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Abstract: In this paper a new model predictive control (MPC) strategy, applicable to a set of nonlinear systems, is

proposed and the use of it is demonstrated on a model of a waste treatment reactor. The MPC strategy is an extension of

earlier work in optimization-based control [2]. The motivation for the study is to search for approaches to nonlinear MPC

without having to solve the full nonlinear problem. We restrict our problem by de�ning a nonlinear model set as a convex

combination of a set of bounding linear models. The weighting factors between the models can be a function of the states

and/or inputs. At a given time-instant we compute an optimal future control sequence for each of the bounding linear

models. A novel feature is that all models must obey the constraints for each of the control sequences. The reason for

these additional constraints is that they provide us with feasibility guarantees. It also is a means of robustifying the MPC.

The �nal control sequence is found by interpolating the control sequences derived from the optimization problems. There

are di�erent possible approaches for choosing the interpolation variables. Provided the optimization criterion and the

constraint sets for the control variables and states are convex, the proposed control algorithm involves only convex

optimization problems. The interpolating MPC strategy is applied to a waste treatment reactor, where the process

dynamics are nonlinear and time-varying depending on the disturbance. Linearization is carried out to obtain bounding

models for the process. The interpolating MPC is designed based on the bounding models. Through the example we

demonstrate signi�cant improvements over a standard quadratic MPC strategy based on linear models.

1 Introduction

The combined use of dynamicmodels and optimization

for process control o�ers a concept in which process

knowledge can be linked to operational goals formu-

lated by some optimization criterion. This concept has

seen widespread use, particularly through the applica-

tions of model predictive control (MPC). MPC refers

to a class of algorithms where an optimization prob-

lem is solved repetitively, at every new time-instant.

Only the �rst part of the computed control sequence

is applied to the system since a new optimal control

sequence is computed and applied at the next time-

step. Several reviews of MPC technology exist, see for

example Lee [4], Rawlings et al. [8] and Qin and Badg-

well [7], the latter emphasizing industrial use of the

technology. The interaction between control and opti-

mization is discussed in an illuminating way in Mayne

[6].

�Author to whom all correspondence should be addressed.

A popular MPC strategy is based on linear dy-

namic models and linear constraints on the control in-

puts and system outputs. Nonlinear optimizing con-

trol has been studied by Rawlings et al. [8] and Genceli

and Nikalaou [3]. Further, some approaches were de-

scribed by Bequette [1] in a somewhat earlier paper.

These control strategies normally result in a non-convex

optimization problem.

In this paper we explore an MPC strategy based on

nonlinear models. In particular, the goal is to derive

an approach which can o�er a smooth transition from

linear MPC to nonlinear MPC. By smooth transition

we mean an approach which can deal with nonlinear

processes but does not invoke non-convex optimiza-

tion, which may be di�cult to implement. This is

particularly important from an industrial viewpoint

as it simpli�es the transition from the application of

linear to nonlinear MPC. The smooth transition is ac-

complished by constraining the nonlinear optimization

problem along three axes. First, the set of nonlinear
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models is limited to a convex, nonlinear interpolation

of linear models. Second, constraints are added to

the optimization problem to enhance feasibility of an

optimal solution for a set of bounding linear models.

Third, the control sequence is computed as a convex

combination of control sequences based on the bound-

ing linear models.

The remainder of this paper is structured as fol-

lows: In the next section we formulate the problem.

The theoretical foundation, model development, and

control design for the proposed control algorithm are

then developed. In section 4 a waste treatment ex-

ample is used to test the e�ectiveness of the proposed

method. Finally, conclusions are given at the end of

the paper.

2 Problem Formulation

In this section we formulate the problem of MPC with

multiple linear models. We de�ne a set of linear state-

space models:

�j : hj(x(i + 1);x(i);u(i)) =

~x(i + 1)�Aj~x(i) �Bj~u(i) = 0 (1)

j 2 IJ = f1; 2; � � �; Jg

where ~x(i) = x(i)� �xj and ~u(i) = u(i)� �uj are devia-

tion variables. Since the ultimate goal is to deal with

nonlinear processes, the actual variables fx(i);u(i)g

are used rather than the deviation variables. The

linear models in �j necessarily have di�erent steady

states f�xj ; �ujg to calculate the deviation. The model

inputs and state variables are constrained as follows,

u(i) 2 U � <
mu (2)

x(i) 2 X � <
mx (3)

where U and X are convex sets. We assume the set

of nonlinear processes are interpolation of the J linear

models,

�w = fhw : hw(x(i + 1);x(i);u(i)) =

�J
j=1wj(x(i);u(i))hj(x(i + 1);x(i);u(i)) =

0 8j 2 IJ ; wj 2Wg (4)

W = fwj 2 C : wj(x(i);u(i)) 2 [0; 1];�jwj == 1

8x(i) 2 X 8u(i) 2 Ug

where hw is a nonlinear function constructed as convex

combinations of hj; j 2 IJ . It should be noted that

the continuous function wj in general will depend on

the states and the control inputs. Provided that some

limitations are placed on the nonlinear process model,

such a model can be approximated arbitrarily well by

increasing J [5].

The model predictive control objective function is

de�ned as follows,

�(�; �) =
X
i2IN

l(x(i + 1);u(i)) (5)

where

� = fu(0); : : : ;u(N � 1)g � � = U � : : :� U

� = fx(1); : : : ;x(N )g � X = X � : : :�X

l : <
mu�my

! <
+ is a convex function

i 2 IN = f0; : : : ; N � 1g

The optimality criterion is de�ned on a time horizon

from 0 to N . The control input u(i) is constant during

the time span [i; i+1). Since U and X are convex sets,

� and X are convex sets. Further, � is convex since

l is convex. The criterion function (5) does not cover

all possible criteria; penalizing changes in the control

input is for example not included. This type of change

does not in
uence the results in this paper as long as

the criterion function remains convex.

Assume that the current state variables are avail-

able, i.e.,

x(0) � given (6)

The problem we want to address is to minimize (5)

with respect to � based on the di�erent constraints

discussed above, hence we want to solve

�o = arg min�2� �(�; �) (7)

subject to the constraints � 2 X and (6) using one of

the models (�j ; j 2 IJ or �w). The control sequence

is typically parameterized as follows,

� = fu(0); : : : ;u(M ); : : : ;u(M )g; M � N � 1 (8)

This means that the control input is constant during

the last part of the control sequence. The minimiza-

tion problem (7) is solved repetitively, at each time-

step, with new initial conditions. Only the �rst control

value of the � sequence is actually applied to the pro-

cess.

A nonlinear MPC formulation would minimize the

criterion (5) subject to Eq. (4). Since Eq. (4) is

nonlinear, the resulting optimization is in general non-

convex and a globally optimal solution is di�cult to

�nd in real-time control. A typical linearMPC formu-

lation is to minimize the criterion (5) subject to one

of the linear models in �j; j 2 IJ . The linear MPC so-

lution, while easily solvable, is valid only in the small

vicinity of the steady state around which the linear

model is derived.
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3 Interpolating Model Predictive

Control

3.1 Feasibility of the Interpolation

We propose an interpolating model predictive control

(IMPC) which solves for J linear MPC problems and

the �nal control sequence is calculated via interpola-

tion. First of all, we solve for J control sequences

�oj = arg min�2� �(�; �j) (9)

subject to

1. � 2 X for all linear models in (1); and

2. using the particular model (�j) as the internal

model to calculate �j .

The above item 1 is necessary to guarantee the actual

nonlinear process is within the constraints. This is

shown in Theorem 1.

The interpolating MPC control sequence is de�ned

as follows,

�� = f�� : �� = �J
j=1�j�

o
j 8�j 2 [0; 1]; �J

j=1�j = 1g

(10)

The control sequence �� forms the basis for the con-

troller. It should be noted that �� is feasible in input

since it is based on interpolation within a convex set,

i.e., �� � �. f�j; j 2 IJg may in general vary from

one time instant to another.

An important issue is whether the interpolated con-

trol sequence �� will make the state variable sequence

X
�
w = f��w : ��w = fx�w(1) : : : ; x

�
w(N )g; (11)

8 hw 2 �w; �� 2 �g

feasible, i.e., X�
w 2 X . X�

w denotes the set of the state

variable sequence by applying �� to the process �w.

Here we provide the following theorem to guarantee

feasibility for J models, but the proof is omitted for

brevity. The special case of J = 2 is shown in Foss

and Qin (1996).

Theorem 1 Assuming J control sequences �oj which

are solved from Eq. (9), then X
�
w 2 X if f�j ; j 2 IJg

are �nite impulse response (FIR) models with fAj;Bj;Cjg

given as follows,

Aj =

�
~I 0

Hj1 : : : HjL 0

�

~I =

0
BBB@

0 : : : : : : 0

I 0 : : : 0
.
.
.

. . . 0

0 : : : I 0

1
CCCA

Bj =

0
BBBBB@

I

0
.
.
.

0

Hj0

1
CCCCCA

and Cj = (0; : : : ; 0; I)T . fHj0;Hj1; � � � ;HjLg are the

FIR coe�cient matrices.

The theorem is due to the formulation of the mini-

mization problem (9) where the constraints for all lin-

ear bounding models are considered. The signi�cance

of the theorem is that the interpolated solution �� is

feasible no matter how f�j; j 2 IJg is chosen. This

is important in searching for optimal f�jg where the

problem becomes unconstrained. In the subsequent

sections we will discuss how to obtain the bounding

linear models, fwj(x(i);u(i))g and f�jg to implement

the IMPC algorithm.

3.2 The Bounding Linear Models and

fwj; j 2 IJg

There are in general two approaches to �nding the

bounding linear models (i) through �rst principles of

the process and linearization, and (ii) through system

identi�cation. Both approaches derive models that are

valid in a small vicinity of the steady states, which

can be described by the state variables or throughput

variables of the process. Assuming the �rst principles

model is available in the following form,

dx(t)

dt
= f (x(t);u(t)) (12)

0 = g(y(t);x(t);u(t)) (13)

where f is a continuous function of x and u, lineariza-

tion can be carried out around the steady states by

specifying lower and upper bounds for each state vari-

able f�xLk ; �x
H
k ; k = 1; : : : ;mxg. Since the state variables

uniquely determine the system, the parameterization

for fwkg can be given as follows:

wk = wk(xk; �x
L
k ; �x

H
k ) k = 1; : : : ;mx (14)

For example, a linear weighting function is:

wk =
xk � �xLk
�xHk � �xLk

2 [0; 1] (15)

The interpolation is:

ywk = (1�wk)y
L
k + wky

H
k (16)

If the process state xk ! �xLk , wk ! 0 and the in-

terpolation ywk ! yLk ; if the process state xk ! �xHk ,
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wk ! 1 and the interpolation ywk ! yHk . Note that the

interpolation has to be done based on FIR models to

satisfy Theorem 1. The FIR models can be converted

from the state space models. With this interpolation

strategy, the maximumnumber of models are 2mx and

the maximum number of weighting factors wk is mx.

In practice, not all states are actively varying in a wide

region, which can be considered as �xLk = �xHk , signi�-

cantly reducing the number of models and weighting

factors. Further, varying along some states may not

include nonlinear behavior. The former will be demon-

strated with the waste treatment reactor later in this

paper. If a state variable is not directly measurable,

an observer can be designed.

If system identi�cation is used to build the bound-

ing linear models (1), a local or a global cost func-

tion can be used (Johansen and Foss, 1993). For each

region of the throughput variables, a linear model is

identi�ed. The models weights are similar to those

given in Eqs. (14), (15), and (16). One of such ap-

proaches is reported in Johansen and Foss (1993). The

approach based on throughput variables normally re-

quires a smaller number of models and the modeling

e�ort only involves linear system identi�cation.

3.3 Finding the optimal f�j; j 2 IJg

Although �� is feasible for all �� 2 ��, f�jg can be

chosen to optimize the control performance at each

time step. One approach is to solve the following min-

imization problem:

�o� = arg minf�j ;j2IJg �(��; �
�
w) (17)

subject to

�j 2 [0; 1];

JX
j=1

�j = 1

Although this optimization problem is not necessarily

convex, the dimension of the search is typically low.

For the case of two bounding models, which is expected

to be typical in practice, the search is one-dimensional.

Therefore, a global optimization over f�jg can be im-

plemented with little computational e�ort.

In the case that the above optimization is not tractable,

a schedule between �j and wj may be provided. One

approach is to choose di�erent values for wj and �j
and create an empirical relation between them, which

would yield a minimum �. Another approach is to set

up an analytical relation between �j and wj , i.e.,

�j = �j(wj) (18)

In general, if the process state x ! �xLj , wj ! 1. In

this case, we want �� ! �Lj , which requires �j ! 1.

Similarly, if wj ! 0, �j ! 0. Therefore, a monotonic

relation is expected. As a particular case, we may

specify �j = wj . The case of a prescribed schedule be-

tween wj and �j may be referred to as gain-scheduling

MPC.

4 Application to a Waste Treat-

ment Reactor

4.1 Modeling

In this section we use a waste treatment reactor to

demonstrate the interpolating MPC approach. The

reactor has waste water (alkali), acid, catalyst and ox-

idizer in
ows. The objective is to control the pH at

a given value so that the oxidation reaction can take

place. The nonlinear model for the reactor is given by

d�

dt
=

1

V
(v1c1 � vi�) (19)

d�

dt
=

1

V
(v2c2 � vi�) (20)

[H+]4 + (� +K1)[H
+]3+

(K1(� � 0:5� +K2) �Kw))[H
+]2+

(K1[K2(� � �)�Kw])[H
+]�K1K2Kw = 0 (21)

and

pH = �log10[H
+] (22)

where each variable is described in Table 1.

Variable Description

v1 acid stream 
ow rate

c1 acid concentration in the acid stream

� concentration of the acid in the reactor

v2 alkali 
ow rate

c2 alkali concentration in the base stream

� concentration of the base in the reactor

t time

V reactor volume

v3 oxidizer 
ow rate

v4 catalyst 
ow rate

vi v1 + v2 + v3 + v4
[H+] concentration of hydrogen ion

Kw water equilibrium constant

K1 sulfuric acid �rst dissociation constant

K2 sulfuric acid second dissociation constant

Table 1: Model variables description for the waste

treatment model
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Linearization of the above non-linear model yields

the following state space model:

_x = Ax +Bu (23)

y = Cx (24)

where

x =

�
~�
~�

�
; y = ~pH; u =

2
664

~v1
~v2
~c1
~c2

3
775 ;

A =
1

V

�
��vi 0

0 ��vi

�
;

B =
1

V

�
(�c1 � ��) �

�� �v1 0

�
�� (�c2 � ��) 0 �v2

�
;

C =
1

ln(10) @f

@[H+] 0

h
1

[ �H+ ]

@f

@� 0

1

[ �H+ ]

@f

@� 0

i

and

@f

@[H+]
0

= 4[ �H+]3 + 3(�� +K1)[ �H
+]2 +

2(K1(�� � 0:5�� +K2) �Kw))[ �H
+] +

K1(K2(�� � ��)�Kw)

1

[ �H+]

@f

@� 0
= �0:5K1[ �H

+]�K1K2

1

[ �H+]

@f

@� 0
= [ �H+]2 +K1[ �H

+] +K1K2

where variables with \~" represent deviation variables

and those with \�" represent steady states. Since there

are two state variables, at most four bounding models

are needed. Those are given in Table 2.

�n� w1 = 0 w1 = 1

w2 = 0 f
��L; ��Lg f

��H ; ��Lg

fA00;B00;C00;x00g fA10;B10;C10;x10g

w2 = 1 f
��L; ��Hg f

��H ; ��Hg

fA01;B01;C01;x01g fA11;B11;C11;x11g

Table 2: Model Bounds

The weighting factors are speci�ed as follows:

w1 =
� � ��L

��H �
��L
; w1 2 [0; 1] (25)

w2 =
� � ��L

��H �
��L

; w2 2 [0; 1] (26)

and the interpolation is given by:

xw = (1�w2)[(1�w1)x00+w1x10]+w2[(1�w1)x01+w1x11]

(27)

which is consistent with Table 2. The above equation

is the interpolated nonlinear representation of the pro-

cess, which is bounded by [x00;x10]� [x01;x11]. Once

the bounds on the state variables are determined, the

corresponding input variables can be calculated as fol-

lows:

�v1 =
c2��

c1c2 � c2�� � c1��
(v3 + v4) (28)

�v2 =
c1��

c1c2 � c2�� � c1��
(v3 + v4) (29)

For this particular process, we choose the bounds

as given in Table 3. Since the range for [��L; ��H ] =

[0:1340; 0:1345] is small, we neglect the variation in �

and consider the two models for w2 = 0 in Table 3

only.

�n� w1 = 0 w1 = 1

w2 = 0 [��L; ��L] = [��H ; ��L] =

[0:1373; 0:1340] [0:1673; 0:1340]

[�v1; �v2] = [�v1; �v2] =

[0:9599; 81:15] [1:337; 92:78]

w2 = 1 [��L; ��H ] = [��H ; ��H ] =

[0:1373; 0:1345] [0:1673; 0:1345]

[�v1; �v2] = [�v1; �v2] =

[1:192; 101:18] [[1:720; 119:8]

Table 3: Steady state values for the four bounding

models

4.2 Control Design and Results

To design the IMPC controller for the reactor, we use

v1 as the manipulated variable, v2 the measured dis-

turbance, v3 and v4 unmeasured disturbances. For

each of the two models in the �rst row of Table 3, the

following constraints are speci�ed:

v1 2 [0 2]

v2 2 [80 95]

� 2 [0:13 0:17]

The control sequence based on the two bounding mod-

els, �o00 and �o10, are solved via quadratic program-

ming. The control horizon for the manipulated vari-
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able is 10 and the sample rate is 8 minutes. The ob-

jective function is:

� =

NX
i=1

y2(i) + v21(i � 1) (30)

where N is chosen as 45. The interpolation of the

control sequence is given by the following schedule:

�1 = w1 =
� � ��L

��H �
��L

(31)

and

�o� = (1 � �1)�
o
00 + �1�

o
10 (32)

We simulate the control responses for setpoint and dis-

turbance changes. The pH setpoint is changed from

3.66 to 3.0 and the alkali 
ow changes from 81.15 l/min

to 89.27 l/min as measured disturbance. The control

responses for the pH and acid 
ow are shown in Fig-

ure 1.

IMPC   
Bound 1
Bound 2

0 100 200 300 400 500 600 700 800 900 1000

3

3.5

pH response

p
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0 100 200 300 400 500 600 700 800 900 1000
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A
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d
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te
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l/m
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u

te
)

Figure 1: Control responses for pH and acid 
ow.

"Bound 1" indicates the response for �1 = 0 and

"Bound 2" for �1 = 1.

It is seen that the interpolating MPC performs con-

sistently better in response to setpoint and disturbance

changes. Importantly, the control variable response

to the interpolated manipulated variable move is es-

sentially bounded by the two linear control responses,

regardless of the mismatch between the nonlinear pro-

cess and the interpolated model.

5 Conclusions

A new interpolating MPC strategy is proposed for a

set of nonlinear processes. The control move is based

on a convex combination of control pro�les generated

from a set of linear bounding models.

Feasibility of the interpolated control is guaranteed

in the strategy for FIR bounding models. The for-

mulation of the problem avoids the non-convexity of a

general nonlinear MPC. The on-line computation time

is in the same order of magnitude as a linear MPC.

The waste treatment example demonstrates that

the interpolating MPC is e�ective in handling rather

nonlinear processes. Although the nonlinear process is

not exactly a convex combination of bounding linear

models, the interpolated MPC strategy demonstrates

robust performance in the presence of setpoint and dis-

turbance changes. Stability of the interpolating MPC

is under study. Further work will extend the results to

more general state space model representation.
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