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1. INTRODUCTION

Optimization-based control refers to a class of
control algorithms where the control input is com-
puted as the solutions of an optimization problem
on some time-horizon (or prediction horizon) from
the current time and onwards. One important
class of such algorithms is model predictive control
(MPC). In MPC the first part of the computed
open-loop control input trajectory is injected to
the system and the system is re-optimized at a
later stage to calculate a new control input tra-
jectory. Hence, the prediction is moved forwards
in time and thereby the alternative name receding
horizon control. There exists good survey papers
on MPC, see e.g. Qin and Badgwell and Rawl-
ings. The optimization problem being the heart
in all MPC applications consists of three parts;
an objective function, equality constraints and in-
equality constraints. The equality constraints are
defined by the dynamic model of the system while
the inequality constraints are linked to constraints
like control input limitations. The term nonlinear
MPC (NMPC) refers to problems in which there
are nonlinear equality constraints induced by a
nonlinear dynamic model. An excellent survey on
this is provided by Qin and Badgwell (2000). Fol-
lowing this reference a typical NMPC optimization
problem is defined as follows:

min
{uk,··· ,uk+M}
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kuj − uj−1k2Sj (1)

+
k+MX
j=k

°°euj °°2Rj + ksk2T
subject to

xj+1 = f(xj , uj, vj) ∀j ∈ {k, · · · , k +N − 1}
yj = g(xj) ∀j ∈ {k + 1, · · · , k +N}

y
j
− s≤ yj ≤ yj + s ∀j ∈ {k + 1, · · · , k +N}
uj ≤ uj ≤ uj ∀j ∈ {k, · · · , k +M}
∆uj ≤ uj − uj−1 ≤ ∆uj ∀j ∈ {k, · · · , k +M}
s≥ 0
xj ∈ Rn, yj ∈ Rmy , uj ∈ Rmu , vj ∈ Rmv

Qj, Sj ,Rj, T refers to positive, symmetric semidefinit
matrices that defines (possibly) time-varying norms.
k is the current time and N is the prediction
horizon.

The objective function weights the control error
eyj = yj − yrefj according to some (possibly) time-
varying norm on an N -step prediction horizon.
yrefj is a time-varying reference value for the sys-
tem output. The 2nd term considers control input
changes and the 3rd term penalizes deviation from



control input reference values (euj = uj − urefj ).
These terms are defined on the control horizon M
which typically is shorter than the prediction hori-
zon (M < N). The fourth term of the objective
function weighs output constraint violations.

The model is defined by a discrete nonlinear dy-
namic model state-space which may include mea-
surable disturbances vj . Further, the system out-
put is defined by a nonlinear equation. Finally,
note that the inequality constraints are linear.

The scope of this paper is to delve into some
critical issues when developing an optimization-
based control application. We focus on applica-
tions that use mechanistic models and are par-
ticularly interested in the difference between the
typical formulation seen in the open literature, e.g.
(1), and formulations that are used in industrial
applications. In this paper the dynamic model and
the optimization problem will be the focal points.

The reference cases for this paper are applica-
tions for batch processes. Batch process optimiza-
tion can be divided into three categories (Bonvin
(1998)): (i) One-time optimization, (ii) run-to-
run optimization and (iii) on-line optimization. In
run-to-run optimization information from previ-
ous runs are used to optimize the current run,
e.g. by updating the dynamic model. On-line op-
timization means re-optimization of the computed
control input trajectories as in MPC. The metal
refining case is a run-to-run optimization applica-
tion while the NMPC application for a batch PVC-
reactor is an on-line optimization application.

The paper is structured as follows: First, the metal
refining case is presented. The paper’s two main
sections, on the model and the optimization prob-
lem, respectively, succeeds this. Some additional
issues are included in a discussion section before
the paper ends with some conclusions.

2. CASE DESCRIPTION AND APPLICATION

The reference case is a metal refining process
for removing carbon from manganese metal. The
process is sketched in figure 1. It consists of a
ladle which is filled with liquid-phase high-carbon
ferromanganese metal. This implies that about 7%
of the metal consists of carbon. In addition there
is some iron and MnO in the metal. Carbon is
removed by blowing O2 at a high velocity rate on
to the surface of the metal bath. O2 is supplied
from a lance. The main overall reaction is

C +O2 → CO2

The refining process produces different products
with a carbon content in the range 0.5% − 1.5%.
Downstream the refining process the metal is

Fig. 1. The figure depicts the metal refining pro-
cess.

casted, crushed and screened before it is packed
and shipped to customers.

In addition to the main reaction there are interme-
diate reactions as well as side reactions. One im-
portant side reaction is evaporation of manganese
metal.

Mn(l) →Mn(g). (2)

Fumes generated during the batch are collected in
an off-gas system and routed to a filter-system for
removing dust.

The metal refining process is operated as a fed-
batch process. The batch sequence is as follows:

• Fill the ladle with high-carbon ferroman-
ganese metal

• Start O2-blowing
• Empty the metal in the ladle

More information on Mn decarburization can be
found in Dresler (1989).

The length of a batch sequence is in the order of
1 − 2 hours, and the ladle will typically contain
30−40.000kg of metal. The same ladle is used from
one batch to the next. It is replaced when the inner
lining becomes to thin. The economic insentive for
improved control is minimizing metal loss due to
evaporation, while satisfying an upper limit on the
concentration of carbon at the end of the batch.



The data from the instrumentation system and
the laboratory analysis are of good quality. This
includes data of the mass and temperature of the
metal before starting O2-blowing and at the end
of the batch cycle. Further, the precision of the
control inputs is high. The online data which is
received after O2-blowing starts and before the
ladle is emptied are less precise. The online data
consist of temperature and CO2-concentration in
the off-gas system. Based on the instrumentation
and control input infrastructure it was decided to
develop a model-based control strategy to improve
operations, or more specifically, an optimization-
based control strategy. To elaborate, the lack
of good quality online data was one reason for
choosing a run-to-run update strategy instead of
on-line optimization. If economically interesting
an NMPC strategy will be considered at a later
stage.

Trial revealed the necessity to use a nonlinear
model in the application since nonlinear effects
are very pronounced during the course of the
batch. A physically-based dynamic model was
developed and validated. Further, an optimiza-
tion problem consistent economic insentive for the
project was defined. The application was devel-
oped using the CENIT-software developed and
marketed by Cybernetica AS, and interfaced to
the current data system by adding new tables to
an existing online database. CENIT runs on a
Windows 2000/NT/XP platform.The system was
commisioned in May 2002. Experience so far indi-
cates that the project goals will be met.

In addition to the reference case we will also
include experience from an NMPC application for
a batch PVC-reactor reported in Schei, Ludvigsen,
Singstad and Foss (2001).

3. MODEL DEVELOPMENT

In this section we discuss critical issues in model
development. These include the choice of system
boundaries, model states, model smoothness, data
and information collection, and model implemen-
tation.

3.1 System boundaries

The choice of system boundaries is important in all
system-oriented methods. The system boundaries
may be defined on different levels. One level of
particular interest to us is the system defined by
the model in the optimization problem. Referring
to the reference case shown in figure 1 it may be
divided into several parts:

• The liquid and gas within the ladle
• The ladle

• The lance which supplies O2
• The off-gas collection system
• Process instrumentation

It is not immediate which parts to include in
the model. The goal of the application, however,
directs focus towards the liquid and gas within the
ladle. The model must capture the main kinetics
to be able to predict decarburization, i.e. removal
of C, and Mn evaporation accurately. The ladle
need not be included in the dynamic model since
its states can be regarded as constant during a
batch.

Parts of the off-gas collection system must be
modelled by a dynamic model as a means to
utilize the temperature and CO2-concentration
data from the instrumentation located in the off-
gas collection system.

Other instrumentation for measuring the mass,
concentration and temperature of the metal before
starting O2-blowing and at the end of the batch
cycle is not included in the model. These provide
either initial states for the model or measurements
for updating the model between two batches.

The current state is required in (1). In run-to-
run optimization this means the initial state, i.e.
the model states before starting O2-blowing. The
system boundaries for the dynamic model do not
coincide with the measurements that are available
before starting O2-blowing. To overcome this a
static model is used to transform input data to
coincide with input data for the dynamic model.
To be more specific (i) weight measurements of
the ladle before and after filling it with metal
for the current batch, (ii) the ladle history, (iii)
the concentration data for the input metal, and
(iv) the time lag since the last batch, are used to
estimate the initial state of the dynamic model.

3.2 Model structure and validation

The rationale for choosing a physically-based
model was fivefold.

• A mechanistic model is able to capture fun-
damental knowledge about the system. In the
present case knowledge on the flow pattern in
the ladle, species, reaction kinetics and ther-
modynamics were used to choose the model
structure.

• The refining system itself changes from time-
to-time. This includes process changes, e.g.
changes to the instrumentation system, and
new products. It is particularly important to
be able to integrate future online measure-
ments, e.g. improved measurements in the off-
gas collection system, into the model. This
will lead to limited changes in the mechanistic
model for the refining process.



• The application is used by metallurgists. To
gain confidence in the application it is impor-
tant to include the fundamental chemical and
physics knowledge into the model as opposed
to presenting a ”black bok” model.

• The company Cybernetica AS specializes in
applications where the prediction properties
of the nonlinear model is critical for success.

• Early tests supported the hypothesis that a
physically-based model could predict decar-
burization and Mn-evaporation accurately.

The term physically-based model should be qual-
ified since there is one part of the model which
is purely empirical. This is the model of the O2-
blowing system and its coupling to the metal and
gas in the ladle. A mechanistic model of this would
require substantial resources. Hence, a nonlinear
empirical model structure was selected.

Selected model parameters were estimated on the
basis of data series describing the most important
operating condition for the refining process. This
included different initial conditions and different
products. The number of data series was about 20.
Afterwards, the model was validated on more than
200 data series. In practice parameter estimation
and model validation is no linear process in the
sense that several iterations are necessary.

Model validation revealed the need to update some
parameters on a batch-to-batch basis to achieve
adequate prediction accuracy. This is done using a
sequential quadratic programming method which
includes bounds on the allowable parameter set.

It is quite important to note that data series
do not contain sufficient information for model
identification. It is always necessary to supplement
this with knowledge provided by the operational
staff. This may include detailed information on
the instrumentation (what is actually measured,
are the data filtered, location of the sensor), and
disturbances that are not measured directly. The
latter may include operational problems in the
upstream Mn-furnace, maintenance work that af-
fects production, and different shift teams.

3.3 States

The dynamic model includes three types of states.
First, there are the masses of the species in the la-
dle liquid phase; e.g.Mn, Fe,and C; temperatures
in the reactor and off-gas collection system; and
sensor dynamics in the off-gas collection system.
The total number of these states is 12.

Second, there are the masses of the species in
the gas phase; e.g. O2, and CO. The gas phase
appears both in the ladle and in the off-gas sys-
tem. The dynamic modes of the gas phase are
much faster (in the range of seconds) than the

dynamic modes that are important for predict-
ing decarborization andMn evaporation (minutes
and upwards). Hence, they could have been con-
verted to a static model. In the metal refining case
artificial gas phase dynamics were included. These
dynamics are slower than the actual dynamics of
the gas phase, but at the same time significantly
faster than the minute-scale dynamics. By this,
the solution satisfied two requirements: (i) The
gas phase dynamics do not interfere significantly
with the slower dynamics that are important for
the prediction properties. (ii) The dynamic model
has limited stiffness which is important for fast
numerical integration. The total number of gas-
related states is 18.

Third, the dynamic model include auxiliary states.
These are states that are used in the optimization
problem to be discussed later, or states that are
used by the operators for surveillance purposes.
These states are all (simple) integrators. Examples
are the consumption of O2 and the total evapora-
tion of Mn after starting O2-blowing. The total
number of these states is 4.

3.4 Smoothness

In addition to prediction accuracy a model used
in optimization-based control should be smooth
to facilitate the search algorithm for solving the
optimization problem. Hence, it is not adequate
to develop a model with good prediction accuracy.
The model must also be smooth with respect to
the control inputs eligible for optimization. This
has been a key issue to obtain robust and compu-
tationally efficient performance of the optimiza-
tion algorithm both in the reference case on metal
refining and in the PVC-application reported in
Schei et al. (2001).

To elaborate, in the reference case several kinet-
ics models are non-smooth. Non-smooth functions
were tranformed by using sigmoid-functions. To
illustrate, assume the following quite simple ki-
netic model for the reaction rate r for the reaction
A→ B.

r =

½
a(pB − pequil) if pB > pequil
0 if pB ≤ pequil

a > 0 is some constant, pB is the partial pressure
of (gas) component B, and pequil is the equilibrium
partial pressure. A smooth approximate model for
the reaction rate is

r = h(pB , pequil) · [a(pB − pequil)]

where



h(pB, pequil) =
1

1 + e−α(pB−pequil)
, α > 0

Note that this approximation does allow negative
reaction rates.

4. THE OPTIMIZATION PROBLEM

In this section we discuss critical issues in defin-
ing the optimization problem. These include the
choice of the objective function, inequality con-
straints, control input parametrisation and the
infeasibility problem.

4.1 Prediction horizon

In the reference case the prediction horizon was
not included as a free variable in the optimization.
The total batch time is precalculated as a function
of the initial metal weight and the product in
question. More metal requires longer batch time.
So does a (final) product with lower C concentra-
tion than a product with higher C. There were
three reasons for this strategy. First, the metal
refining system does not limit total production,
i.e. it is no bottleneck in the production chain.
Second, the precalculated batch time is equal to
the batch times used in the former control system.
It is reasonable to waive changes that do not
improve performance. Third, the complexity of the
optimization algorithm is limited by the computa-
tional resources available. Including batch time in
the optimization problem increases computational
load.

As a contrast to the reference case, in the PVC-
application reported in Schei et al. (2001) the
minimization of the batch time was important to
increase production capacity.

4.2 Objective function

Two alternative approaches to select the objective
function is the use of economically inspired terms
or terms directly linked to physical variables. The
latter approach would imply that the objective
function should minimize the evaporation of Mn,
typically

J1 =
k+NX
j=k+1

krjk2Q (3)

where rj is the reaction rate of (2) at time-step j.
An economically based objective function reflects
variable costs and revenues, typically

J2 = a1 · xMn,k+N −
k+NX
j=k+1

bT · uj (4)

where a is the sales price for Mn. b includes the
costs for the control inputs. xMn,k+N is the mass
ofMn in the ladle at the end of the batch (k+N).
The latter approach provides the user with the
highest flexibility in the sense that it is easy to
vary the objective function in the wake of changing
sales prices and cost.

Weighting control input changes, cf. the termPk+M
j=k kuj − uj−1k2Sj in (1), was added to (4).

This is important to prevent the optimization
algorithm from computing excessive changes in the
control input that provide minute improvements
to (4). Further, it can be noted that the termPk+M

j=k kuj − uj−1k2Sj contributes with a positive
definite matrix to the Hessian of the Lagrangian.
Hence, in practice the term improves convergence
speed of the search algorithm.

4.3 Inequality constraints

Inequality constraints limit the search space for
the control inputs and may also include limitations
on the output or state-space. In the reference case
they play an important role in transferring oper-
ational experience to the optimization problem.
To force one of the control inputs to 0 during
certain time periods inequalities are used. One
might imagine that this would be taken care of
by the objective function and the dynamic model.
In the reference case, however, there are both
external factor and unmodelled phenomena which
necessitates the use of inequalities to set it to 0.

The identified dynamic model is valid for certain
operating conditions. In particular there are lim-
itations on the liquid and gas temperature range
in which the dynamic model is valid. This is one
reason to include an upper bound on the maximum
liquid and gas temperature in the ladle.

4.4 Time-varying optimization problem

The optimization problem need not be static with
time meaning that external circumstances may
trigger changes in the optimization problem. In
the reference case it is necessary to change the op-
timization problem in two operational cases. First,
when an old lance is replaced with a new one the
dynamic model’s prediction accuracy decreases for
some runs until the model is tuned. In this case
the end time constraint for the C concentration is
reduced to make sure that the real C concentration
is met. Second, when the ladle is changed it is im-
portant to account for the fact that the new ladle



is cooler than the normal operating temperature
for the ladle. This again necessitates changes in
the constraints of the optimization problem.

5. DISCUSSION

The sections on model development and on the
optimization problem have brought forward some
critical issues in optimization-based control, some
of which usually are neglected in the open liter-
ature. Understanding these issues will direct fu-
ture academic advancements in a direction that
meets the requirements on the implementation
side. Some are eligible for further research. We will
point to two issues that deserve further attention:
These are model smoothness and the dynamic
optimization problem.

The requirement on model smoothness springs
from the use of the dynamic model. It is used
in an optimization search algorithm. As opposed
to this the requirement would not be valid if
the intended use was in a dynamic simulator.
Model smoothness raise two issues. It can be
integrated into the model which was done in the
reference case. Another approach is the inclusion
of a term in the parameter estimation problem
that penalizes non-smoothness of the model. This
necessitates the design of a measure for non-
smoothness of the model.

Application experience pinponts the need for a
dynamic optimization problem in the sense that
it varies with time. The objective function may
change to accomodate changing priorities. This
may be caused by external factors like price and
cost changes for products, and raw material and
energy, respectively. It may also be caused by
maintenance work, e.g. a control actuator may
be deactivated. The latter case may alternatively
be taken care of by changing the inequality con-
straints.

The model that defines the equality constraints
may be time-varying. In the reference case on
metal refining the model is updated from one run
to the next. Hence, it is time-varying.

The inequality constraints may vary for several
reasons. Changing products may require different
operating conditions, e.g. limits on the maximum
temperature in a reactor. Wear of equipment may
invoke operational conservatism. When the ladle
lining becomes thin the user may refrain from pro-
ducing products that require high temperatures.
Uncertainty may lead to the choice of conservative
targets to make sure that hard product targets are
met.

The time-varying optimization problem compli-
cates analysis, e.g. NMPC stability analysis for
continuous processes. The simplest case arises

when the changes are invoked by exogeneous sig-
nals. If the changes are based on an adaption loop,
however, this feedback loop is added to the control
loop. A further complication arises if the adaption
loop includes discrete events. The system must
then be treated as a hybrid system. The latter
case occurs if some (discrete) logic discriminates
between different objective functions.

The sections above focus on the development
phase of an optimization-based control applica-
tion. Little is said about the commisioning phase.
There are crucial issues related in this phase. They
include the application’s functionality, graphical
user interface, software debugging to make the ap-
plication robust, and user motivation and training
courses.

6. CONCLUSIONS

Based on industrial experience this paper high-
lights some issues that are critical when devel-
oping an optimization-based control applications.
We argue that model smoothness is important
in optimization-based control, and that industrial
applications necessitates a time-varying optimiza-
tion problem.
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