB1

enters at time step 10, and this drives the state x2 away from
the equilibrium.

23



0 20

−0.5

0

0.5

1

1.5

2

2.5

0 5 10
−0.5

0

0.5

1

1.5

2

2.5

0 10 20

−0.5

0

0.5

1

1.5

0 20
−4

−3

−2

−1

0

1

2

3

4

0 10

0

1

2

3

4

0 10
−4

−3

−2

−1

0

basic vs. rOPT sOPT vs. rOPT

Fig. 2. Logarithmic comparison of CPU times. The figure shows log2 plots of the
ratios between CPU times. The left half compares basic SQP and rOPT with BFGS
updates and no inequalities. To the left is shown the log2(

basicSQP
rOPT

) ratios for all
rows in the relevant columns in Tables 2 and 4. The two smaller plots shows: Upper:
Larger cases (Lobatto with h = 1 and the two RK4 cases). Lower: Smaller cases
(Lobatto with h = 2, explicit and implicit Euler). The right half compares sOPT
(Gauss-Newton) with rOPT (BFGS updates) without inequalities. The left part of
the right half shows the log2(

sOPT
rOPT

) ratios for all rows in the relevant columns in
Tables 3 and 4. The two smaller plots shows: Upper: Implicit Euler and Lobatto
IIIC cases. Lower: Explicit Euler and RK4 cases.

24



List of Tables

1 State and control values from Figure 1 26

2 Nonlinear MPC on a CSTR: Basic SQP 27

3 Nonlinear MPC on a CSTR: sOPT 28

4 Nonlinear MPC on a CSTR: rOPT and rFOPT 29

25



Table 1
State and control values from Figure 1

Variable With INEQS Without INEQS

u(1) 0.661801 0.659374

u(2) 1.337969 1.340521

x(1) 99.976941 99.989479

x(2) 2.825326 2.905540

xp(1) 99.976941 99.989479

xp(2) 2.907739 2.987641

26



Table 2
Nonlinear MPC on a CSTR: Basic SQP method and E04UCF.

CPU time (s)
Jacobian basic SQP E04UCF

Discretization Horizons # vars. analytic/ No ineqs. Ineq. w/BFGS
method h/P/M tot/dep/free fd1/fd2/AD G-N BFGS w/BFGS No ineqs. Ineq.

Explicit Euler 2/6/5 22/12/10 analytic 1.6 2.2 4.4 4.6 4.0

fd1 2.1 5.4 6.6 8.1 9.0

fd2 2.1 5.8 - 9.1 -

AD 1.8 2.8 5.4 6.0 6.8

1/12/10 44/24/20 analytic 3.1 6.2 17 16 21

fd1 5.1 22 25 44 51

fd2 6.7 30 - 68 -

AD 4.2 8.6 22 31 37

Implicit Euler 2/6/5 22/12/10 analytic 1.5 2.3 4.6 3.4 4.0

fd1 2.1 5.0 8.3 8.0 9.1

fd2 2.1 5.5 - 9.0 -

AD 1.7 2.9 6.0 5.9 6.7

1/12/10 44/24/20 analytic 3.0 6.1 17 16 20

fd1 5.3 23 27 42 52

fd2 6.7 29 - 65 -

AD 4.0 8.5 22 30 37

Lobatto IIIC 2/6/5 34/24/10 analytic 1.8 2.6 4.8 5.2 6.2

fd1 2.7 7.1 10 14 15

fd2 3.3 8.1 - 20 -

AD 2.2 3.5 6.4 9.6 11

1/12/10 68/48/20 analytic 4.5 9.0 20 38 39

fd1 10 27 49 89 89

fd2 18 45 - 194 -

AD 6.6 12 25 65 64

RK4 2/6/5 70/60/10 analytic 2.9 3.8 10 14 16

fd1 4.3 11 19 24 28

fd2 16 30 - 50 -

AD 3.9 5.3 14 19 23

1/12/10 140/120/20 analytic 12 36 67 253 255

fd1 21 108 106 334 336

fd2 116 280 - 791 -

AD 17 45 77 297 299

27



Table 3
Nonlinear MPC on a CSTR: sOPT method.

CPU time (s)
Discretization Horizons # vars. Jacobian No ineqs. Ineq.
method h/P/M tot/dep/free analytic/fd G-N BFGS w/G-N

Explicit Euler 2/6/5 22/12/10 analytic 1.6 1.5 1.7

fd1 1.4 1.7 1.8

fd2 1.5 2.1 -

AD 1.5 1.8 1.8

1/12/10 44/24/20 analytic 2.8 3.4 3.3

fd1 3.4 4.0 3.8

fd2 4.5 6.2 -

AD 3.5 4.3 4.2

Implicit Euler 2/6/5 22/12/10 analytic 4.1 10 6.4

fd1 12 10 7.8

fd2 25 43 -

AD 4.3 11 6.6

1/12/10 44/24/20 analytic 13 34 24

fd1 21 38 24

fd2 171 258 -

AD 14 35 24

Lobatto IIIC 2/6/5 34/24/10 analytic 5.1 12 8.2

fd1 12 12 13

fd2 32 48 -

AD 5.3 13 8.2

1/12/10 68/48/20 analytic 17 44 35

fd1 20 47 44

fd2 225 346 -

AD 19 47 32

RK4 2/6/5 70/60/10 analytic 2.4 2.2 3.2

fd1 3.0 3.0 3.7

fd2 2.5 3.2 -

AD 3.1 3.1 4.5

1/12/10 140/120/20 analytic 8.6 6.0 5.9

fd1 11 9.4 7.9

fd2 11 16 -

AD 11 9.8 9.3

ode45 2/6/5 22/12/10 fd2 8.4 16 8.4

ode45 1/12/10 44/24/20 fd2 60 64 61

28



Table 4
Nonlinear MPC on a CSTR: rOPT and rFOPT method.

CPU time (s)
Discretization Horizons # vars. Jacobian No ineqs. Ineqs. w/BFGS
method h/P/M tot/dep/free analytic/fd1/fd2 G-N BFGS w/slacks feasible

Explicit Euler 2/6/5 22/12/10 analytic 16 3.1 3.7 8.5

fd1 28 3.5 5.4 7.5

fd2 26 3.9 - -

AD 12 3.5 4.2 8.1

1/12/10 44/24/10 analytic 36 6.0 6.2 14

fd1 73 10 10 21

fd2 92 13 - -

AD 52 7.8 7.8 17

Implicit Euler 2/6/5 22/12/10 analytic 9.7 3.0 3.5 5.7

fd1 16 3.7 5.0 9.6

fd2 19 4.0 - -

AD 12 3.4 4.1 6.5

1/12/10 44/24/10 analytic fail 5.6 6.7 16

fd1 fail 16 11 25

fd2 fail 12 - -

AD fail 7.3 8.5 19

Lobatto IIIC 2/6/5 34/24/10 analytic 9.9 3.3 4.2 14

fd1 113 5.0 7.1 20

fd2 32 5.8 - -

AD 13 4.3 5.2 15

1/12/10 68/48/20 analytic 269 7.3 7.7 14

fd1 502 15 15 24

fd2 - 29 - -

AD 131 10 11 17

RK4 2/6/5 70/60/10 analytic 14 3.8 5.1 13

fd1 39 7.5 12 16

fd2 501 21 - -

AD 26 5.1 7.5 10

1/12/10 140/120/20 analytic 412 9.0 11 20

fd1 fail 24 27 48

fd2 3312 167 - -

AD 632 17 18 30

29


