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Summary. This paper considers the stability, robustness and output feedback
problem for sampled-data nonlinear model predictive control (NMPC). Sampled-
data NMPC here refers to the repeated application of input trajectories that are
obtained from the solution of an open-loop optimal control problem at discrete
sampling instants. Specifically we show that, under the assumption that the value
function is continuous, sampled-data NMPC possesses some inherent robustness
properties. The derived robustness results have a series of direct implications. For
example, they underpin the intuition that small errors in the optimal input tra-
jectory, e.g. resulting from an approximate numerical solution, can be tolerated.
Furthermore, the robustness can be utilized to design observer-based semi-globally
stable output feedback NMPC schemes.

1 Introduction

Model predictive control (MPC), also known as receding horizon control or
moving horizon control, is by now a well established control method. Espe-
cially linear MPC, i.e. predictive control for linear systems considering linear
constraints, is widely used in industry; mainly since it allows to handle MIMO
systems and constraints on states and inputs systematically [38]. Motivated
by the success of linear MPC, predictive control of nonlinear systems (NMPC)
has gained significant interest over the past decade. Various NMPC strategies
that lead to stability of the closed-loop have been developed in recent years
and key questions such as the efficient solution of the occurring open-loop
optimal control problem have been extensively studied (see e.g. [1, 10, 33] for
recent reviews).

In this paper we are interested in stability, robustness, and output feedback
for continuous time NMPC with sampled measurement information; i.e. we
consider the stabilization of continuous time systems by repeatedly applying
input trajectories that are obtained from the solution of an open-loop optimal
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control problem at discrete sampling instants. In the following we refer to this
problem as sampled-data NMPC.

In the first part of this paper we briefly review how nominal stability for
sampled-data NMPC can be achieved. Based on the nominal stability results
we show in Section 4 that, under the assumption that the value function
is continuous, the closed-loop using a nominally stable sampled-data NMPC
scheme possesses some inherent robustness properties. Some consequences of
the result are outlined. Expanding the robustness results obtained in Section 4
to measurement errors, we consider in Section 5 the output feedback problem
for sampled-data NMPC. Specifically we state conditions on the observer error
that must be satisfied to achieve semi-global practical stability of the closed-
loop.

2 State Feedback Sampled-data NMPC

We consider the stabilization of time-invariant nonlinear systems of the form

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)

subject to the input and state constraints: u(t)∈U ⊂R
m, x(t)∈X ⊆R

n, ∀t ≥
0. With respect to the vector field f :Rn×R

m→R
n we assume that it is locally

Lipschitz continuous and satisfies f(0, 0) = 0. Furthermore, the set U ⊂R
m is

compact, X ⊆R
n is connected, and (0, 0)∈X×U .

In sampled-data NMPC an open-loop optimal control problem is solved
at discrete sampling instants ti based on the current state information x(ti).
The sampling instants ti are given by a partition π of the time axis.

Definition 1. (Partition) Every series π = (ti), i∈N of (finite) positive
real numbers such that t0 = 0, ti < ti+1 and ti → ∞ for i → ∞ is called a
partition. Furthermore, let π̄ := supi∈N(ti+1−ti) be the upper diameter of π
and π := inf i∈N(ti+1−ti) be the lower diameter of π.

When the time t and ti occurs in the same setting, ti should be taken as the
closest previous sampling instant ti <t.

In sampled-data NMPC, the input trajectory applied in between the sam-
pling instants is given by the solution of the following open-loop optimal
control problem:

min
ū(·)

J(ū(·); x(ti)) subject to: ˙̄x(τ)=f(x̄(τ), ū(τ)), x̄(ti)=x(ti) (2a)

ū(τ)∈U , x̄(τ)∈X τ ∈ [ti, ti + Tp] (2b)

x̄(ti + Tp)∈E . (2c)
The bar denotes predicted variables, i.e. x̄(·) is the solution of (2a) driven
by the input ū(·) : [ti, ti + Tp]→U with the initial condition x(ti). The cost
functional J minimized over the control horizon Tp ≥ π̄ > 0 is given by
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J(ū(·); x(ti)) :=

∫ ti+Tp

ti

F (x̄(τ), ū(τ))dτ + E(x̄(ti + Tp)), (3)

where the stage cost F : X ×U → X is assumed to be continuous, satis-
fies F (0, 0) = 0, and lower bounded by a class K function3 αF : αF (‖x‖) ≤
F (x, u) ∀(x, u)∈X × U , where ‖ · ‖ denotes the Euclidean vector norm. The
terminal region constraint E and the terminal penalty term E are often used
to enforce stability of the closed-loop [20, 33]. The solution of the optimal
control problem (2) is denoted by ū?(·; x(ti)). It defines the open-loop input
that is applied to the system until the next sampling instant ti+1:

u(t; x(ti))= ū?(t; x(ti)), t∈ [ti, ti+1) . (4)

The control u(t; x(ti)) is a feedback, since it is recalculated at each sampling
instant using the new state measurement.

Remark 1. The main idea behind predictive control is to solve the optimal
control problem for the current state on-line. Thus, no explicit expression for
u?(t; x(ti)) is obtained. Note that this is not equivalent to the rather difficult
task of finding a solution to the underlying Hamilton Jacobi Bellman PDE,
since only the current state is considered. Typically the resulting dynamic
optimization problem is solved using the so called direct approach, which has
attracted significant research interest in recent years (see e.g. [2, 4, 11, 13, 17,
40, 41]). Specifically, it has been established that an on-line solution is possible
for realistically sized problems even with present-day computing power.

We denote the solution of (1) starting at time t1 from an initial state x(t1),
applying an input u : [t1, t2]→R

m by x(τ ; u(·), x(t1)), τ ∈ [t1, t2]. For clarity of
presentation we limit ourselves to input signals that are piecewise continuous
and thus refer to an admissible input as:

Definition 2. (Admissible Input) An input u : [0, Tp]→R
m for a state x0

is called admissible, if it is: a) piecewise continuous, b) u(τ)∈U ∀τ ∈ [0, Tp],
c) x(τ ; u(·), x0)∈X ∀τ ∈ [0, Tp], d) x(Tp; u(·), x0)∈E.

Furthermore, we often refer to the so-called value function:

Definition 3. (Value function) The value function V (x) is defined as the
minimal value of the cost for the state x: V (x) = J(ū?(·; x); x).

Various sampled-data NMPC schemes that guarantee stability and fit into the
given setup exist [6, 7, 16, 20, 25, 31, 36]. These schemes differ in the way the
terminal penalty term E and (if it appears at all) the terminal region E are
determined.

We do not assume an explicit controllability assumption on the system.
Instead, as often done in NMPC, we derive stability under the assumption of
initial feasibility of the optimal control problem.

3 A continuous function α : [0,∞) → [0,∞) is a class K function, if it is strictly
increasing and α(0) = 0.
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3 Nominal Stability of State Feedback NMPC

The following theorem establishes conditions for the convergence of the closed-
loop states to the origin. It is a slight modification of the results given in [20]
and [5, 6]. We state it here together with a condensed proof, since it lays the
basis for the robustness considerations in Section 4.

Theorem 1. (Stability of sampled-data NMPC) Suppose that
a) the terminal region E ⊆ X is closed with 0 ∈ E and that the terminal

penalty E(x) ∈ C1 is positive semi-definite
(b) ∀x∈E there exists an (admissible) input uE : [0, π̄]→U such that x(τ) ∈ E

and

∂E

∂x
f(x(τ), uE (τ)) + F (x(τ), uE (τ)) ≤ 0 ∀τ ∈ [0, π̄] (5)

(c) the NMPC open-loop optimal control problem is feasible for t = 0.
Then for the closed-loop system (1), (4) x(t)→ 0 for t → ∞, and the region
of attraction R consists of the states for which an admissible input exists.

Proof. As usual in predictive control the proof consists of two parts: in the
first part it is established that initial feasibility implies feasibility afterwards.
Based on this result it is then shown that the state converges to the origin.
Feasibility: Consider any sampling instant ti for which a solution exists (e.g.
t0). In between ti and ti+1 the optimal input ū?(τ ; x(ti)) is implemented.
Since no model plant mismatch nor disturbances are present, x(ti+1) =
x̄(ti+1; ū

?(τ ; x(ti)), x(ti)). Thus, the remaining piece of the optimal input
ū?(τ ; x(ti)), τ ∈ [ti+1, ti + Tp] satisfies the state and input constraints. Fur-
thermore, x̄(ti +Tp; x(ti), ū

?(τ ; x(ti)))∈ E and we know from assumption (b)
of the theorem that for all x ∈ E there exists at least one input uE(·) that
renders E invariant on [ti + Tp, ti + Tp + π̄]. Picking any such input we obtain
as admissible input for any time ti + σ, σ ∈ (0, ti+1 − ti]

ũ(τ ; x(ti + σ)) =

{

ū?(τ ; x(ti)), τ ∈ [ti + σ, ti+Tp]
uE(τ − ti − Tp), τ ∈(ti + Tp, ti+Tp + σ]

. (6)

Specifically, we have for the next sampling time (σ = ti+1 − ti) that
ũ(·; x(ti+1)) is a feasible input, hence feasibility at time ti implies feasibil-
ity at ti+1. Thus, if (2) is feasible for t = 0, it is feasible for all t ≥ 0.

Furthermore, if the states for which an admissible input exists converge to
the origin, it is clear that the region of attraction R consists of those points.
Convergence: We first show that the value function is decreasing starting from
a sampling instant. Remember that the value of V at for x(ti) is given by:

V (x(ti))=

∫ ti+Tp

ti

F (x̄(τ ; ū?(·; x(ti)), x(ti)), ū
?(τ ; x(ti))dτ

+E(x̄(ti+Tp; ū
?(·; x(ti)), x(ti))),
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and the cost resulting from (6) starting from any x(ti + σ; ū?(·; x(ti)), x(ti)),
σ∈(0, ti+1− ti], using the input ũ(τ, x(ti + σ)), is given by:

J(ũ(·; x(ti+σ)), x(ti+σ))=

∫ ti+σ+Tp

ti+σ

F (x̄(τ ; ũ(·; x(ti+σ)), x(ti+σ)), ũ(τ ; x(ti+σ)))dτ

+E(x̄(ti + σ+Tp; ũ(·; x(ti + σ)), x(ti + σ))).

Reformulation yields

J(ũ(·; x(ti + σ)), x(ti + σ))=V (x(ti))

−

∫ ti+σ

ti

F (x̄(τ ; ū?(·; x(ti)), x(ti)), ū
?(τ ; x(ti)))dτ−E(x̄(ti+Tp; ū

?(·; x(ti)), x(ti)))

+

∫ ti+σ+Tp

ti+Tp

F (x̄(τ ; ũ(·; x(ti + σ)), x(ti + σ)), ũ(τ ; x(ti + σ)))dτ

+E(x̄(ti + σ+Tp; ũ(·, x(ti + σ)), x(ti + σ))).

Integrating inequality (5) from ti+σ to ti+σ+Tp starting from x(ti + σ) we
obtain zero as an upper bound for the last three terms on the right side. Thus,

J(ũ(·, x(ti +σ)), x(ti +σ))−V (x(ti))≤−

∫ ti+σ

ti

F (x̄(τ ; ū?(·; x(ti))), ū
?(τ ; x(ti)))dτ.

Since ũ is only a feasible but not necessarily the optimal input for x(ti + σ),
it follows that

V (x(ti + σ))−V (x(ti))≤−

∫ ti+σ

ti

F (x̄(τ ; ū?(·; x(ti)), x(ti)), ū
?(τ ; x(ti)))dτ, (7)

i.e. the value function is decreasing along solution trajectories starting at a
sampling instant ti. Especially we have that:

V (x(ti+1))−V (x(ti))≤−

∫ ti+1

ti

F (x̄(τ ; ū?(·; x(ti)), x(ti)), ū
?(τ ; x(ti)))dτ.

By assumption, this decrease in the value function is strictly positive for
x(ti) 6= 0. Since this holds for all sampling instants, convergence holds sim-
ilarly to [7, 20] by an induction argument and the application of Barbalat’s
lemma. ut

Various ways to determine a suitable terminal penalty term and terminal
region exist. Examples are the use of a control Lyapunov function as terminal
penalty E [25] or the use of a local nonlinear or linear control law to determine
a suitable terminal penalty E and a terminal region E [6, 7, 9, 31, 36].

Note that Theorem 1 allows to consider the stabilization of systems that
can only be stabilized by feedback that is discontinuous in the state [20], e.g.
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nonholonomic mechanical systems. However, for such systems it is in general
rather difficult to determine a suitable terminal region and a terminal penalty
term.

In the next section, we examine when and under which conditions the
nominal NMPC controller is robust against (small) disturbances. The exam-
ination is based on the observation that the decrease of the value function
in (7) is strictly positive. Since for convergence only a (finite) decrease in the
value function is necessary, one can consider the integral term on the right
hand side of (7) as a certain robustness margin.

4 Robustness of State Feedback Sampled-data NMPC

Several NMPC schemes have been proposed that take uncertainties directly
in the controller formulation into account. Typically these schemes follow a
game-theoretic approach and require the on-line solution of a min-max prob-
lem (e.g. [8, 28, 30]). In this section we do not consider the design of a robustly
stable NMPC controller. Instead we examine if sampled-data NMPC based on
a nominal model possess certain inherent robustness properties with respect
to small model uncertainties and disturbances.

We note that the results derived show similarities to the discrete time
results presented in [39]. However, since we consider the stabilization of a
continuous time system applying pieces of open-loop input signals, we also
have to take the inter-sampling behavior into account. The results are also
related to the robustness properties of discontinuous feedback via sample and
hold [26]. However, note that we do not consider a fixed input over the sam-
pling time.

Specifically, we consider that the disturbances affecting the system lead to
the following modified system equation:

ẋ = f(x, u) + p(x, u, w) (8)

where f , x and u are the same as in Section 2, where p : R
n ×R

m ×R
l → R

n

describes the model uncertainty/disturbance, and where w ∈ W ∈ R
l might

be an exogenous disturbance acting on the system. It is assumed that p is
bounded over the region of interest, R× U ×W . With regard to existence of
solutions, we make the following assumption:

Assumption 1 The system (8) has a continuous solution for any x(0) ∈
R, any piecewise continuous input u(·) : [0, Tp] → U , and any exogenous
disturbance w(·) : [0, Tp] → W.

With respect to the value function V we assume that:

Assumption 2 The value function is continuous.

Assumption 3 There exists a K function αV such that for all x1, x2 ∈ R :
V (x1) − V (x2) ≤ αV (‖x1 − x2‖).
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In the following Ωc denotes level sets of V contained in R, where c > 0 specifies
the level: Ωc = {x∈R|V (x)≤c}. Given this definition we furthermore assume
that

Assumption 4 For all compact sets S ⊂R there is at least one level set Ωc

such that S⊂Ωc.

In general there is no guarantee that a stabilizing NMPC schemes satisfies As-
sumption 2, especially if state constrains are present. As is well known [20, 34],
NMPC can also stabilize systems that cannot be stabilized by feedback that
is continuous in the state. Such feedbacks in general also imply a discontin-
uous value function. Many NMPC schemes, however, satisfy this assumption
at least locally around the origin [7, 9, 33]. Furthermore, NMPC schemes that
are based on control Lyapunov functions [25] without any constraints on the
states and inputs satisfy Assumption 2.

4.1 Stability Definition and Basic Idea

We consider persistent disturbances and the repeated application of open-loop
inputs, i.e. we cannot react instantaneously to disturbances. Thus, asymp-
totic stability cannot be achieved, and the region of attraction R is in general
not invariant. As a consequence, we desire in the following only “ultimate
boundedness”-results; that the norm of the state after some time becomes
small, and that this should hold on inner approximations of R. Furthermore,
we want to show that the bound can be made arbitrarily small depending
on the bound on the disturbance and the sampling time (practical stability),
and that the region of initial conditions where this holds can be made arbi-
trarily large with respect to R (semiglobal). In view of Assumption 4 and for
simplicity of presentation, we parameterize these regions with level sets.

Specifically we derive bounds that the maximum allowable disturbance
and sampling time must fulfill such that we converge from any arbitrary level
set of initial conditions Ωc0

⊂ R in finite time to an arbitrary small (but
fixed) set Ωα around the origin without leaving a desired set Ωc ⊂ R with
c > c0, compare Figure 1.

R

Ωc0

Ωα

Ωc
x(0)

Fig. 1. Set of initial conditions Ωc0
, maximum attainable set Ωc, desired region of

convergence Ωα and nominal region of attraction R.
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The derived results are based on the observation that small disturbances
and model uncertainties lead to a (small) difference between the predicted
state x̄ and the real state x. As will be shown, the influence of the disturbance
on the value function can be bounded by

V (x(ti))−V (x(ti+1))≤−

∫ ti+1

ti

F (x̄(τ ; ū?(·; x(ti)), x(ti)), ū
?(τ ; x(ti)))dτ

+ ε(ti+1 − ti, x(ti), w(·)), (9)

where ε corresponds to the disturbance contribution. Thus, if the disturbance
contribution ε(ti+1) “scales” with the size of disturbance (it certainly also
scales with the sampling time ti+1− ti) one can achieve contraction of the
level sets, at least at the sampling points.

To bound the minimum decrease in the derivations below, we need the
following fact:

Fact 1 For any c > α > 0 with Ωc ⊂ R, Tp > δ > 0 the lower bound
Vmin(c, α, δ) on the value function exists and is non-trivial for all x0∈Ωc/Ωα:

0 < Vmin(c, α, δ) := minx0∈Ωc/Ωα

∫ δ

0
F (x̄(s; u(·; x0), x0), ū

?(s; x0))ds < ∞.

4.2 Additive Disturbances

Considering the additive disturbance p in (8) we can derive the following
Theorem

Theorem 2. Given arbitrary level sets Ωα ⊂ Ωc0
⊂ Ωc ⊂ R. Furthermore,

assume that the additive disturbance satisfies ‖p(x, u, w)‖ ≤ pmax with

αV

(

pmax

Lfx

(

eLfxπ̄ − 1
)

)

≤ min {c − c0, Vmin(c, α/4, π), α/2} (10)

where Lfx is the Lipschitz constant of f over Ωc. Then for any x(0)∈Ωc0
the

closed-loop trajectories under the nominal feedback (4) will not leave the set
Ωc, x(ti) ∈ Ωc0

∀i ≥ 0, and there exists a finite time Tα such that x(τ)∈Ωα

∀τ ≥ Tα.

Proof. The proof consists of 3 parts. In the first part we establish conditions
that guarantee that the state does not leave the set Ωc for all x(ti) ∈ Ωc0

.
In the second part we establish conditions such that the states converge in
finite time to the set Ωα/2. In the last part we derive bounds, such that for
all x(ti)∈Ωα/2 the state does not leave the set Ωα.
First part (x(ti +τ) ∈ Ωc ∀x(ti) ∈ Ωc0

): We start by comparing the nominal
(predicted) trajectory x̄ and the trajectory of the real state x starting from
the same initial state x(ti)∈Ωc0

. First note that x(ti + τ) and x̄(ti + τ) can
be written as (skipping the additional arguments the state depends on):
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x(ti + τ) = x(ti) +

∫ ti+τ

ti

(f(x(s), u(s; x(ti))) + p(x(s), u(s; x(ti)), w(s)))ds

x̄(ti + τ) = x(ti) +

∫ ti+τ

ti

f(x̄(s), u(s; x(ti)))ds.

This is certainly possible for all times τ ≥ 0 such that x̄(ti + τ) ∈ Ωc and
x(ti + τ)∈Ωc. Subtracting x from x̄, using the Lipschitz property of f in x
inside of Ωc (where Lfx is the corresponding Lipschitz constant), applying the
triangular inequality and partial integration as well as the Gronwall-Bellman
inequality we obtain:

‖x(ti + τ) − x̄(ti + τ)‖ ≤
pmax

Lfx

(

eLfxτ − 1
)

. (11)

Furthermore, at least as long as x is in Ωc we have that

V (x(ti + τ)) − V (x(ti)) ≤ V (x(ti + τ)) − V (x̄(ti + τ))

≤ αV (‖x(ti + τ) − x̄(ti + τ)‖) ≤ αV

(

pmax

Lfx

(

eLfxτ − 1
)

)

.

Here we used that V (x̄(ti + τ)) − V (x(ti)) ≤ 0 (see (7)). Thus, if

αV

(

pmax

Lfx

(

eLfxπ̄ − 1
)

)

≤ c − c0 (12)

then x(ti + τ) ∈ Ωc τ ∈ [0, ti+1 − ti], ∀x(ti)∈Ωc0
.

Second part (x(ti) ∈ Ωc0
and finite time convergence to Ωα/2): Assume

that (12) holds. Note that (12) assures that x(ti + τ) ∈ Ωc, ∀τ ∈ [0, ti+1 − ti].
Assuming that x(ti) 6∈ Ωα/2 we know that

V (x(ti+1)) − V (x(ti)) = V (x(ti+1)) − V (x̄(ti+1)) + V (x̄(ti+1)) − V (x(ti))

≤ αV

(

pmax

Lfx

(

eLfxπ̄ − 1
)

)

− Vmin(c, α/2, π).

To achieve convergence to the set Ωα/2 in finite time we need that the right
hand side is strictly less than zero. If we require that

αV

(

pmax

Lfx

(

eLfxπ̄−1
)

)

≤Vmin(c, α/4, π),

then we achieve finite convergence, since V (x(ti+1))− V (x(ti)) ≤ kdec :=
−Vmin(c, α/2, π)+Vmin(c, α/4, π)< 0 as α/4<α/2. Thus, for any x(ti) ∈ Ωc0

we have finite time convergence to the set Ωα/2 for a sampling time tm that

satisfies tm − ti ≤ Tα :=
⌈

c−α/2
kdec

⌉

. We can also conclude that x(ti+1) ∈ Ωc0

for all x(ti) ∈ Ωc0
.
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Third part (x(ti+1) ∈ Ωα ∀x(ti) ∈ Ωα/2): This is trivially satisfied following
the arguments in the first part of the proof, assuming that

αV

(

pmax

Lfx

(

eLfxπ̄ − 1
)

)

≤ α/2. ut

If V is locally Lipschitz over all compact subsets of R, it is possible to replace
condition (10) by the following more explicit one:

pmax ≤
Lfx

LV (eLfxπ̄ − 1)
min {(c − c0), Vmin(c, α/4, π), α/2} .

Here LV is the Lipschitz constant of V over Ωc.

Remark 2. Calculating the robustness bound is difficult, since in general no
explicit expression for Vmin(c, α/4, π) can be found, nor it is in general pos-
sible to calculate the necessary Lipschitz constants or to obtain an explicit
expression for αV . The result is still of value, since it underpins that small
additive disturbances can be tolerated and it can be utilized for the design of
output feedback NMPC schemes.

4.3 Input Disturbances/Optimization Errors

The results can be easily extended to disturbances that directly act on the
input. To do this we have to assume that f is also Lipschitz in u over R×U .
One specific case of such disturbances can for example be errors in the optimal
input due to the numerical solution of the optimal control problem.

To simplify the presentation we assume that the disturbed input is given by
ū?(t; x(ti))+v(t), where v(·) is assumed to be piecewise continuous. Following
the ideas in the first part of the proof of Theorem 2, we obtain

‖x(ti + τ) − x̄(ti + τ)‖ ≤

∫ ti+τ

ti

Lfx‖x(s) − x̄(s)‖ds + Lfuvmaxτ,

where Lfu is the Lipschitz constant of f(x, u) with respect to u over Ωc ×U ,
and vmax is the maximum input error. Via the Gronwall-Bellman inequality,
this gives (11) with pmax exchanged with Lfuvmax. The remainder of the proof
stays unchanged, thus we obtain the following result for input disturbances:

Theorem 3. Given the level sets Ωα ⊂Ωc0
⊂Ωc ⊂R and assuming that the

additive input disturbance satisfies ‖u‖ ≤ umax and that

αV

(

Lfuvmax

Lfx

(

eLfxπ̄ − 1
)

)

≤ min {(c − c0), Vmin(c, α/4, π), α/2} . (13)

Then for any x(0) ∈ Ωc0
the closed-loop trajectories under the nominal feed-

back (4) will not leave the set Ωc, x(ti) ∈ Ωc0
∀i ≥ 0, and there exists a finite

time Tα such that x(τ) ∈ Ωα ∀τ ≥ Tα.
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Assuming that V is locally Lipschitz we can obtain, similarly as for Theorem 2,
a more explicit bound:

pmax ≤
Lfx

LfuLV (eLfxπ̄ − 1)
min {(c − c0), Vmin(c, α/4, π), α/2} . (14)

One direct implication of this result is that approximated solutions to the
optimal control problem can in principle be tolerated. Such approximated so-
lutions can for example result from the numerical integration of the differential
equations, as considered in [23]. Furthermore, Theorem 3 gives a theoretical
foundation for the so called real-time iteration scheme, in which only one
Newton step optimization is performed per sampling instant [13].

Note that the result can, similarly to results on robustness properties of
discontinuous feedback via sample-and-hold [26], in principle be expanded to
other disturbances, e.g. neglected fast actuator dynamics or computational
delays.

5 Output-Feedback Sampled-data NMPC

One of the key obstacles for the application of NMPC is that at every sampling
instant ti the system state is required for prediction. However, often not all
system states are directly accessible. To overcome this problem one typically
employs a state observer for the reconstruction of the states. Yet, due to the
lack of a general nonlinear separation principle, stability is not guaranteed,
even if the state observer and the NMPC controller are both stable.

Several researchers have addressed this question. The approach in [12] de-
rives local uniform asymptotic stability of contractive NMPC in combination
with a “sampled” state estimator. In [29], see also [39], asymptotic stability re-
sults for observer based discrete-time NMPC for “weakly detectable” systems
are given. The results allow, in principle, to estimate a (local) region of at-
traction of the output feedback controller from Lipschitz constants. In [37] an
optimization based moving horizon observer combined with a certain NMPC
scheme is shown to lead to (semi-global) closed-loop stability.

Here we follow and expand the ideas derived in [18, 19, 24], where semi-
global stability results for output-feedback NMPC using high-gain observers
are derived. In this section we outline explicit conditions on the observer
error, allowing to consider different types of observers such as moving horizon
observers, sliding mode observers, observers with a linear error dynamics with
arbitrary placeable poles, or observers with a finite time error convergence .

5.1 Robustness to Estimation Errors

We assume that instead of the real system state x(ti) at every sampling in-
stant only a state estimate x̂(ti) is available. Thus, instead of the optimal
feedback (4) the following “disturbed” feedback is applied:
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u(τ ; x(ti))= ū?(τ−ti; x̂(ti)), τ ∈ [ti, ti+1) . (15)

Note that in principle the estimated state x̂(ti) can be outside the feasible set
R. To avoid feasibility problems we assume that in this case the input is fixed
to an arbitrary, bounded value.

Similar to the results in Section 4, we can derive the following result:

Theorem 4. Given the level sets Ωα ⊂Ωc0
⊂Ωc ⊂R. Furthermore, assume

that the state estimation error satisfies ‖x(ti) − x̂(ti)‖ ≤ emax, where

αV (eLfxπ̄emax) + αV (emax) ≤ min {c − c0, Vmin(c, α/4, π), α/2} .

Then for any x(0) ∈ Ωc0
the closed-loop trajectories with the feedback (4) will

not leave the set Ωc, x(ti) ∈ Ωc0
∀i ≥ 0, and there exists a finite time Tα such

that x(τ) ∈ Ωα ∀τ ≥ Tα.

Proof. Following the ideas of Theorem 2, the proof consists of three parts.
However, several adjustments are necessary.
First part (x(ti+τ)∈Ωc ∀x(ti)∈Ωc0

): We consider the difference in the value
function between the initial state x(ti) ∈ Ωc0

at a sampling time ti and the
developing state x(ti +τ ; x(ti), ux̂). For simplicity of notation, ux̂ denotes in
the following the optimal input resulting from x̂(ti) and ux the input that
correspond to the real state x(ti). Furthermore, xi = x(ti) and x̂i = x̂(ti).
By adding and subtracting terms to the difference in the value function, we
obtain the following equality

V (x(τ ; xi , ux̂))−V (xi) = V (x(τ ; xi , ux̂)) − V (x(τ ; x̂i , ux̂))

+ V (x(τ ; x̂i , ux̂)) − V (x̂i) + V (x̂i) − V (xi). (16)

The last two terms can be bounded by the continuity assumption on V , using
the K function αV . Furthermore, note that the third and fourth term start
from the same x̂i, and that the first term also can be bounded via αV :

V (x(τ ; xi , ux̂))−V (xi) ≤ αV (eLfx(τ−ti)‖x̂i − xi‖)

−

∫ τ

ti

F (x(s; x̂i, ux̂), ux̂)ds + αV (‖x̂i − xi‖)

From this it follows (since the contribution of the integral is negative) that if

αV (eLfxπ̄emax) + αV (emax) ≤ c − c0 (17)

then x(ti + τ)∈Ωc ∀τ ∈ (ti+1− ti).
Second part (x(ti) ∈ Ωc0

and finite time convergence to Ωα/2): We assume
that (17) holds and that x(ti)∈Ωc0

. Note that (12) assures that x(ti +τ)∈Ωc,
∀τ ∈ [0, ti+1− ti]. Assuming that x(ti) /∈Ωα/2 we obtain from (16) that

V (x(τ ; xi , ux̂))−V (xi)≤−Vmin(c, α/2, τ−ti)+αV (eLfxπ̄‖x̂i−xi‖)+αV (‖x̂i−xi‖)
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Similarly to the proof of Theorem 2 we thus know that if

αV (eLfxπ̄emax) + αV (emax) ≤ Vmin(c, α/4, π)

that we achieve finite time convergence from any x(ti) ∈ Ωc0
to the set Ωα/2

for a sampling time tm that satisfies tm − ti ≤ Tα :=
⌈

c−α/2
kdec

⌉

. We can also

conclude that x(ti+1) ∈ Ωc0
for all x(ti) ∈ Ωc0

.
Third part (x(ti+1) ∈ Ωα ∀x(ti) ∈ Ωα/2): This is trivially satisfied following
the arguments in the first part of the proof, assuming that

αV (eLfxπ̄emax) + αV (emax) ≤ α/2. ut

As for Theorem 3 and Theorem 2 it is possible to derive an explicit bound on
emax assuming that V is locally Lipschitz:

emax ≤
1

LV (eLfxπ̄ + 1)
min {(c − c0), Vmin(c, α/4, π), α/2} . (18)

As outlined in the next subsection, the result allows the design of output
feedback NMPC controllers.

5.2 Output Feedback NMPC

Theorem 4 lays the basis for the design of observer based output feedback
NMPC controllers that achieve semi-global practical stability. Semi-global
practical stability here means that for for any given three sets Ωα ⊂ Ωc0

⊂
Ωc⊂R there exists observer parameters and an upper bound on the maximum
sampling time π̄, such that the closed-loop system states will not leave the
set Ωc and converge in finite time to the practical stability region Ωα, where
they remain afterwards.

Achieving the semi-global practical stability requires that the observer
error ‖x(ti)− x̂(ti)‖ can be made sufficiently small. Since the required bound
of emax directly depends on c − c0 and on α, as well as on the maximum (π̄)
and minimum (π) sampling time, using fixed NMPC controller parameters (in
addition to the sampling time) requires that the observer has some sort of a
tuning knob to decrease the maximum observer error emax.

One possibility for such an observer is a high-gain observer, which allows
under certain further restrictions, that the observer error can be sufficiently
decreased in a sufficiently short time by increasing the observer gain. This
approach has been exploited in [19, 24] for output feedback stabilization of
nonlinear MIMO systems which are uniformly globally observable. We do not
go into details here, and refer to [19] for the sampled-data case.

We note that it is also possible to consider other observers, which allow
a sufficient decrease in the observer error. One example are moving horizon
observers with contraction constraint [37], where increase of the contraction
rate allows to achieve any desired observer error. Other examples are observers
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with linear error dynamics that allows to place the poles of the error dynamics
arbitrarily. Such observers can for example be obtained exploiting certain
normal forms and output injection [3, 27]. Another class of suitable observers
are observers that achieve a finite time observer error convergence such as
sliding mode observers [14] or the approach presented in [15, 35].

6 Conclusions

In this paper we considered the stabilization of nonlinear systems using NMPC
with sampled measurement information. In a first step we reviewed a generic
stability result for sampled-data NMPC. Based on this stability result we
considered the inherent robustness properties of sampled-data NMPC. Specif-
ically we showed that NMPC possesses some inherent robustness properties
to additive disturbances in the differential equations, to input disturbances
and to measurement uncertainties, which could for example be caused by the
application of a state observer. The robustness to measurement uncertainty
derived here can be used to derive output feedback schemes that achieve semi-
global practical stability, that is, for a fast enough sampling frequency and
fast enough observer, it recovers up to any desired accuracy the NMPC state
feedback region of attraction (semi-global) and steers the state to any (small)
compact set containing the origin (practical stability).

The price to pay is that the value function must be continuous. In gen-
eral there is no guarantee that nominally stable NMPC schemes satisfy this
assumption, especially if constraints on the states are present, see [21]. Thus,
future research has to focus on either relaxing this condition, or to derive
conditions under which an NMPC scheme does satisfy this assumption, see
for example [22].
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16. R. Findeisen and F. Allgöwer. The quasi-infinite horizon approach to nonlinear
model predictive control. In A. Zinober and D. Owens, editors, Nonlinear and

Adaptive Control, Lecture Notes in Control and Information Sciences, pages
89–105, Berlin, 2001. Springer-Verlag.

17. R. Findeisen, M. Diehl, I. Uslu, S. Schwarzkopf, F. Allgöwer, H.G. Bock, J.
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